Solutions to the Problems on Induction and Recursion

1: Let $a_{0}=0$ and $a_{1}=1$ and for $n \geq 2$ let $a_{n}=a_{n-1}+6 a_{n-2}$. Show that $a_{n}=\frac{1}{5}\left(3^{n}-(-2)^{n}\right)$ for all $n \geq 0$.
Solution: We claim that $a_{n}=\frac{1}{5}\left(3^{n}-(-2)^{n}\right)$ for all $n \geq 0$. When $n=0$ we have $a_{n}=a_{0}=0$ and $\frac{1}{5}\left(3^{n}-(-2)^{n}\right)=\frac{1}{5}\left(3^{0}-(-2)^{0}\right)=0$, so the claim is true when $n=0$. When $n=1$ we have $a_{n}=a_{1}=1$ and $\frac{1}{5}\left(3^{n}-(-2)^{n}\right)=\frac{1}{5}(3-(-2))=1$, so the claim is true when $n=1$. Let $k \geq 2$ and suppose the claim is true for all $n<k$. In particular we suppose the claim is true when $n=k-1$ and when $n=k-2$, that is we suppose $a_{k-1}=\frac{1}{5}\left(3^{k-1}-(-2)^{k-1}\right)$ and $a_{k-2}=\frac{1}{5}\left(3^{k-2}-(-2)^{k-2}\right)$. Then when $n=k$ we have

$$
\begin{aligned}
a_{n} & =a_{k}=a_{k-1}+6 a_{k-2} \\
& =\frac{1}{5}\left(3^{k-1}-(-2)^{k-1}\right)+\frac{6}{5}\left(3^{k-2}-(-2)^{k-2}\right) \\
& =\left(\frac{1}{5} \cdot 3^{k-1}+\frac{6}{5} \cdot 3^{k-2}\right)-\left(\frac{1}{5}(-2)^{k-1}+\frac{6}{5}(-2)^{k-2}\right) \\
& =\left(\frac{3}{5} \cdot 3^{k-2}+\frac{6}{5} \cdot 3^{k-2}\right)-\left(-\frac{2}{5}(-2)^{k-2}+\frac{6}{5}(-2)^{k-2}\right) \\
& =\frac{9}{5} \cdot 3^{k-2}-\frac{4}{5}(-2)^{k-2}=\frac{1}{5} \cdot 3^{k}-\frac{1}{5}(-2)^{k} \\
& =\frac{1}{5}\left(3^{k}-(-2)^{k}\right)=\frac{1}{5}\left(3^{n}-(-2)^{n}\right) .
\end{aligned}
$$

Thus the claim is true when $n=k$. By Strong Mathematical Induction, the claim is true for all $n \geq 0$.
2: Let $n \in \mathbf{Z}^{+}$. Evaluate $\sum_{i=1}^{n}(-1)^{i}(2 i-1)^{2}$.
Solution: Let $S_{n}=\sum_{i=1}^{n}(-1)^{i}(2 i-1)^{2}$. Verify that $S_{1}=-1, S_{2}=8=2 \cdot 4, S_{3}=-17=1-2 \cdot 9$, $S_{4}=32=2 \cdot 16, S_{5}=-49=1-2 \cdot 25$ and $S_{6}=72=2 \cdot 36$. It appears that for all $n \geq 1$, we have

$$
S_{n}=\left\{\begin{array}{c}
2 n^{2} \quad \text { when } n \text { is even } \\
1-2 n^{2} \text { when } n \text { is odd }
\end{array}\right.
$$

