
Lesson 2: Induction and Recursion

1: Let a0 = 0 and a1 = 1 and for n ≥ 2 let an = an−1+6an−2. Show that an = 1
5

(
3n−(−2)n

)
for all n ≥ 0.

2: Let n ∈ Z+. Evaluate
n∑

i=1

(−1)i(2i− 1)2.

3: Let c, p, q ∈ R with p 6= 0. Let a0 = c and for n ≥ 1 let an = p an−1 + q. Find an.

4: Let n ∈ N. Evaluate
n∑

i=0

(
n + i

i

)
1

2i
.

5: Let a0 = 9 and for n ≥ 0 let an+1 = 3an
4 + 4an

3. Show that for all n ≥ 0, the number an
has (at least) 2n nines in its decimal expansion.

6: Let n ∈ Z+. Evaluate
∑

(k,l)∈A

1

kl
where A is the set of ordered pairs of integers (k, l) with

1 ≤ k ≤ n, 1 ≤ l ≤ n, k + l > n and gcd(k, l) = 1.

7: Let f : Z+ → Z+ be strictly increasing with f(2) = 2 and f(kl) = f(k)f(l) for all k, l ∈ Z+

with gcd(k, l) = 1. Show that f(n) = n for all n ∈ Z+.

8: Let an be the nth Fibonacci number (so a0 = 0, a1 = 1 and an = an−1 + an−2 for n ≥ 2).
Show that an

2 + an+1
2 = a2n+1 for all n ≥ 0.

9: (a) Show that every positive integer is equal to a sum of distinct Fibonacci numbers.

(b) Show that every positive integer can be expressed uniquely as a sum of distinct non-
consecutive Fibonacci numbers.

10: Let (a1, a2, · · · , an) ∈ Zn with
n∑

i=1

ai = 1. For k, l ∈ {1, 2, · · · , n}, let

Skl =
l∑

i=k

ai =

{
ak + ak+1 + · · ·+ al if k ≤ l ≤ n,

ak + · · ·+ an + a1 + · · ·+ al if 1 ≤ l < k.

Show that there exists a unique k such that Skl > 0 for every l.

11: Let n ∈ Z+. Suppose that n distinct points are chosen on the unit circle and a line
segment is drawn between each of the

(
n
2

)
pairs of points and suppose that no three of the

line segments are coincident. Let an be the number of regions into which the unit disc is
divided by these line segments.

(a) Find a1, a2, · · · , a5 and conjecture a formula for an.

(b) The obvious conjecture from Part (a) is incorrect. Find the correct formula for an.

12: Let p be an odd prime and suppose that Up2 = 〈a〉. Show that Upk = 〈a〉 for all k ≥ 2.



Putnam Problems Involving Induction

1: (1986 B3) Let p be prime. Let f, g, h, r, s ∈ Z[x]. Suppose that rf + sg = 1 ∈ Zp[x] and
fg = h ∈ Zp[x]. Show that for all n ∈ Z+, there exist k, l ∈ Z[x] with k = f ∈ Zp[x] and
l = g ∈ Zp[x] and kl = h ∈ Zpn .

2: (1987 B2) Let k, l, n ∈ N with k + l ≤ n. Show that
l∑

i=0

(
l
i

)
(

n
k+i

) =
n + 1

(n− l + 1)
(

n−l
k

) .
3: (1987 B4) Let a0 = 4

5 and b0 = 3
5 , and for n ≥ 0 let an+1 = an cos(bn) − bn sin(an) and

bn+1 = an sin(bn) + bn cos(an). Determine whether {an} converges and if so find the limit,
and determine whether {bn} converges and if so find the limit.

: (1988 B5) Let n ∈ Z+. Find the rank of the matrix A ∈M2n+1(R) with entries

Ai,j =


1 if n < j − i ≤ 2n or − n ≤ j − i < 0

−1 if 0 < j − i ≤ n or − 2n ≤ j − i < n

0 if 0 = j − i.

5: (1990 A1) Let a0 = 2, a1 = 3 and a2 = 6, and let an = (n+4)an−1−(4n)an−2+(4n−8)an−3
for n ≥ 3. Find a formula for an.

6: (1990 B5) Determine whether there exists a sequence a0, a1, a2, · · ·, with 0 6= ai ∈ R for
all i ≥ 0, such that for every n ∈ Z+, the polynomial p(x) = a0 + a1x + a2x

2 + · · ·+ anx
n

has n distinct real roots.

7: (1992 A4) Let f : R→ R be C∞. Suppose that f
(
1
k

)
= k2

k2+1 for all k ∈ Z+. Find the nth

derivative f (n)(0) for all n ∈ Z+.

8: (1997 A2) Let 5 ≤ n ∈ Z. There are n players seated around a circle. Initially, the players
sit in counterclockwise order from Player 1 to Player n, and each player has 1 dollar. They
play the following game. Player 1 passes his 1 dollar to Player 2 and leaves the circle.
Player 2 passes his 2 dollars to Player 3 and leaves the circle. Player 3 passes 1 of his
3 dollars to Player 4 and remains seated. Player 4 passes his 2 dollars to Player 5 and
leaves the circle. The game continues with each player passing alternately 1 then 2 dollars
counterclockwise to the next player at the table, and any player who passes all his money
leaves the table. Show that there exist infinitely many values of n for which one player
ends up with all the money.

9: (1998 A4) For k, l ∈ Z let k ∗ l denote the concatenation of k followed by l. Let a0 = 0 and
a1 = 1, and for n ≥ 2, let an = an−1 ∗ an−2. Find all values of n ∈ Z+ such that 11

∣∣an.

10: (1999 A3) Let T (x) =
∞∑
k=0

cnx
n be the Taylor series centred at 0 for f(x) =

1

1− 2x− x2
.

Show that for every n ∈ N there exists m ∈ N such that an
2 + an+1

2 = am.


