
Lesson 1: The Pigeonhole Principle

1: Show that at any party there are two people who have the same number of friends at the
party (assume that all friendships are mutual).

2: Show that if 9 distinct points are chosen in the integer lattice Z3, then the line segment
between some two of the 9 points contains another point in Z3.

3: Let S be a set of n integers. Show that there is a subset of S, the sum of whose elements
is a multiple of n.

4: Show that if 101 integers are chosen from the set {1, 2, 3, · · · , 200} then one of the chosen
integers divides another.

5: Show that for some integer k > 1, 3k ends with 0001 (in its decimal representation).

6: Let n be a positive integer. Show that there is a positive multiple of n whose digits (in
the base 10 representation) are all 0’s and 1’s.

7: Show that some pair of any 5 points in the unit square will be at most
√
2
2 units apart,

and that some pair of any 8 points in the unit square will be at most
√
5
4 units apart.

8: A salesman sells at least 1 car each day for 100 consecutive days selling a total of 150 cars.
Show that for each value of n with 1 ≤ n < 50, there is a period of consecutive days during
which he sold a total of exactly n cars.

9: Show that there is a Fibonacci number that ends with 9999 (in its base 10 representation).

10: Determine whether the sequence

{
1

n sinn

}
converges.



Putnam Problems Involving the Pigeonhole Principle

1: (1989 A5) Let n ∈ Z+. Let P be a regular (2n+ 1)-gon inscribed in the unit sphere. Show
that there exists c > 0 such that for every point p inside P , there exist two distinct vertices
u and v of P such that ∣∣∣|p− u| − |p− v|∣∣∣ < 1

n
− c

n3
.

2: (1990 A3) Show that a convex pentagon with vertices in Z2 has area at least 5
2 .

3: (1993 A4) Let n,m ∈ Z+. Let M = {1, 2, · · · ,m}, and let P be the set of all subsets
of {1, 2, · · · , n}. Show that the number of functions f : P → M with the property that

f(A ∩B) = min{f(A), f(B)} is equal to
m∑

k=1

kn.

4: (1994 A4) Let A,B ∈ M2×2(Z). Suppose that A + kB is invertible in M2×2(Z) for all
k ∈ {0, 1, 2, 3, 4}. Show that A+ kB is invertible for all k ∈ Z.

5: (1994 A6) Let f1, f2, · · · , f10 : Z→ Z be bijective maps. Suppose that for each integer n,
there is some composite f = fi1 ◦ fi2 ◦ · · · ◦ fim , where m ∈ Z+ and each ij ∈ {1, · · · , 10},
with f(0) = n. Let

F =
{
f1

e1 ◦ f2e2 ◦ · · · ◦ f10e10
∣∣∣each ei ∈ {0, 1}

}
(where fi

1 = fi and fi
0 is the identity). Show that if A is any nonempty finite set of

integers, then at most 512 of the 1024 functions in F map A to itself.

6: (1995 B1) Let S = {1, 2, · · · , 9}. For a partition α = {A1, · · · , Al} of S and an element
x ∈ S, let N(α, x) be the number of elements in the set Ai which contains x. Show that
for any two partitions α and β of S there exist to distinct elements x, y ∈ S such that
N(α, x) = N(α, y) and N(β, x) = N(β, y).

7: (1997 B6) Find the least possible diameter of a dissection of the 3-4-5 triangle into four
parts. (The diameter of a dissection is the largest of the diameters of the parts).

8: (1999 A5) Show that there exists a constant c ∈ R such that for every polynomial f(x) of
degree 1999, we have

|f(0| ≤ c
∫ 1

−1
|f(x)| dx.

9: (2000 B1) Let A ∈ Mn×3(Z). Suppose that at least one entry in each row of A is odd.
Show that for some x ∈ Z3, at least 4n

7 of the entries of Ax are odd.

10: (2000 B6) Let 3 ≤ n ∈ Z. Let S ⊆ {−1, 1}n =
{

(±1,±1, · · · ,±1)
}
⊆ Rn with |S| > 2n+1

n .
Show that there exists an equilateral triangle in Rn with vertices in S.


