## Lesson 1: The Pigeonhole Principle

1: Show that at any party there are two people who have the same number of friends at the party (assume that all friendships are mutual).

2: Show that if 9 distinct points are chosen in the integer lattice $\mathbf{Z}^{3}$, then the line segment between some two of the 9 points contains another point in $\mathbf{Z}^{3}$.

3: Let $S$ be a set of $n$ integers. Show that there is a subset of $S$, the sum of whose elements is a multiple of $n$.

4: Show that if 101 integers are chosen from the set $\{1,2,3, \cdots, 200\}$ then one of the chosen integers divides another.

5: Show that for some integer $k>1,3^{k}$ ends with 0001 (in its decimal representation).
6: Let $n$ be a positive integer. Show that there is a positive multiple of $n$ whose digits (in the base 10 representation) are all 0's and 1's.

7: Show that some pair of any 5 points in the unit square will be at most $\frac{\sqrt{2}}{2}$ units apart, and that some pair of any 8 points in the unit square will be at most $\frac{\sqrt{5}}{4}$ units apart.

8: A salesman sells at least 1 car each day for 100 consecutive days selling a total of 150 cars. Show that for each value of $n$ with $1 \leq n<50$, there is a period of consecutive days during which he sold a total of exactly $n$ cars.

9: Show that there is a Fibonacci number that ends with 9999 (in its base 10 representation).
10: Determine whether the sequence $\left\{\frac{1}{n \sin n}\right\}$ converges.

## Putnam Problems Involving the Pigeonhole Principle

1: (1989 A5) Let $n \in \mathbf{Z}^{+}$. Let $P$ be a regular $(2 n+1)$-gon inscribed in the unit sphere. Show that there exists $c>0$ such that for every point $p$ inside $P$, there exist two distinct vertices $u$ and $v$ of $P$ such that

$$
||p-u|-|p-v||<\frac{1}{n}-\frac{c}{n^{3}} .
$$

2: (1990 A3) Show that a convex pentagon with vertices in $\mathbf{Z}^{2}$ has area at least $\frac{5}{2}$.
3: (1993 A4) Let $n, m \in \mathbf{Z}^{+}$. Let $M=\{1,2, \cdots, m\}$, and let $P$ be the set of all subsets of $\{1,2, \cdots, n\}$. Show that the number of functions $f: P \rightarrow M$ with the property that $f(A \cap B)=\min \{f(A), f(B)\}$ is equal to $\sum_{k=1}^{m} k^{n}$.

4: (1994 A4) Let $A, B \in M_{2 \times 2}(\mathbf{Z})$. Suppose that $A+k B$ is invertible in $M_{2 \times 2}(\mathbf{Z})$ for all $k \in\{0,1,2,3,4\}$. Show that $A+k B$ is invertible for all $k \in \mathbf{Z}$.

5: (1994 A6) Let $f_{1}, f_{2}, \cdots, f_{10}: \mathbf{Z} \rightarrow \mathbf{Z}$ be bijective maps. Suppose that for each integer $n$, there is some composite $f=f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{m}}$, where $m \in \mathbf{Z}^{+}$and each $i_{j} \in\{1, \cdots, 10\}$, with $f(0)=n$. Let

$$
F=\left\{f_{1} e_{1} \circ f_{2}^{e_{2}} \circ \cdots \circ f_{10}{ }^{e_{10}} \mid \text { each } e_{i} \in\{0,1\}\right\}
$$

(where $f_{i}{ }^{1}=f_{i}$ and $f_{i}{ }^{0}$ is the identity). Show that if $A$ is any nonempty finite set of integers, then at most 512 of the 1024 functions in $F$ map $A$ to itself.

6: (1995 B1) Let $S=\{1,2, \cdots, 9\}$. For a partition $\alpha=\left\{A_{1}, \cdots, A_{l}\right\}$ of $S$ and an element $x \in S$, let $N(\alpha, x)$ be the number of elements in the set $A_{i}$ which contains $x$. Show that for any two partitions $\alpha$ and $\beta$ of $S$ there exist to distinct elements $x, y \in S$ such that $N(\alpha, x)=N(\alpha, y)$ and $N(\beta, x)=N(\beta, y)$.

7: (1997 B6) Find the least possible diameter of a dissection of the 3-4-5 triangle into four parts. (The diameter of a dissection is the largest of the diameters of the parts).

8: (1999 A5) Show that there exists a constant $c \in \mathbf{R}$ such that for every polynomial $f(x)$ of degree 1999, we have

$$
\mid f\left(0\left|\leq c \int_{-1}^{1}\right| f(x) \mid d x\right.
$$

9: (2000 B1) Let $A \in M_{n \times 3}(\mathbf{Z})$. Suppose that at least one entry in each row of $A$ is odd. Show that for some $x \in \mathbf{Z}^{3}$, at least $\frac{4 n}{7}$ of the entries of $A x$ are odd.

10: (2000 B6) Let $3 \leq n \in \mathbf{Z}$. Let $S \subseteq\{-1,1\}^{n}=\{( \pm 1, \pm 1, \cdots, \pm 1)\} \subseteq \mathbf{R}^{n}$ with $|S|>\frac{2^{n+1}}{n}$. Show that there exists an equilateral triangle in $\mathbf{R}^{n}$ with vertices in $S$.

