SPECIAL K

Saturday November 1, 1986
 9:00 am - 12:00 noon

1: (a) Find all positive integers n such that $n+1$ divides $n!+1$.
(b) Find all positive integers n such that $\frac{(n-1)!}{k!(n-k)!}$ is an integer for all $1 \leq k \leq n-1$.

2: Let T be a fixed triangle in the plane \mathbf{R}^{2}. For every function $\ell(x, y)=a x+b y+c$, let $A(\ell)$ denote the area of the region $\{(x, y) \in T \mid \ell(x, y) \geq 0\}$. For any point $p \in \mathbf{R}^{2}$, let $g(p)=\max \{A(\ell) \mid \ell(p)=0\}$. Find the point p at which $g(p)$ attains its minimum value.

3: Let $S_{n}=\sum_{k=1}^{n-1} \frac{1}{\sin ^{2}\left(\frac{k \pi}{n}\right)}$ for all $n \geq 1$. Evaluate $S_{2^{k}}$ for $k \geq 0$.
4: Let $f(x)=\frac{1}{\ln (1+x)}+\frac{1}{\ln (1-x)}$ for $0<x<1$. Show that $f(x) \geq 1$ for all x.
5: Consider all octagons with four sides of length 1 and four sides of length 2. Show that among these octagons, the maximum area is attained by the octagon with vertices at $\pm\left(1+\frac{1}{\sqrt{2}}, \pm 1\right)$ and $\pm\left(\pm 1,1+\frac{1}{\sqrt{2}}\right)$.

BIG E

Saturday November 1, 1986 9:00 am - 12:00 noon

1: Suppose the system of inequalities

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z>0 \\
& a_{2} x+b_{2} y+c_{2} z>0 \\
& a_{3} x+b_{3} y+c_{3} z>0
\end{aligned}
$$

has no solutions in \mathbf{R}^{3}. Show that there are no non-negative real numbers X, Y and Z, not all zero, such that

$$
\begin{aligned}
a_{1} X+a_{2} Y+a_{3} Z & =0 \\
b_{1} X+b_{2} Y+b_{3} Z & =0 \\
c_{1} X+c_{2} Y+c_{3} Z & =0 .
\end{aligned}
$$

2: Three random points X, Y and Z are independently and uniformly distributed in a disc of radius one. Find the probability that the centre of the disc belongs to the triangle $X Y Z$.

3: How many subsets of $\{1,2, \cdots, 25\}$ do not contain a pair of integers $\{k, k+2\}$?
4: Consider all octagons with four sides of length 1 and four sides of length 2. Show that among these octagons, the maximum area is attained by the octagon with vertices at $\pm\left(1+\frac{1}{\sqrt{2}}, \pm 1\right)$ and $\pm\left(\pm 1,1+\frac{1}{\sqrt{2}}\right)$.

5: Prove that

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}{ }^{2} & \cdots & x_{1}{ }^{2 n-1} \\
0 & 1 & 2 x_{1} & \cdots & (2 n-1) x_{1}{ }^{2 n-2} \\
1 & x_{2} & x_{2}{ }^{2} & \cdots & x_{2}^{2 n-1} \\
0 & 1 & 2 x_{2} & \cdots & (2 n-1) x_{2}{ }^{2 n-2} \\
& \vdots & & & \vdots \\
1 & x_{n} & x_{n}{ }^{2} & \cdots & x_{n}^{2 n-1} \\
0 & 1 & 2 x_{n} & \cdots & (2 n-1) x_{n}{ }^{2 n-2}
\end{array}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)^{4} .
$$

