
Solutions to the Problems on Induction and Recursion

1: Let a0 = 0 and a1 = 1 and for n ≥ 2 let an = an−1 + 6an−2. Show that an = 1
5

(
3n − (−2)n

)
for all n ≥ 0.

Solution: We claim that an = 1
5

(
3n − (−2)n

)
for all n ≥ 0. When n = 0 we have an = a0 = 0 and

1
5

(
3n − (−2)n

)
= 1

5

(
30 − (−2)0

)
= 0 , so the claim is true when n = 0. When n = 1 we have an = a1 = 1

and 1
5

(
3n − (−2)n

)
= 1

5

(
3− (−2)

)
= 1, so the claim is true when n = 1. Let k ≥ 2 and suppose the claim is

true for all n < k. In particular we suppose the claim is true when n = k − 1 and when n = k − 2, that is
we suppose ak−1 = 1

5

(
3k−1 − (−2)k−1

)
and ak−2 = 1

5

(
3k−2 − (−2)k−2

)
. Then when n = k we have

an = ak = ak−1 + 6ak−2

= 1
5

(
3k−1 − (−2)k−1

)
+ 6

5

(
3k−2 − (−2)k−2

)
=
(
1
5 · 3

k−1 + 6
5 · 3

k−2)− ( 15 (−2)k−1 + 6
5 (−2)k−2

)
=
(
3
5 · 3

k−2 + 6
5 · 3

k−2)− (− 2
5 (−2)k−2 + 6

5 (−2)k−2
)

= 9
5 · 3

k−2 − 4
5 (−2)k−2 = 1

5 · 3
k − 1

5 (−2)k

= 1
5

(
3k − (−2)k

)
= 1

5

(
3n − (−2)n

)
.

Thus the claim is true when n = k. By Strong Mathematical Induction, the claim is true for all n ≥ 0.

2: Let n ∈ Z+. Evaluate

n∑
i=1

(−1)i(2i− 1)2.

Solution: Let Sn =

n∑
i=1

(−1)i(2i − 1)2. Verify that S1 = −1, S2 = 8 = 2 · 4, S3 = −17 = 1 − 2 · 9,

S4 = 32 = 2 · 16, S5 = −49 = 1− 2 · 25 and S6 = 72 = 2 · 36. It appears that for all n ≥ 1, we have

Sn =

{
2n2 when n is even,

1− 2n2 when n is odd.

In other words, it appears that S2m = 2(2m)2 for all m ≥ 1 and that S2m−1 = 1− 2(2m− 1)2 for all m ≥ 1.
We claim first that S2m = 2(2m)2 for all m ≥ 1. We have seen that this claim is true when m = 1 (and when
m = 2, 3). Let k ≥ 1 and suppose that the claim is true when m = k, that is suppose that S2k = 2(2k)2.
Then when m = k + 1 we have

S2m =

2k+2∑
i=1

(−1)i(2i− 1)2

=

(
2k∑
i=1

(−1)i(2i− 1)2

)
+ (−1)2k+1(4k + 1)2 + (−1)2k+2(4k + 3)2

= 2(2k)2 − (4k + 1)2 + (4k + 3)2 = 8k2 − (16k2 + 8k + 1) + (16k2 + 24k + 8)

= 8k2 + 16k + 8 = 8(k + 1)2 = 2(2m)2 .

Thus the claim is true when m = k+ 1. By Mathematical Induction, the claim is true for all m ≥ 1. Finally,
note that for all m ≥ 1 we have 1− 2(2m− 1)2 = 1− 2(4m2 − 4m+ 1) = −8m2 + 8m− 1 and

S2m−1 = S2m − (−1)2m(4m− 1)2 = 2(2m)2 − (4m− 1)2

= 8m2 − (16m2 − 8m+ 1) = −8m2 + 8m− 1 = 1− 2(2m− 1)2 .



3: Let c, p, q ∈ R with p 6= 0. Let a0 = c and for n ≥ 1 let an = p an−1 + q. Find an.