In other words, it appears that $S_{2 m}=2(2 m)^{2}$ for all $m \geq 1$ and that $S_{2 m-1}=1-2(2 m-1)^{2}$ for all $m \geq 1$. We claim first that $S_{2 m}=2(2 m)^{2}$ for all $m \geq 1$. We have seen that this claim is true when $m=1$ (and when $m=2,3)$. Let $k \geq 1$ and suppose that the claim is true when $m=k$, that is suppose that $S_{2 k}=2(2 k)^{2}$. Then when $m=k+1$ we have

$$
\begin{aligned}
S_{2 m} & =\sum_{i=1}^{2 k+2}(-1)^{i}(2 i-1)^{2} \\
& =\left(\sum_{i=1}^{2 k}(-1)^{i}(2 i-1)^{2}\right)+(-1)^{2 k+1}(4 k+1)^{2}+(-1)^{2 k+2}(4 k+3)^{2} \\
& =2(2 k)^{2}-(4 k+1)^{2}+(4 k+3)^{2}=8 k^{2}-\left(16 k^{2}+8 k+1\right)+\left(16 k^{2}+24 k+8\right) \\
& =8 k^{2}+16 k+8=8(k+1)^{2}=2(2 m)^{2}
\end{aligned}
$$

Thus the claim is true when $m=k+1$. By Mathematical Induction, the claim is true for all $m \geq 1$. Finally, note that for all $m \geq 1$ we have $1-2(2 m-1)^{2}=1-2\left(4 m^{2}-4 m+1\right)=-8 m^{2}+8 m-1$ and

$$
\begin{aligned}
S_{2 m-1} & =S_{2 m}-(-1)^{2 m}(4 m-1)^{2}=2(2 m)^{2}-(4 m-1)^{2} \\
& =8 m^{2}-\left(16 m^{2}-8 m+1\right)=-8 m^{2}+8 m-1=1-2(2 m-1)^{2}
\end{aligned}
$$

3: Let $c, p, q \in \mathbf{R}$ with $p \neq 0$. Let $a_{0}=c$ and for $n \geq 1$ let $a_{n}=p a_{n-1}+q$. Find a_{n}.
Solution: We have

$$
\begin{aligned}
& a_{0}=c \\
& a_{1}=p c+q \\
& a_{2}=p(p c+q)+q=p^{2} c+p q+q \\
& a_{3}=p\left(p^{2} c+p q+q\right)+q=p^{3} c+p^{2} q+p q+q \\
& a_{4}=p\left(p^{3} c+p^{2} q+p q+q\right)+q=p^{4} c+p^{3} q+p^{2} q+p q+q
\end{aligned}
$$

and in general

$$
a_{n}=p^{n} c+p^{n-1} q+p^{n-2} q+\cdots+p^{2} q+p q+q=p^{n} c+\left(p^{n-1}+p^{n-2}+\cdots p^{2}+p+1\right) q .
$$

We can obtain a (non-recursive) formula for the geometric sum $p^{n-1}+p^{n-2}+\cdots+p^{2}+p+1$ as follows. Let $S=p^{n-1}+p^{n-2}+\cdots+p^{2}+p+1$ (1). Note that $p S=p^{n}+p^{n-1}+p^{n-2}+\cdots+p^{2}+p$ (2). Subtracting (1) from (2) gives $S(p-1)=p^{n}-1$ and so $S=\frac{p^{n}-1}{p-1}$. Thus we have

$$
a_{n}=p^{n} c+\frac{p^{n}-1}{p-1} q
$$

4: Let $n \in \mathbf{N}$. Evaluate $\sum_{i=0}^{n}\binom{n+i}{i} \frac{1}{2^{i}}$.
Solution: Let $S_{n}=\sum_{i=0}^{n}\binom{n+i}{i} \frac{1}{2^{i}}$. Verify that $S_{0}=1, S_{1}=2, S_{2}=4$ and $S_{3}=8$. We claim that $S_{n}=2^{n}$ for all $n \geq 0$. When $n=0$ (and also when $n=1,2$ and 3) we have seen that the claim is true. Let $k \geq 0$ and suppose that the claim is true when $n=k$, that is suppose $S_{k}=2^{k}$. Let $n=k+1$. Then we have

