## Week 8: Assorted Problems

1: There are 4 distinct points $u_{1}, u_{2}, u_{3}, u_{4}$ in the plane. Suppose that for 3 of the 6 pairs of indices $(i, j)$ with $i<j$ we have $\left|u_{i}-u_{j}\right|=a$ and for the other 3 pairs we have $\left|u_{i}-u_{j}\right|=b$. Find all possible values for the ratio $r=\frac{a}{b}$.

2: Let $a, b \in \mathbf{Z}$ with $\operatorname{gcd}(a, b)=1$. Show that there exists $n \in \mathbf{Z}^{+}$such that $a^{n}+b^{n}=1 \bmod a b$.
3: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be continuous with $f(x+1)=f(x)$ for all $x \in \mathbf{R}$. Suppose that $\int_{0}^{1} f=1$. Find the maximum possible value of $\int_{0}^{1} \int_{0}^{x} f(x+y) d y d x$.

4: Let $n \in \mathbf{Z}^{+}$. Evaluate $\sum_{k=0}^{3 n}(-1)^{k}\binom{6 n-k}{k}$.
5: Let $m \in \mathbf{Z}^{+}$. Evaluate $\sum_{n=0}^{m}\binom{m}{n} \sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!}$.
6: Find a formula for a function $f(x)$ such that when a square with sides of length 2 rolls in the $x y$-plane without slipping along the curve $y=f(x)$, the centre of the square moves along the horizontal line $y=\sqrt{2}$.

7: Find the maximum possible number of elements that can be contained in a set of positive integers $S$ with the property that for all $x, y \in S$ with $x<y$ we have $25(y-x) \geq x y$.

8: Find the largest possible cardinality of a set $A \subseteq\{1,2,3, \cdots, 30\}$ with the property that no product of two distinct elements in $A$ is a square.

9: Show that for every prime number $p \geq 5$ we have $p^{2} \left\lvert\, \sum_{k=1}^{\lfloor 2 p / 3\rfloor}\binom{p}{k}\right.$.
10: Let $n \in \mathbf{Z}^{+}$. Find $\sum_{k=1}^{n} \phi(k)\left\lfloor\frac{n}{k}\right\rfloor$ where $\phi$ is Euler's totient function.
11: Show that for every integer $n \geq 2$ we have $\prod_{k=2}^{n} \ln k<\frac{\sqrt{n!}}{n}$.
12: Let $k, n \in \mathbf{Z}^{+}$with $k<n$. Let $f(x)$ be a polynomial of degree $n$ whose coefficients all lie in the set $\{-1,0,1\}$. Suppose that $(x-1)^{k} \mid f(x)$. Let $p$ be a prime number with $\frac{p}{\ln p}<\frac{k}{\ln (n+1)}$. Show that the complex $p^{\text {th }}$ roots of 1 are all roots of $f(x)$.

