Week 9: Assorted Problems

1: Show that $\cot ^{-1}(-1)+\cot ^{-1} 2+\cot ^{-1} 5+\cot ^{-1} 8=0$.
2: Let P be a point inside an equilateral triangle $A B C$ with sides of length L. Let D, E and F be the points where the lines $P A, P B$ and $P C$ meet the edges opposite A, B and C respectively. Show that $|P D|+|P E|+|P F|<L$.

3: Find the maximum possible area for a triangle $A B C$ which contains a point P such that $|P A|=2,|P B|=\sqrt{2}$ and $|P C|=\sqrt{3}-1$.

4: For $n \in \mathbf{Z}^{+}$, find the number of non-congruent triangles with perimeter $6 n$ whose side lengths are integers.

5: Find a formula, in terms of n and k, for the number of binary sequences of length n which contain the block 01 exactly k times.

6: Show that for p prime and $n \in \mathbf{Z}^{+}$we have $\binom{n p}{p}=n \bmod p^{2}$.
7: For $n \in \mathbf{Z}^{+}$, let $\sigma(n)$ denote the sum of the positive divisors of n. Show that

$$
\sum_{k=1}^{n} \int_{0}^{\infty} \cos \left(\frac{2 \pi n}{k}\lfloor x+1\rfloor\right) d x=\sigma(n)
$$

8: Let $2 \leq n \in \mathbf{Z}$. Let $x_{1}, x_{2}, \cdots, x_{n} \in \mathbf{R}$ with $x_{1}<x_{2}<\cdots<x_{n}$. For which values of n are the numbers $x_{1}, x_{2}, \cdots, x_{n}$ uniquely determined from the set of sums $S=\left\{x_{k}+x_{l} \mid 1 \leq k<l \leq n\right\}$.

9: Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers such that $3 a_{n} \geq a_{n-1}+2 a_{n-2}$ for all $n \geq 3$. Show that either $\left\{a_{n}\right\}$ converges or $\lim _{n \rightarrow \infty} a_{n}=\infty$.

10: Let R be a ring of characteristic 0 . Let $a, b, c \in R$ Suppose that $a^{2}=a, b^{2}=b, c^{2}=c$ and $a+b+c=0$. Show that $a=b=c=0$.

11: Let n be a positive integer with at least two distinct prime factors. Show that there exists an n-gon whose internal angles are all equal and whose sides are of length $1,2,3, \cdots, n$, in some order.

12: Let $a, b \in \mathbf{R}$ and let $f, g, h, k: \mathbf{R} \rightarrow \mathbf{R}$ be differentiable with

$$
\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow \infty} g(x)=\infty, \lim _{x \rightarrow \infty} h(x)=a \text { and } \lim _{x \rightarrow \infty} k(x)=b
$$

Suppose that $\frac{f^{\prime}(x)}{g^{\prime}(x)}+h(x) \frac{f(x)}{g(x)}=k(x)$ for all $x \in \mathbf{R}$. Show that $\lim \frac{f(x)}{g(x)}=\frac{b}{a+1}$.