$$
\begin{aligned}
S_{n}=S_{k+1}= & \binom{k+1}{0}+\binom{k+2}{1} \frac{1}{2}+\binom{k+3}{2} \frac{1}{2^{2}}+\binom{k+4}{3} \frac{1}{2^{3}}+\cdots+\binom{2 k+1}{k} \frac{1}{2^{k}}+\binom{2 k+2}{k+1} \frac{1}{2^{k+1}} \\
= & 1+\left(\binom{k+1}{0}+\binom{k+1}{1}\right) \frac{1}{2}+\left(\binom{k+2}{1}+\binom{k+2}{2}\right) \frac{1}{2^{2}}+\left(\binom{k+3}{2}+\binom{k+3}{3}\right) \frac{1}{2^{2}} \\
& +\cdots+\left(\binom{2 k}{k-1}+\binom{2 k}{k}\right) \frac{1}{2^{k}}+\left(\binom{2 k+1}{k}+\binom{2 k+1}{k+1}\right) \frac{1}{2^{k+1}} \\
= & \left(\binom{k+1}{0} \frac{1}{2}+\binom{k+2}{1} \frac{1}{2^{2}}+\binom{k+3}{2} \begin{array}{c}
1 \\
2^{3}
\end{array}+\cdots+\binom{2 k}{k-1} \frac{1}{2^{k}}+\binom{2 k+1}{k} \frac{1}{2^{k+1}}\right) \\
& +\left(1+\binom{k+1}{1} \frac{1}{2}+\binom{k+2}{2} \frac{1}{2^{2}}+\binom{k+3}{3} \frac{1}{2^{3}}+\cdots+\binom{2 k}{k} \frac{1}{2^{k}}+\binom{2 k+1}{k+1} \frac{1}{2^{k+1}}\right) \\
= & \left(\frac{1}{2} S_{n}-\binom{2 k+2}{k+1} \frac{1}{2^{k+2}}\right)+\left(\sum_{i=0}^{k}\binom{k+i}{i} \frac{1}{2^{i}}+\binom{2 k+1}{k+1} \frac{1}{2^{k+1}}\right) .
\end{aligned}
$$

Subtract $\frac{1}{2} S_{n}$ from each side to get

$$
\frac{1}{2} S_{n}=\sum_{i=0}^{k}\binom{k+i}{i} \frac{1}{2^{i}}+\binom{2 k+1}{k+1} \frac{1}{2^{k+1}}-\binom{2 k+2}{k+1} \frac{1}{2^{k+2}} .
$$

Notice that

$$
\binom{2 k+2}{k+1}=\frac{(2 k+2)!}{(k+1)!(k+1)!}=\frac{(2 k+2)(2 k+1)!}{(k+1) k!(k+1)!}=\frac{2(2 k+1)!}{k!(k+1)!}=2\binom{2 k+1}{k+1}
$$

and so we have $\frac{1}{2} S_{n}=\sum_{i=0}^{k}\binom{k+i}{i} \frac{1}{2^{i}}=S_{k}=2^{k}$, that is $S_{n}=2^{k+1}=2^{n}$. Thus the claim holds when $n=k+1$, and so by Mathematical Induction, the claim holds for all $n \geq 0$.

5: Let $a_{0}=9$ and for $n \geq 0$ let $a_{n+1}=3 a_{n}{ }^{4}+4 a_{n}{ }^{3}$. Show that for all $n \geq 0$, the number a_{n} has (at least) 2^{n} nines in its decimal expansion.
Solution: Note first that a positive integer m ends with (at least) l nines $\Longleftrightarrow m+1$ ends with l zeros \Longleftrightarrow $m+1=10^{l} q$ for some positive integer $q \Longleftrightarrow m=10^{l} q-1$ for some positive integer q.

We claim that for all $n \geq 0, a_{n}$ ends with (at lest) 2^{n} nines. When $n=0$. the claim is true since $a_{0}=9$ which ends with $2^{0}=1$ nine(s). Let $k \geq 0$ and suppose (inductively) that a_{k} ends with 2^{k} nines, say $a_{k}=10^{2^{k}} q-1$. Then when $n=k+1$ we have