Solution: We have
a0 = c

a1 = pc+ q

a2 = p(pc+ q) + q = p2c+ pq + q

a3 = p(p2c+ pq + q) + q = p3c+ p2q + pq + q

a4 = p(p3c+ p2q + pq + q) + q = p4c+ p3q + p2q + pq + q

and in general

an = pnc+ pn−1q + pn−2q + · · ·+ p2q + pq + q = pnc+ (pn−1 + pn−2 + · · · p2 + p+ 1)q .

We can obtain a (non-recursive) formula for the geometric sum pn−1 + pn−2 + · · · + p2 + p + 1 as follows.
Let S = pn−1 + pn−2 + · · ·+ p2 + p+ 1 (1). Note that pS = pn + pn−1 + pn−2 + · · ·+ p2 + p (2). Subtracting

(1) from (2) gives S(p− 1) = pn − 1 and so S =
pn − 1

p− 1
. Thus we have

an = pn c+
pn − 1

p− 1
q .

4: Let n ∈ N. Evaluate

n∑
i=0

(
n+ i

i

)
1

2i
.

Solution: Let Sn =

n∑
i=0

(
n+ i

i

)
1

2i
. Verify that S0 = 1, S1 = 2, S2 = 4 and S3 = 8. We claim that Sn = 2n

for all n ≥ 0. When n = 0 (and also when n = 1, 2 and 3) we have seen that the claim is true. Let k ≥ 0
and suppose that the claim is true when n = k, that is suppose Sk = 2k. Let n = k + 1. Then we have

Sn = Sk+1 =
(
k+1
0

)
+
(
k+2
1

)
1
2 +

(
k+3
2

)
1
22 +

(
k+4
3

)
1
23 + · · ·+

(
2k+1
k

)
1
2k

+
(

2k+2
k+1

)
1

2k+1

= 1 +
((

k+1
0

)
+
(
k+1
1

))
1
2 +

((
k+2
1

)
+
(
k+2
2

))
1
22 +

((
k+3
2

)
+
(
k+3
3

))
1
22

+ · · ·+
((

2k
k−1

)
+
(

2k
k

))
1
2k

+
((

2k+1
k

)
+
(

2k+1
k+1

))
1

2k+1

=

((
k+1
0

)
1
2 +

(
k+2
1

)
1
22 +

(
k+3
2

)
1
23 + · · ·+

(
2k
k−1

)
1
2k

+
(

2k+1
k

)
1

2k+1

)
+

(
1 +

(
k+1
1

)
1
2 +

(
k+2
2

)
1
22 +

(
k+3
3

)
1
23 + · · ·+

(
2k
k

)
1
2k

+
(

2k+1
k+1

)
1

2k+1

)
=

(
1
2Sn −

(
2k+2
k+1

)
1

2k+2

)
+

( k∑
i=0

(
k+i
i

)
1
2i +

(
2k+1
k+1

)
1

2k+1

)
.

Subtract 1
2Sn from each side to get

1
2Sn =

k∑
i=0

(
k+i
i

)
1
2i +

(
2k+1
k+1

)
1

2k+1 −
(

2k+2
k+1

)
1

2k+2 .

Notice that (
2k+2
k+1

)
= (2k+2)!

(k+1)!(k+1)! = (2k+2)(2k+1)!
(k+1)k!(k+1)! = 2(2k+1)!

k!(k+1)! = 2
(

2k+1
k+1

)
and so we have 1

2Sn =

k∑
i=0

(
k+i
i

)
1
2i = Sk = 2k, that is Sn = 2k+1 = 2n. Thus the claim holds when

n = k + 1, and so by Mathematical Induction, the claim holds for all n ≥ 0.



5: Let a0 = 9 and for n ≥ 0 let an+1 = 3an
4 + 4an

3. Show that for all n ≥ 0, the number an has (at least) 2n

nines in its decimal expansion.

Solution: Note first that a positive integer m ends with (at least) l nines ⇐⇒ m+ 1 ends with l zeros ⇐⇒
m+ 1 = 10lq for some positive integer q ⇐⇒ m = 10lq − 1 for some positive integer q.

