
Solutions to the Pigeonhole Principle Problems

1: Show that at any party there are two people who have the same number of friends at the party (assume that
all friendships are mutual).

Solution: Let n be the number of people at the party. Each person can have 0, 1, · · · , n− 2 or n− 1 friends.
If all n people had a different number of friends, then one person would have 0 friends and another would
have n − 1. This is not possible since the person with n − 1 friends is friends with everyone at the party,
including the person with 0 friends.

2: Show that if 9 distinct points are chosen in the integer lattice Z3, then the line segment between some two
of the 9 points contains another point in Z3.

Solution: Reduce each of the 9 points modulo 2 to get 9 points in Z2
3. Since Z2

3 only has 8 points, two of
the 9 points, say a and b, must be equal as elements of Z2

3, and so a + b = 0 ∈ Z2
3. This means that all

three entries of a+ b ∈ Z3 are even and so the midpoint 1
2 (a+ b) lies in Z3.

3: Let S be a set of n integers. Show that there is a subset of S, the sum of whose elements is a multiple of n.

Solution: Let S = {a1, a2, · · · , an}. For each k = 1, 2, · · · , n, let sk = a1 + a2 + · · ·+ ak. Reduce each of the
numbers sk modulo n to get sk ∈ Zn. If some sk = 0 ∈ Zn then the sum sk is a multiple of n in Z. Otherwise,
two of the sums sk must be equal in Zn, say sk = sl with l > k. Then ak+1+ak+2+· · ·+al = sl−sk = 0 ∈ Zn,
so the sum ak+1 + ak+2 + · · ·+ al is a multiple of n in Z.

4: Show that if 101 integers are chosen from the set {1, 2, 3, · · · , 200} then one of the chosen integers divides
another.

Solution: Let the chosen integers be a1, a2, · · · , a101. For each k = 1, 2, · · · , 101 write ak = 2mkbk with bk
odd. The 101 numbers b1, b2, · · · , bn are all odd and lie in the 100-element set {1, 3, 5, · · · , 199}, and so some
pair of the numbers bk must be equal. Say bk = bl with mk ≤ ml. Then ak divides al.

5: Show that for some integer k > 1, 3k ends with 0001 (in its decimal representation).

Solution: Reduce each of the 10001 numbers 31, 32, 33, · · · , 310001 modulo 10000. Some pair of powers 3k must
be equal in Z10000, say 3k = 3l ∈ Z10000 with k < l. Since 3 is invertible in Z10000 we have 3l−k = 1 ∈ Z10000

and so in Z, the number 3l−k ends with 0001.

6: Let n be a positive integer. Show that there is a positive multiple of n whose digits (in the base 10
representation) are all 0’s and 1’s.

Solution: Let a1 = 1, a2 = 11, a3 = 111, a4 = 1111 and so on. Consider the n+1 numbers a1, a2, · · · an+1 all
reduced modulo n. Some 2 of these must be equal in Zn, say ak = al ∈ Zn with k < l. Then al−ak = 0 ∈ Zn
so al − ak is a multiple of n, and notice that al − ak is of the form 11 · · · 100 · · · 0.

7: Show that some pair of any 5 points in the unit square will be at most
√
2
2 units apart, and that some pair

of any 8 points in the unit square will be at most
√
5
4 units apart.

Solution: Place the square with its vertices at
(
± 1

2 ,±
1
2

)
. The unit square can be covered by 4 closed discs,

each of diameter
√
2
2 , with centers at

(
± 1

4 ,±
1
4

)
. When 5 points are placed on the square, some two of them

must lie in the same disc, and these two points will be at most
√
2
2 units apart. The unit square can also be

covered by 7 closed discs, each of radius
√
5
4 , with centers at

(
± 1

4 ,±
3
8

)
.
(
± 1

2 , 0
)

and (0, 0). When 8 points
are placed in the unit square, some pair of them must lie in the same disc.



8: A salesman sells at least 1 car each day for 100 consecutive days selling a total of 150 cars. Show that for
each value of n with 1 ≤ n < 50, there is a period of consecutive days during which he sold a total of exactly
n cars.