$$
\begin{aligned}
a_{n} & =a_{k+1}=3 a_{k}{ }^{4}+4 a_{k}{ }^{3} \\
& =3\left(10^{2^{k}} q-1\right)^{4}+4\left(10^{2^{k}} q-1\right)^{3} \\
& =3\left(10^{4 \cdot 2^{k}} q^{4}-4 \cdot 10^{3 \cdot 2^{k}} q^{3}+6 \cdot 10^{2 \cdot 2^{k}} q^{2}-4 \cdot 10^{2^{k}} q+1\right) \\
& +4\left(10^{3 \cdot 2^{k}} q^{3}-3 \cdot 10^{2 \cdot 2^{k}} q^{2}+3 \cdot 10^{2^{k}} q-1\right) \\
& =3 \cdot 10^{4 \cdot 2^{k}} q^{4}-8 \cdot 10^{3 \cdot 2^{k}} q^{3}+6 \cdot 10^{2 \cdot 2^{k}} q^{2}-1 \\
& =10^{2 \cdot 2^{k}}\left(3 \cdot 10^{2 \cdot 2^{k}} q^{4}-8 \cdot 10^{2^{k}} q^{3}+6 q^{2}\right)-1 \\
& =10^{2^{k+1}} r-1, \text { where } r=3 \cdot 10^{2 \cdot 2^{k}} q^{4}-8 \cdot 10^{2^{k}} q^{3}+6 q^{2},
\end{aligned}
$$

which ends with 2^{k+1} nines. Thus for all $n \geq 0, a_{n}$ ends with 2^{n} nines, by mathematical induction.
6: Let $n \in \mathbf{Z}^{+}$. Evaluate $\sum_{(k, l) \in A} \frac{1}{k l}$ where A is the set of ordered pairs of integers (k, l) with $1 \leq k \leq n$, $1 \leq l \leq n, k+l>n$ and $\operatorname{gcd}(k, l)=1$.
Solution: Let $A_{n}=\{(k, l) \mid 1 \leq k \leq n, 1 \leq l \leq n, k+l>n, \operatorname{gcd}(k, l)=1\}$ and let $S_{n}=\sum_{(k, l) \in A_{n}} \frac{1}{k l}$. Note that $A_{1}=\{(1,1)\}$ so that $S_{1}=1$. Fix $n \in \mathbf{Z}^{+}$and suppose, inductively, that $S_{n}=1$. We have

$$
\begin{aligned}
A_{n} & =\{(k, l) \mid 1 \leq k \leq n, 1 \leq l \leq n, k+l>n, \operatorname{gcd}(k, l)=1\}, \\
A_{n+1} & =\{(k, l) \mid 1 \leq k \leq n+1,1 \leq l \leq n+1, k+l>n+1, \operatorname{gcd}(k, l)=1\}, \\
A_{n} \backslash A_{n+1} & =\{(k, l) \mid 1 \leq k \leq n, 1 \leq l \leq n, k+l=n+1, \operatorname{gcd}(k, l)=1\}, \\
& =\{(k, n+1-k) \mid 1 \leq k \leq n, \operatorname{gcd}(k, n+1)=1\}, \\
A_{n+1} \backslash A_{n} & =\{(k, l) \mid 1 \leq k \leq n+1,1 \leq l \leq n+1, \text { either } k=n+1 \text { or } l=n+1, \operatorname{gcd}(k, l)=1\}, \\
& =\{(n+1, l) \mid 1 \leq l \leq n, \operatorname{gcd}(n+1, l)=1\} \cup\{(k, n+1) \mid 1 \leq k \leq n, \operatorname{gcd}(k, n+1)=1\}, \text { and } \\
& =\{(n+1, n+1-j) \mid 1 \leq j \leq n, \operatorname{gcd}(n+1, j)=1\} \cup\{(k, n+1) \mid 1 \leq k \leq n, \operatorname{gcd}(k, n+1)=1\},
\end{aligned}
$$

and so

$$
\begin{aligned}
\sum_{(k, l) \in A_{n+1} \backslash A_{n}} \frac{1}{k l} & =\sum_{\substack{1 \leq j \leq n \\
\operatorname{gcd}(k, n+1)=1}} \frac{1}{(n+1)(n+1-j)}+\sum_{\substack{1 \leq k \leq n \\
\operatorname{gcd}(k, n+1)=1}} \frac{1}{k(n+1)} \\
& =\sum_{\substack{1 \leq k \leq n \\
\operatorname{gcd}(k, n+1)=1}}\left(\frac{1}{(n+1)(n+1-k)}+\frac{1}{k(n+1)}\right) \\
& =\sum_{\substack{1 \leq k \leq n \\
\operatorname{gcd}(k, n+1)=1}} \frac{1}{k(n+1-k)}=\sum_{(k, l) \in A_{n} \backslash A_{n+1}} \frac{1}{k l} .
\end{aligned}
$$

