Lesson 2: Induction and Recursion

1: Let $a_{0}=0$ and $a_{1}=1$ and for $n \geq 2$ let $a_{n}=a_{n-1}+6 a_{n-2}$. Show that $a_{n}=\frac{1}{5}\left(3^{n}-(-2)^{n}\right)$ for all $n \geq 0$.

2: Let $n \in \mathbf{Z}^{+}$. Evaluate $\sum_{i=1}^{n}(-1)^{i}(2 i-1)^{2}$.
3: Let $c, p, q \in \mathbf{R}$ with $p \neq 0$. Let $a_{0}=c$ and for $n \geq 1$ let $a_{n}=p a_{n-1}+q$. Find a_{n}.
4: Let $n \in \mathbf{N}$. Evaluate $\sum_{i=0}^{n}\binom{n+i}{i} \frac{1}{2^{i}}$.
5: Let $a_{0}=9$ and for $n \geq 0$ let $a_{n+1}=3 a_{n}{ }^{4}+4 a_{n}{ }^{3}$. Show that for all $n \geq 0$, the number a_{n} has (at least) 2^{n} nines in its decimal expansion.

6: Let $n \in \mathbf{Z}^{+}$. Evaluate $\sum_{(k, l) \in A} \frac{1}{k l}$ where A is the set of ordered pairs of integers (k, l) with $1 \leq k \leq n, 1 \leq l \leq n, k+l>n$ and $\operatorname{gcd}(k, l)=1$.

7: Let $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$be strictly increasing with $f(2)=2$ and $f(k l)=f(k) f(l)$ for all $k, l \in \mathbf{Z}^{+}$ with $\operatorname{gcd}(k, l)=1$. Show that $f(n)=n$ for all $n \in \mathbf{Z}^{+}$.

8: Let a_{n} be the $n^{t h}$ Fibonacci number (so $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$). Show that ${a_{n}}^{2}+a_{n+1}{ }^{2}=a_{2 n+1}$ for all $n \geq 0$.

9: (a) Show that every positive integer is equal to a sum of distinct Fibonacci numbers.
(b) Show that every positive integer can be expressed uniquely as a sum of distinct nonconsecutive Fibonacci numbers.

10: Let $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbf{Z}^{n}$ with $\sum_{i=1}^{n} a_{i}=1$. For $k, l \in\{1,2, \cdots, n\}$, let

$$
S_{k l}=\sum_{i=k}^{l} a_{i}=\left\{\begin{array}{cl}
a_{k}+a_{k+1}+\cdots+a_{l} & \text { if } k \leq l \leq n \\
a_{k}+\cdots+a_{n}+a_{1}+\cdots+a_{l} & \text { if } 1 \leq l<k
\end{array}\right.
$$

Show that there exists a unique k such that $S_{k l}>0$ for every l.
11: Let $n \in \mathbf{Z}^{+}$. Suppose that n distinct points are chosen on the unit circle and a line segment is drawn between each of the $\binom{n}{2}$ pairs of points and suppose that no three of the line segments are coincident. Let a_{n} be the number of regions into which the unit disc is divided by these line segments.
(a) Find $a_{1}, a_{2}, \cdots, a_{5}$ and conjecture a formula for a_{n}.
(b) The obvious conjecture from Part (a) is incorrect. Find the correct formula for a_{n}.

12: Let p be an odd prime and suppose that $U_{p^{2}}=\langle a\rangle$. Show that $U_{p^{k}}=\langle a\rangle$ for all $k \geq 2$.

Putnam Problems Involving Induction

1: (1986 B3) Let p be prime. Let $f, g, h, r, s \in \mathbf{Z}[x]$. Suppose that $r f+s g=1 \in \mathbf{Z}_{p}[x]$ and $f g=h \in \mathbf{Z}_{p}[x]$. Show that for all $n \in \mathbf{Z}^{+}$, there exist $k, l \in \mathbf{Z}[x]$ with $k=f \in \mathbf{Z}_{p}[x]$ and $l=g \in \mathbf{Z}_{p}[x]$ and $k l=h \in \mathbf{Z}_{p^{n}}$.