Solution: Let n be an integer with 1 ≤ n < 50. For k = 1, 2, · · · 100, let ak be the number of cars sold
on the kth day, and let sk = a1 + a2 + · · · + ak. Notice that s1 < s2 < s3 < · · · < s100 = 150 and that
(s1 + n) < (s2 + n) < (s3 + n) < · · · < (s100 + n) = 150 + n < 200. Two of the 200 numbers in the set
{s1, s2, · · · , s100} ∪ {(s1 + n), (s2 + n), · · · , (s100 + n)} must be equal. No two of the numbers sk are equal
and no two of the of the numbers (sl + n) are equal, and so we must have sk = sl + n for some k, l. Then
we have k > l and al+1 + al+2 + · · ·+ ak = sk − sl = n.

9: Show that there is a Fibonacci number that ends with 9999 (in its base 10 representation).

Solution: The Fibonacci numbers are a0 = 0, a1 = 1, a2 = 1, a2 = 2, a3 = 3 and so on with an+2 = an+1+an.
We can also use the formula an = an+2 − an+1 to extend the sequence to include negative terms a−1 = 1,
a−2 = −1, a−3 = 2 and so on. Reduce all the (infinitely many) pairs (ak, ak+1) modulo 10000. Some two of
these pairs must be equal in Z10000

2, say (ak, ak+1) = (al, al+1) ∈ Z10000
2 with k < l. From the recursion

formula an+2 = an+1 + an we see that ak+i = al+i ∈ Z10000 for all i ≥ 0. From the recursion formula
an = an+2−an+1 we also see that ak+i = al+i ∈ Z10000 for all i < 0. Thus the Fibonacci sequence is periodic
in Z10000, indeed we have ai = al−k+i ∈ Z10000 for all i ∈ Z. In particular, al−k−2 = a−2 = −1 ∈ Z10000,
and so al−k−2 ends with the digits 9999.

10: Determine whether the sequence

{
1

n sinn

}
converges.

Solution: For each positive integer k we can find an integer nk ∈
[
2πk + π

3 , 2πk + 2π
3

]
(since this interval is

of size π
3 > 1). Then nk > 2πk and sinnk ≥

√
3
2 , and so nk sinnk ≥

√
3πk, hence 1

nk sinnk
≤ 1√

3πk
→ 0 as

k →∞. This shows that if the sequence
{

1
n sinn

}
does converge, then its limit must be zero.

For an integer k, let k denote the real number with k ∈ [0, π) such that k = k + πl for some integer
l. Note that for any positive integer m, we can find n with 1 ≤ n ≤ m such that n ∈

[
0, πm

)
∪
[
π − π

m , π
)
;

indeed if none of the m numbers 1, 2, 3, · · ·m were in the interval
[
0 πm

)
, then one of the m − 1 intervals[

π
m ,

2π
m

)
,
[
2π
m ,

3π
m

)
,
[
3π
m ,

4π
m

)
, · · ·

[ (n−1)π
m , πm

)
would contain two of the numbers 1, 2, 3, · · · ,m, and if say n1 and

n2 were in the same interval with n1 < n2, then we could take n = n2−n1 and then n ∈
[
0, πm

)
∪
[
π − π

m , π
)
.

Choose m1 = 1 and n1 = 1. Having chosen mk and nk with 1 ≤ nk ≤ mk and nk ∈
[
0, π

mk

)
∪
[
π− π

mk
, π

)
,

choose mk+1 large enough so that π
mk+1

< min{1, π− 1, 2, π− 2, 3, π− 3, · · · ,mk, π−mk}, then choose nk+1

with 1 ≤ nk+1 ≤ mk=1 so that nk+1 ∈
[
0, π

mk+1

]
. Our choice of mk+1 ensures that nk+1 /∈ {1, 2, 3, · · · , nk}

so that nk+1 > nk. Also, we have nk ≤ mk and | sinnk| = sinnk ≤ sin π
mk
≤ π

mk
, and so

∣∣ 1
nk sinnk

∣∣ ≥ 1
π .

This implies that the limit of the sequence
{

1
n sinn

}
cannot be 0, so it diverges.