Thus $S_{n+1}=\sum_{(k, l) \in A_{n+1}} \frac{1}{k l}=\sum_{(k, l) \in A_{n}} \frac{1}{k l}+\sum_{(k, l) \in A_{n+1} \backslash A_{n}} \frac{1}{k l}-\sum_{(k, l) \in A_{n} \backslash A_{n+1}} \frac{1}{k l}=\sum_{(k, l) \in A_{n+1}} \frac{1}{k l}=S_{n}=1$. By induction, $S_{n}=1$ for all $n \in \mathbf{Z}^{+}$.

7: Let $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$be strictly increasing with $f(2)=2$ and $f(k l)=f(k) f(l)$ for all $k, l \in \mathbf{Z}^{+}$with $\operatorname{gcd}(k, l)=1$. Show that $f(n)=n$ for all $n \in \mathbf{Z}^{+}$.
Solution: Since $f(1) \in \mathbf{Z}^{+}$and $f(1)<f(2)=2$ we must have $f(1)=1$. Since $f(3)>f(2)=2$ and since $f(3) f(5)=f(15)<f(18)=f(2) f(9)<f(2) f(10)=f(2)^{2} f(5)=4 f(5)$ so that $f(3)<4$ we have $f(3)=3$. Since $f(6)=f(2) f(3)=2 \cdot 3=6$ and since $1=f(1)<f(2)<\cdots<f(6)=6$ it follows that $f(k)=k$ for all $k \leq 6$. Let $l \geq 2$ and suppose, inductively, that $f(k)=k$ for all $1 \leq k \leq 2(2 l-1)$. Note that $2<2(2 l-1)$ and $2 l+1<2(2 l-1)$ and so we have $f(2(2 l+1))=f(2) f(2 l+1)=2(2 l+1)$. Since $1=f(1)<f(2)<\cdots<f(2(2 l+1))=2(2 l+1)$ it follows that $f(k)=k$ for all $1 \leq k \leq 2(2 l+1)$. By induction, we have $f(k)=k$ for all $k \in \mathbf{Z}^{+}$.

8: Let a_{n} be the $n^{\text {th }}$ Fibonacci number (so $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$). Show that $a_{n}^{2}+a_{n+1}^{2}=a_{2 n+1}$ for all $n \geq 0$.
Solution: We begin by trying (and failing) to use induction to prove that $a_{n}{ }^{2}+a_{n+1}^{2}=a_{2 n+1}$ for all $n \geq 1$. When $n=1$, we have $L S=a_{1}{ }^{2}+a_{2}{ }^{2}=1^{2}+1^{2}=2$ and $R S=a_{3}=a_{2}+a_{1}=1+1=2=L S$, so the equality holds. Let $k \geq 1$ and suppose (inductively) that $a_{k}{ }^{2}+a_{k+1}^{2}=a_{2 k+1}$. Then when $n=k+1$ we have

$$
\begin{aligned}
L S & =a_{k+1}^{2}+a_{k+2}^{2} \\
& =a_{k+1}^{2}+\left(a_{k+1}+a_{k}\right)^{2} \\
& =a_{k+1}^{2}+a_{k+1}^{2}+2 a_{k} a_{k+1}+{a_{k}}^{2} \\
& =\left(a_{k+1}^{2}+2 a_{k} a_{k+1}\right)+\left({a_{k}}^{2}+{a_{k+1}}^{2}\right) \\
& =\left(a_{k+1}{ }^{2}+2 a_{k} a_{k+1}\right)+a_{2 k+1}
\end{aligned}
$$

(where the last inequality follows from the induction hypothesis), and we have

$$
R S=a_{2 k+3}=a_{2 k+2}+a_{2 k+1}
$$

If we could show that $\left(a_{k+1}^{2}+2 a_{k} a_{k+1}\right)=a_{2 k+2}$ then we would have $L S=R S$ and our induction proof would work. We shall modify this abortive proof by proving two equalities at once.

