Solutions to the Pigeonhole Principle Problems

1: Show that at any party there are two people who have the same number of friends at the party (assume that all friendships are mutual).
Solution: Let n be the number of people at the party. Each person can have $0,1, \cdots, n-2$ or $n-1$ friends. If all n people had a different number of friends, then one person would have 0 friends and another would have $n-1$. This is not possible since the person with $n-1$ friends is friends with everyone at the party, including the person with 0 friends.

2: Show that if 9 distinct points are chosen in the integer lattice \mathbf{Z}^{3}, then the line segment between some two of the 9 points contains another point in \mathbf{Z}^{3}.
Solution: Reduce each of the 9 points modulo 2 to get 9 points in $\mathbf{Z}_{2}{ }^{3}$. Since $\mathbf{Z}_{2}{ }^{3}$ only has 8 points, two of the 9 points, say a and b, must be equal as elements of $\mathbf{Z}_{2}{ }^{3}$, and so $a+b=0 \in \mathbf{Z}_{2}{ }^{3}$. This means that all three entries of $a+b \in \mathbf{Z}^{3}$ are even and so the midpoint $\frac{1}{2}(a+b)$ lies in \mathbf{Z}^{3}.

3: Let S be a set of n integers. Show that there is a subset of S, the sum of whose elements is a multiple of n.
Solution: Let $S=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$. For each $k=1,2, \cdots, n$, let $s_{k}=a_{1}+a_{2}+\cdots+a_{k}$. Reduce each of the numbers s_{k} modulo n to get $s_{k} \in \mathbf{Z}_{n}$. If some $s_{k}=0 \in \mathbf{Z}_{n}$ then the sum s_{k} is a multiple of n in \mathbf{Z}. Otherwise, two of the sums s_{k} must be equal in \mathbf{Z}_{n}, say $s_{k}=s_{l}$ with $l>k$. Then $a_{k+1}+a_{k+2}+\cdots+a_{l}=s_{l}-s_{k}=0 \in \mathbf{Z}_{n}$, so the sum $a_{k+1}+a_{k+2}+\cdots+a_{l}$ is a multiple of n in \mathbf{Z}.

4: Show that if 101 integers are chosen from the set $\{1,2,3, \cdots, 200\}$ then one of the chosen integers divides another.
Solution: Let the chosen integers be $a_{1}, a_{2}, \cdots, a_{101}$. For each $k=1,2, \cdots, 101$ write $a_{k}=2^{m_{k}} b_{k}$ with b_{k} odd. The 101 numbers $b_{1}, b_{2}, \cdots, b_{n}$ are all odd and lie in the 100 -element set $\{1,3,5, \cdots, 199\}$, and so some pair of the numbers b_{k} must be equal. Say $b_{k}=b_{l}$ with $m_{k} \leq m_{l}$. Then a_{k} divides a_{l}.

5: Show that for some integer $k>1,3^{k}$ ends with 0001 (in its decimal representation).
Solution: Reduce each of the 10001 numbers $3^{1}, 3^{2}, 3^{3}, \cdots, 3^{10001}$ modulo 10000 . Some pair of powers 3^{k} must be equal in \mathbf{Z}_{10000}, say $3^{k}=3^{l} \in \mathbf{Z}_{10000}$ with $k<l$. Since 3 is invertible in \mathbf{Z}_{10000} we have $3^{l-k}=1 \in \mathbf{Z}_{10000}$ and so in \mathbf{Z}, the number 3^{l-k} ends with 0001.

6: Let n be a positive integer. Show that there is a positive multiple of n whose digits (in the base 10 representation) are all 0's and 1's.
Solution: Let $a_{1}=1, a_{2}=11, a_{3}=111, a_{4}=1111$ and so on. Consider the $n+1$ numbers $a_{1}, a_{2}, \cdots a_{n+1}$ all reduced modulo n. Some 2 of these must be equal in \mathbf{Z}_{n}, say $a_{k}=a_{l} \in \mathbf{Z}_{n}$ with $k<l$. Then $a_{l}-a_{k}=0 \in \mathbf{Z}_{n}$ so $a_{l}-a_{k}$ is a multiple of n, and notice that $a_{l}-a_{k}$ is of the form $11 \cdots 100 \cdots 0$.