2: (1987 B2) Let $k, l, n \in \mathbf{N}$ with $k+l \leq n$. Show that $\sum_{i=0}^{l} \frac{\binom{l}{i}}{\binom{n}{k+i}}=\frac{n+1}{(n-l+1)\binom{n-l}{k}}$.
3: (1987 B4) Let $a_{0}=\frac{4}{5}$ and $b_{0}=\frac{3}{5}$, and for $n \geq 0$ let $a_{n+1}=a_{n} \cos \left(b_{n}\right)-b_{n} \sin \left(a_{n}\right)$ and $b_{n+1}=a_{n} \sin \left(b_{n}\right)+b_{n} \cos \left(a_{n}\right)$. Determine whether $\left\{a_{n}\right\}$ converges and if so find the limit, and determine whether $\left\{b_{n}\right\}$ converges and if so find the limit.
$:(1988$ B5 $)$ Let $n \in \mathbf{Z}^{+}$. Find the rank of the matrix $A \in M_{2 n+1}(\mathbf{R})$ with entries

$$
A_{i, j}=\left\{\begin{aligned}
1 & \text { if } n<j-i \leq 2 n \text { or }-n \leq j-i<0 \\
-1 & \text { if } 0<j-i \leq n \text { or }-2 n \leq j-i<n \\
0 & \text { if } 0=j-i
\end{aligned}\right.
$$

5: (1990 A1) Let $a_{0}=2, a_{1}=3$ and $a_{2}=6$, and let $a_{n}=(n+4) a_{n-1}-(4 n) a_{n-2}+(4 n-8) a_{n-3}$ for $n \geq 3$. Find a formula for a_{n}.

6: (1990 B5) Determine whether there exists a sequence $a_{0}, a_{1}, a_{2}, \cdots$, with $0 \neq a_{i} \in \mathbf{R}$ for all $i \geq 0$, such that for every $n \in \mathbf{Z}^{+}$, the polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has n distinct real roots.

7: (1992 A4) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be \mathcal{C}^{∞}. Suppose that $f\left(\frac{1}{k}\right)=\frac{k^{2}}{k^{2}+1}$ for all $k \in \mathbf{Z}^{+}$. Find the $n^{\text {th }}$ derivative $f^{(n)}(0)$ for all $n \in \mathbf{Z}^{+}$.

8: (1997 A2) Let $5 \leq n \in \mathbf{Z}$. There are n players seated around a circle. Initially, the players sit in counterclockwise order from Player 1 to Player n, and each player has 1 dollar. They play the following game. Player 1 passes his 1 dollar to Player 2 and leaves the circle. Player 2 passes his 2 dollars to Player 3 and leaves the circle. Player 3 passes 1 of his 3 dollars to Player 4 and remains seated. Player 4 passes his 2 dollars to Player 5 and leaves the circle. The game continues with each player passing alternately 1 then 2 dollars counterclockwise to the next player at the table, and any player who passes all his money leaves the table. Show that there exist infinitely many values of n for which one player ends up with all the money.

9: (1998 A4) For $k, l \in \mathbf{Z}$ let $k * l$ denote the concatenation of k followed by l. Let $a_{0}=0$ and $a_{1}=1$, and for $n \geq 2$, let $a_{n}=a_{n-1} * a_{n-2}$. Find all values of $n \in \mathbf{Z}^{+}$such that $11 \mid a_{n}$.

10: (1999 A3) Let $T(x)=\sum_{k=0}^{\infty} c_{n} x^{n}$ be the Taylor series centred at 0 for $f(x)=\frac{1}{1-2 x-x^{2}}$. Show that for every $n \in \mathbf{N}$ there exists $m \in \mathbf{N}$ such that ${a_{n}}^{2}+a_{n+1}{ }^{2}=a_{m}$.