We claim that $a_{n}^{2}+a_{n+1}^{2}=a_{2 n+1}$ and $a_{n+1}^{2}+2 a_{n} a_{n+1}=a_{2 n+2}$ for all $n \geq 1$. When $n=1$ we have $a_{n}{ }^{2}+a_{n+1}^{2}=a_{1}{ }^{2}+a_{2}^{2}=1^{2}+1^{2}=2$ and $a_{2 n+1}=a_{3}=2$ so the first equality holds, and we also have $a_{n+1}{ }^{2}+2 a_{n} a_{n+1}=a_{2}^{2}+2 a_{1} a_{2}=1^{2}+2 \cdot 1 \cdot 1=3$ and $a_{2 n+2}=a_{4}=3$ so the second equality holds.

Let $k \geq 1$ and suppose (inductively) that both equalities hold when $n=k$, that is $a_{k}{ }^{2}+a_{k+1}{ }^{2}=a_{2 k+1}$ and $a_{k+1}{ }^{2}+2 f_{k} a_{k+1}=a_{2 k+2}$.

When $n=k+1$ we have

$$
\begin{aligned}
a_{n}^{2}+a_{n+1}^{2} & =a_{k+1}^{2}+a_{k+2}^{2} \\
& =a_{k+1}^{2}+\left(a_{k+1}+a_{k}\right)^{2} \\
& =a_{k+1}^{2}+a_{k+1}^{2}+2 a_{k} a_{k+1}+a_{k}^{2} \\
& =\left(a_{k+1}^{2}+2 a_{k} a_{k+1}\right)+\left({a_{k}}^{2}+a_{k+1}^{2}\right) \\
& =a_{2 k+2}+a_{2 k+1} \\
& =a_{2 k+3}=a_{2 n+1}
\end{aligned}
$$

and we have

$$
\begin{aligned}
a_{n+1}^{2}+2 a_{n} a_{n+1} & =a_{k+2}^{2}+2 a_{k+1} a_{k+2} \\
& =a_{k+2}^{2}+2 a_{k+1}\left(a_{k+1}+a_{k}\right) \\
& =a_{k+2}{ }^{2}+2 a_{k+1}{ }^{2}+2 a_{k} a_{k+1} \\
& =\left(a_{k+1}{ }^{2}+2 a_{k} a_{k+1}\right)+\left(a_{k+1}{ }^{2}+a_{k+2}^{2}\right) \\
& =a_{2 k+2}+a_{2 k+3} \\
& =a_{2 k+4}=a_{2 n+2} .
\end{aligned}
$$

Thus both equalities hold when $n=k+1$, and hence both equalities hold for all $n \geq 1$ by mathematical induction.

9: (a) Show that every positive integer is equal to a sum of distinct Fibonacci numbers.
Solution: We omit a solution for Part (a) as it follows from Part (b).
(b) Show that every positive integer can be expressed uniquely as a sum of distinct non-consecutive Fibonacci numbers.
Solution: Let a_{n} denote the $n^{\text {th }}$ Fibonacci number (so $a_{1}=a_{2}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$). We interpret the statement of the problem to mean that every $n \in \mathbf{Z}^{+}$can be represented uniquely in the form $n=a_{j_{1}}+a_{j_{2}}+\cdots+a_{j_{m}}$ for some $m \in \mathbf{Z}^{+}$and some j_{i} with

$$
2 \leq j_{1}, j_{1}+2 \leq j_{2}, j_{2}+2 \leq j_{3}, \cdots, j_{m-1}+2 \leq j_{m}
$$

