- 1: There are 4 distinct points u_1, u_2, u_3, u_4 in the plane. Suppose that for 3 of the 6 pairs of indices (i, j) with i < j we have $|u_i u_j| = a$ and for the other 3 pairs we have $|u_i u_j| = b$. Find all possible values for the ratio $r = \frac{a}{b}$.
- **2:** Let $a, b \in \mathbb{Z}$ with gcd(a, b) = 1. Show that there exists $n \in \mathbb{Z}^+$ such that $a^n + b^n = 1 \mod ab$.
- **3:** Let $f : \mathbf{R} \to \mathbf{R}$ be continuous with f(x+1) = f(x) for all $x \in \mathbf{R}$. Suppose that $\int_0^1 f = 1$. Find the maximum possible value of $\int_0^1 \int_0^x f(x+y) \, dy \, dx$.

4: Let
$$n \in \mathbf{Z}^+$$
. Evaluate $\sum_{k=0}^{3n} (-1)^k {\binom{6n-k}{k}}$.

- **5:** Let $m \in \mathbf{Z}^+$. Evaluate $\sum_{n=0}^m \binom{m}{n} \sum_{k=0}^n (-1)^k \frac{n!}{k!}$.
- 6: Find a formula for a function f(x) such that when a square with sides of length 2 rolls in the xy-plane without slipping along the curve y = f(x), the centre of the square moves along the horizontal line $y = \sqrt{2}$.
- 7: Find the maximum possible number of elements that can be contained in a set of positive integers S with the property that for all $x, y \in S$ with x < y we have $25(y x) \ge xy$.
- 8: Find the largest possible cardinality of a set $A \subseteq \{1, 2, 3, \dots, 30\}$ with the property that no product of two distinct elements in A is a square.
- **9:** Show that for every prime number $p \ge 5$ we have $p^2 \left| \sum_{k=1}^{\lfloor 2p/3 \rfloor} {p \choose k} \right|$.

10: Let $n \in \mathbf{Z}^+$. Find $\sum_{k=1}^n \phi(k) \left\lfloor \frac{n}{k} \right\rfloor$ where ϕ is Euler's totient function.

11: Show that for every integer $n \ge 2$ we have $\prod_{k=2}^{n} \ln k < \frac{\sqrt{n!}}{n}$.

12: Let $k, n \in \mathbb{Z}^+$ with k < n. Let f(x) be a polynomial of degree n whose coefficients all lie in the set $\{-1, 0, 1\}$. Suppose that $(x - 1)^k | f(x)$. Let p be a prime number with $\frac{p}{\ln p} < \frac{k}{\ln(n+1)}$. Show that the complex p^{th} roots of 1 are all roots of f(x).