We claim that for all n ≥ 0, an ends with (at lest) 2n nines. When n = 0. the claim is true since
a0 = 9 which ends with 20 = 1 nine(s). Let k ≥ 0 and suppose (inductively) that ak ends with 2k nines, say

ak = 10
2k
q − 1. Then when n = k + 1 we have

an = ak+1 = 3ak
4 + 4ak

3

= 3
(

102
k

q − 1
)4

+ 4
(

102
k

q − 1
)3

= 3
(

104·2
k

q4 − 4 · 103·2
k

q3 + 6 · 102·2
k

q2 − 4 · 102
k

q + 1
)

+ 4
(

103·2
k

q3 − 3 · 102·2
k

q2 + 3 · 102
k

q − 1
)

= 3 · 104·2
k

q4 − 8 · 103·2
k

q3 + 6 · 102·2
k

q2 − 1

= 102·2
k
(

3 · 102·2
k

q4 − 8 · 102
k

q3 + 6q2
)
− 1

= 102
k+1

r − 1 , where r = 3 · 102·2
k

q4 − 8 · 102
k

q3 + 6q2 ,

which ends with 2k+1 nines. Thus for all n ≥ 0, an ends with 2n nines, by mathematical induction.

6: Let n ∈ Z+. Evaluate
∑

(k,l)∈A

1

kl
where A is the set of ordered pairs of integers (k, l) with 1 ≤ k ≤ n,

1 ≤ l ≤ n, k + l > n and gcd(k, l) = 1.

Solution: Let An =
{

(k, l)
∣∣1 ≤ k ≤ n, 1 ≤ l ≤ n, k + l > n, gcd(k, l) = 1

}
and let Sn =

∑
(k,l)∈An

1
kl . Note that

A1 =
{

(1, 1)
}

so that S1 = 1. Fix n ∈ Z+ and suppose, inductively, that Sn = 1. We have

An =
{

(k, l)
∣∣∣1 ≤ k ≤ n, 1 ≤ l ≤ n, k + l > n, gcd(k, l) = 1

}
,

An+1 =
{

(k, l)
∣∣∣1 ≤ k ≤ n+ 1, 1 ≤ l ≤ n+ 1, k + l > n+ 1, gcd(k, l) = 1

}
,

An \An+1 =
{

(k, l)
∣∣∣1 ≤ k ≤ n, 1 ≤ l ≤ n, k + l = n+ 1, gcd(k, l) = 1

}
,

=
{

(k, n+ 1− k)
∣∣∣1 ≤ k ≤ n, gcd(k, n+ 1) = 1

}
,

An+1 \An =
{

(k, l)
∣∣∣1 ≤ k ≤ n+ 1, 1 ≤ l ≤ n+ 1, either k = n+ 1 or l = n+ 1 , gcd(k, l) = 1

}
,

=
{

(n+ 1, l)
∣∣∣1 ≤ l ≤ n, gcd(n+ 1, l) = 1

}
∪
{

(k, n+ 1)
∣∣∣1 ≤ k ≤ n, gcd(k, n+ 1) = 1

}
, and

=
{

(n+ 1, n+ 1− j)
∣∣∣1 ≤ j ≤ n, gcd(n+ 1, j) = 1

}
∪
{

(k, n+ 1)
∣∣∣1 ≤ k ≤ n, gcd(k, n+ 1) = 1

}
,

and so ∑
(k,l)∈An+1\An

1

kl
=

∑
1≤j≤n

gcd(k,n+1)=1

1

(n+ 1)(n+ 1− j)
+

∑
1≤k≤n

gcd(k,n+1)=1

1

k(n+ 1)

=
∑

1≤k≤n
gcd(k,n+1)=1

(
1

(n+ 1)(n+ 1− k)
+

1

k(n+ 1)

)

=
∑

1≤k≤n
gcd(k,n+1)=1

1

k(n+ 1− k)
=

∑
(k,l)∈An\An+1

1

kl
.

Thus Sn+1 =
∑

(k,l)∈An+1

1

kl
=

∑
(k,l)∈An

1

kl
+

∑
(k,l)∈An+1\An

1

kl
−

∑
(k,l)∈An\An+1

1

kl
=

∑
(k,l)∈An+1

1

kl
= Sn = 1. By

induction, Sn = 1 for all n ∈ Z+.



7: Let f : Z+ → Z+ be strictly increasing with f(2) = 2 and f(kl) = f(k)f(l) for all k, l ∈ Z+ with gcd(k, l) = 1.
Show that f(n) = n for all n ∈ Z+.