First we claim that if $n \in \mathbf{Z}^{+}$can be represented in this form then we must have $j_{m}=l$ where l is the index for which $a_{l} \leq n<a_{l+1}$. Suppose, for a contradiction that $j_{m}<l$. Then we have $j_{m} \leq l-1, j_{m-1} \leq l-3$, $j_{m-2} \leq l-5$ and so on, and so

$$
n=a_{j_{m}}+a_{j_{m-1}}+a_{j_{m-2}}+\cdots+a_{j_{1}} \leq a_{l-1}+a_{l-3}+a_{j-5}+\cdots+a_{\epsilon}
$$

where $\epsilon=2$ when l is odd and $\epsilon=3$ when n is even. Using induction, it is easy to show that

$$
\begin{aligned}
& a_{2}+a_{4}+\cdots+a_{2 k}=a_{2 k+1}-1 \\
& a_{3}+a_{5}+\cdots+a_{2 k-1}=a_{2 k}-1
\end{aligned}
$$

and so we have $a_{l} \leq n \leq a_{l-1}+a_{l-3}+\cdots+a_{\epsilon}=a_{l}-1$, giving the desired contradiction.
Now let $n \in \mathbf{Z}^{+}$and let l be the index for which $a_{l} \leq n<a_{l+1}$. If $n=a_{l}$ then we take $m=1$ and $j_{1}=l$ to get the unique representation $n=a_{j_{1}}=a_{l}$. Suppose that $n>a_{l}$. Then we have $n=a_{l}+\left(n-a_{l}\right)$ with $1 \leq\left(n-a_{l}\right)<a_{l+1}-a_{l}=a_{l-1}$. We may suppose, inductively, that $n-a_{l}$ has a unique representation as a sum of distinct non-consecutive Fibonacci numbers, say

$$
n-a_{l}=a_{j_{1}}+a_{j_{2}}+\cdots+a_{j_{r}}
$$

Note that by our above claim, since $n-a_{l}<a_{l-1}$ we must have $j_{j}<l-1$. Thus the unique representation for n as a sum of distinct non-consecutive Fibonacci numbers is

$$
n=a_{j_{1}}+a_{j_{2}}+\cdots+a_{j_{r}}+a_{l}
$$

10: Let $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbf{Z}^{n}$ with $\sum_{i=1}^{n} a_{i}=1$. For $k, l \in\{1,2, \cdots, n\}$, let

$$
S_{k l}=\sum_{i=k}^{l} a_{i}=\left\{\begin{array}{cl}
a_{k}+a_{k+1}+\cdots+a_{l} & \text { if } k \leq l \leq n \\
a_{k}+\cdots+a_{n}+a_{1}+\cdots+a_{l} & \text { if } 1 \leq l<k
\end{array}\right.
$$

Show that there exists a unique k such that $S_{k l}>0$ for every l.
Solution: We introduce some terminology. A unit-sum n-tuple is an n-tuple $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbf{Z}^{n}$ with $\sum a_{i}=1$. For $k \in\{1,2, \cdots, n\}$ we write $k * a=\left(a_{k}, a_{k+1}, \cdots, a_{n}, a_{1}, \cdots, a_{k-1}\right)$. The sums $S_{k l}$ are called the partial sums for $k * a$. A positive shift for a is an element $k \in\{1,2, \cdots, n\}$ such that $S_{k l}>0$ for all l. Note that there is only one unit-sum 1-tuple, namely $a=(1)$, and it has a unique positive shift in $\{1\}$, namely $k=1$. Fix $n \geq 1$ and suppose, inductively, that every unit-sum n-tuple has a unique positive shift. Let $b=\left(b_{1}, b_{2}, \cdots, b_{n+1}\right)$ be a unit-sum $(n+1)$-tuple. Note that since each $b_{i} \in \mathbf{Z}$ and $\sum b_{i}=1$, we can choose an index m so that $b_{m}>0$ and $b_{m+1} \leq 0$ (where we treat indices modulo $n+1$ so that if $m=n+1$ then $m+1=1$). By cyclicly permuting the terms b_{i}, we may suppose that $m=n$ so we have $b_{n}>0$ and $b_{n+1} \leq 0$. Construct a unit-sum n-tuple $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ be defining $a_{i}=b_{i}$ for $1 \leq i<n$ and $a_{n}=b_{n}+b_{n+1}$. Note that $k=n+1$ is not a good shift for b because we have $S_{n+1, n+1}=b_{n+1} \leq 0$. For $k \in\{1,2, \cdots, n\}$, note that k is a good shift for a if and only if k is a good shift for b because $k * a$ and $k * b$ have the same partial sums except that $k * b$ has the one additional partial sum $b_{k}+b_{k+1}+\cdots+b_{n-1}+b_{n}=a_{k}+\cdots+a_{n-1}+b_{n}>a_{k}+\cdots+a_{n-1}$ (in the case that $k=n$, this additional partial sum is equal to $b_{n}>0$). Since, by the induction hypothesis, a has a unique positive shift, so does b. By induction, for all $n \in \mathbf{Z}^{+}$, every unit-sum n-tuple has a unique positive shift.