7: Show that some pair of any 5 points in the unit square will be at most $\frac{\sqrt{2}}{2}$ units apart, and that some pair of any 8 points in the unit square will be at most $\frac{\sqrt{5}}{4}$ units apart.
Solution: Place the square with its vertices at $\left(\pm \frac{1}{2}, \pm \frac{1}{2}\right)$. The unit square can be covered by 4 closed discs, each of diameter $\frac{\sqrt{2}}{2}$, with centers at $\left(\pm \frac{1}{4}, \pm \frac{1}{4}\right)$. When 5 points are placed on the square, some two of them must lie in the same disc, and these two points will be at most $\frac{\sqrt{2}}{2}$ units apart. The unit square can also be covered by 7 closed discs, each of radius $\frac{\sqrt{5}}{4}$, with centers at $\left(\pm \frac{1}{4}, \pm \frac{3}{8}\right) .\left(\pm \frac{1}{2}, 0\right)$ and (0,0). When 8 points are placed in the unit square, some pair of them must lie in the same disc.

8: A salesman sells at least 1 car each day for 100 consecutive days selling a total of 150 cars. Show that for each value of n with $1 \leq n<50$, there is a period of consecutive days during which he sold a total of exactly n cars.

Solution: Let n be an integer with $1 \leq n<50$. For $k=1,2, \cdots 100$, let a_{k} be the number of cars sold on the $k^{t h}$ day, and let $s_{k}=a_{1}+a_{2}+\cdots+a_{k}$. Notice that $s_{1}<s_{2}<s_{3}<\cdots<s_{100}=150$ and that $\left(s_{1}+n\right)<\left(s_{2}+n\right)<\left(s_{3}+n\right)<\cdots<\left(s_{100}+n\right)=150+n<200$. Two of the 200 numbers in the set $\left\{s_{1}, s_{2}, \cdots, s_{100}\right\} \cup\left\{\left(s_{1}+n\right),\left(s_{2}+n\right), \cdots,\left(s_{100}+n\right)\right\}$ must be equal. No two of the numbers s_{k} are equal and no two of the of the numbers $\left(s_{l}+n\right)$ are equal, and so we must have $s_{k}=s_{l}+n$ for some k, l. Then we have $k>l$ and $a_{l+1}+a_{l+2}+\cdots+a_{k}=s_{k}-s_{l}=n$.

9: Show that there is a Fibonacci number that ends with 9999 (in its base 10 representation).
Solution: The Fibonacci numbers are $a_{0}=0, a_{1}=1, a_{2}=1, a_{2}=2, a_{3}=3$ and so on with $a_{n+2}=a_{n+1}+a_{n}$. We can also use the formula $a_{n}=a_{n+2}-a_{n+1}$ to extend the sequence to include negative terms $a_{-1}=1$, $a_{-2}=-1, a_{-3}=2$ and so on. Reduce all the (infinitely many) pairs (a_{k}, a_{k+1}) modulo 10000. Some two of these pairs must be equal in $\mathbf{Z}_{10000}{ }^{2}$, say $\left(a_{k}, a_{k+1}\right)=\left(a_{l}, a_{l+1}\right) \in \mathbf{Z}_{10000}{ }^{2}$ with $k<l$. From the recursion formula $a_{n+2}=a_{n+1}+a_{n}$ we see that $a_{k+i}=a_{l+i} \in \mathbf{Z}_{10000}$ for all $i \geq 0$. From the recursion formula $a_{n}=a_{n+2}-a_{n+1}$ we also see that $a_{k+i}=a_{l+i} \in \mathbf{Z}_{10000}$ for all $i<0$. Thus the Fibonacci sequence is periodic in \mathbf{Z}_{10000}, indeed we have $a_{i}=a_{l-k+i} \in \mathbf{Z}_{10000}$ for all $i \in \mathbf{Z}$. In particular, $a_{l-k-2}=a_{-2}=-1 \in \mathbf{Z}_{10000}$, and so a_{l-k-2} ends with the digits 9999 .

10: Determine whether the sequence $\left\{\frac{1}{n \sin n}\right\}$ converges.
Solution: For each positive integer k we can find an integer $n_{k} \in\left[2 \pi k+\frac{\pi}{3}, 2 \pi k+\frac{2 \pi}{3}\right]$ (since this interval is of size $\frac{\pi}{3}>1$). Then $n_{k}>2 \pi k$ and $\sin n_{k} \geq \frac{\sqrt{3}}{2}$, and so $n_{k} \sin n_{k} \geq \sqrt{3} \pi k$, hence $\frac{1}{n_{k} \sin n_{k}} \leq \frac{1}{\sqrt{3} \pi k} \rightarrow 0$ as $k \rightarrow \infty$. This shows that if the sequence $\left\{\frac{1}{n \sin n}\right\}$ does converge, then its limit must be zero.

For an integer k, let \bar{k} denote the real number with $\bar{k} \in[0, \pi)$ such that $\bar{k}=k+\pi l$ for some integer l. Note that for any positive integer m, we can find n with $1 \leq n \leq m$ such that $\bar{n} \in\left[0, \frac{\pi}{m}\right) \cup\left[\pi-\frac{\pi}{m}, \pi\right)$; indeed if none of the m numbers $\overline{1}, \overline{2}, \overline{3}, \cdots \bar{m}$ were in the interval $\left[0 \frac{\pi}{m}\right)$, then one of the $m-1$ intervals $\left[\frac{\pi}{m}, \frac{2 \pi}{m}\right),\left[\frac{2 \pi}{m}, \frac{3 \pi}{m}\right),\left[\frac{3 \pi}{m}, \frac{4 \pi}{m}\right), \cdots\left[\frac{(n-1) \pi}{m}, \frac{\pi}{m}\right)$ would contain two of the numbers $\overline{1}, \overline{2}, \overline{3}, \cdots, \bar{m}$, and if say $\overline{n_{1}}$ and $\overline{n_{2}}$ were in the same interval with $n_{1}<n_{2}$, then we could take $n=n_{2}-n_{1}$ and then $\bar{n} \in\left[0, \frac{\pi}{m}\right) \cup\left[\pi-\frac{\pi}{m}, \pi\right)$.

Choose $m_{1}=1$ and $n_{1}=1$. Having chosen m_{k} and n_{k} with $1 \leq n_{k} \leq m_{k}$ and $\overline{n_{k}} \in\left[0, \frac{\pi}{m_{k}}\right) \cup\left[\pi-\frac{\pi}{m_{k}}, \pi\right)$, choose m_{k+1} large enough so that $\frac{\pi}{m_{k+1}}<\min \left\{\overline{1}, \pi-\overline{1}, \overline{2}, \pi-\overline{2}, \overline{3}, \pi-\overline{3}, \cdots, \overline{m_{k}}, \pi-\overline{m_{k}}\right\}$, then choose n_{k+1} with $1 \leq n_{k+1} \leq m_{k=1}$ so that $\overline{n_{k+1}} \in\left[0, \frac{\pi}{m_{k+1}}\right]$. Our choice of m_{k+1} ensures that $\overline{n_{k+1}} \notin\left\{\overline{1}, \overline{2}, \overline{3}, \cdots, \overline{n_{k}}\right\}$ so that $n_{k+1}>n_{k}$. Also, we have $n_{k} \leq m_{k}$ and $\left|\sin n_{k}\right|=\sin \overline{n_{k}} \leq \sin \frac{\pi}{m_{k}} \leq \frac{\pi}{m_{k}}$, and so $\left|\frac{1}{n_{k} \sin n_{k}}\right| \geq \frac{1}{\pi}$. This implies that the limit of the sequence $\left\{\frac{1}{n \sin n}\right\}$ cannot be 0 , so it diverges.