11: Let $n \in \mathbf{Z}^{+}$. Suppose that n distinct points are chosen on the unit circle and a line segment is drawn between each of the $\binom{n}{2}$ pairs of points and suppose that no three of the line segments are coincident. Let a_{n} be the number of regions into which the unit disc is divided by these line segments.
(a) Find $a_{1}, a_{2}, \cdots, a_{5}$ and conjecture a formula for a_{n}.

Solution: By drawing some pictures, you can check that $a_{1}=1, a_{2}=2, a_{3}=4$ and $a_{4}=8$ and $a_{5}=16$. You will then no doubt be tempted to guess that $a_{n}=2^{n-1}$ for all $n \geq 1$, but this is not the case! Indeed you can draw one more picture to see that $a_{6}=31$.
(b) The obvious conjecture from Part (a) is incorrect. Find the correct formula for a_{n}.

Solution: We claim first that that when a disc is divided into regions by l line segments (no 3 of which intersect) which have p points of intersection inside the circle (not counting the points of intersection that are on the boundary circle), the number of regions is $l+p+1$. We prove this by induction on l. When $l=0$, we must have $p=0$ (when there are no line segments, there are certainly no intersection points) so we have $l+p+1=0+0+1=1$, and indeed when there are no line segments the circle has not been divided so there is 1 region. Thus the claim is true when $l=0$. Let $k \geq 0$ and suppose (inductively) that the claim is true whenever $l=k$ (that is, whenever there are k line segments). Suppose that we had k line segments with q intersection points in the circle, and then we add one more line segment (so that now there are $l=k+1$ line segments), and suppose that there are r new intersection points which lie along this line (so there are now $p=q+r$ intersection points). By the induction hypothesis, there used to be $k+q+1$ regions before we added the final line. Notice that the r intersection points on the final line segment divide into $r+1$ smaller segments, and each of these segments divides one of the previous regions into two new regions. Thus the number of regions increases by $r+1$. The old number of regions was $k+q+1$, so the new number of regions is $(k+q+1)+(r+1)=(k+1)+(q+r)+1=l+p+1$, so the claim is still true now that $l=k+1$. By mathematical induction, the claim is true for all $l \geq 1$.

When $n=1$, so there is one point on the circle, there are no line segments and no points of intersection, and so we have $a_{1}=0+0+1=1$. When $n=2$ there is one line segment and no intersection points, so we have $a_{2}=1+0+1=2$. When $n=3$, there are 3 line segments and no intersection points (inside the circle) so $a_{3}=3+0+1=4$. When $n \geq 4$, the number of line segments is $l=\binom{n}{2}$ (since each line segment is determined by its two endpoints, and there are $\binom{n}{2}$ ways to choose the 2 endpoints), and the number of intersection points in the circle is $\binom{n}{4}$ (since each intersection point is determined by the 4 endpoints of the two line segments that contain the point). Thus we have

$$
a_{n}=\binom{n}{2}+\binom{n}{4}+1
$$

If you expand and simplify, you will find that

$$
a_{n}=\frac{n^{4}-6 n^{3}+23 n^{2}-18 n+24}{24} .
$$

As you can check, this formula also works when $n=1,2$ and 3 (it even works in the case that $n=0$, that is when there are no points on the circle, and it is not divided, so there is 1 region).

12: Let p be an odd prime and suppose that $U_{p^{2}}=\langle a\rangle$. Show that $U_{p^{k}}=\langle a\rangle$ for all $k \geq 2$.
Solution: I may include a solution later.