Solution: Since f(1) ∈ Z+ and f(1) < f(2) = 2 we must have f(1) = 1. Since f(3) > f(2) = 2 and
since f(3)f(5) = f(15) < f(18) = f(2)f(9) < f(2)f(10) = f(2)2f(5) = 4f(5) so that f(3) < 4 we have
f(3) = 3. Since f(6) = f(2)f(3) = 2 · 3 = 6 and since 1 = f(1) < f(2) < · · · < f(6) = 6 it follows that
f(k) = k for all k ≤ 6. Let l ≥ 2 and suppose, inductively, that f(k) = k for all 1 ≤ k ≤ 2(2l − 1). Note
that 2 < 2(2l − 1) and 2l + 1 < 2(2l − 1) and so we have f

(
2(2l + 1)

)
= f(2)f(2l + 1) = 2(2l + 1). Since

1 = f(1) < f(2) < · · · < f
(
2(2l + 1)

)
= 2(2l + 1) it follows that f(k) = k for all 1 ≤ k ≤ 2(2l + 1). By

induction, we have f(k) = k for all k ∈ Z+.

8: Let an be the nth Fibonacci number (so a0 = 0, a1 = 1 and an = an−1 + an−2 for n ≥ 2). Show that
an

2 + an+1
2 = a2n+1 for all n ≥ 0.

Solution: We begin by trying (and failing) to use induction to prove that an
2 + a2n+1 = a2n+1 for all n ≥ 1.

When n = 1, we have LS = a1
2 + a2

2 = 12 + 12 = 2 and RS = a3 = a2 + a1 = 1 + 1 = 2 = LS, so the
equality holds. Let k ≥ 1 and suppose (inductively) that ak

2 + ak+1
2 = a2k+1. Then when n = k + 1 we

have
LS = ak+1

2 + ak+2
2

= ak+1
2 + (ak+1 + ak)

2

= ak+1
2 + ak+1

2 + 2akak+1 + ak
2

=
(
ak+1

2 + 2akak+1

)
+
(
ak

2 + ak+1
2
)

=
(
ak+1

2 + 2akak+1

)
+ a2k+1

(where the last inequality follows from the induction hypothesis), and we have

RS = a2k+3 = a2k+2 + a2k+1 .

If we could show that
(
ak+1

2 + 2akak+1

)
= a2k+2 then we would have LS = RS and our induction proof

would work. We shall modify this abortive proof by proving two equalities at once.
We claim that an

2 + an+1
2 = a2n+1 and an+1

2 + 2anan+1 = a2n+2 for all n ≥ 1. When n = 1 we have
an

2 + an+1
2 = a1

2 + a2
2 = 12 + 12 = 2 and a2n+1 = a3 = 2 so the first equality holds, and we also have

an+1
2 + 2anan+1 = a2

2 + 2a1a2 = 12 + 2 · 1 · 1 = 3 and a2n+2 = a4 = 3 so the second equality holds.
Let k ≥ 1 and suppose (inductively) that both equalities hold when n = k, that is ak

2 + ak+1
2 = a2k+1

and ak+1
2 + 2fkak+1 = a2k+2.

When n = k + 1 we have

an
2 + an+1

2 = ak+1
2 + ak+2

2

= ak+1
2 + (ak+1 + ak)

2

= ak+1
2 + ak+1

2 + 2akak+1 + ak
2

= (ak+1
2 + 2akak+1) + (ak

2 + ak+1
2)

= a2k+2 + a2k+1

= a2k+3 = a2n+1

and we have
an+1

2 + 2anan+1 = ak+2
2 + 2ak+1ak+2

= ak+2
2 + 2ak+1(ak+1 + ak)

= ak+2
2 + 2ak+1

2 + 2akak+1

= (ak+1
2 + 2akak+1) + (ak+1

2 + ak+2
2)

= a2k+2 + a2k+3

= a2k+4 = a2n+2 .

Thus both equalities hold when n = k + 1, and hence both equalities hold for all n ≥ 1 by mathematical
induction.



9: (a) Show that every positive integer is equal to a sum of distinct Fibonacci numbers.

Solution: We omit a solution for Part (a) as it follows from Part (b).

(b) Show that every positive integer can be expressed uniquely as a sum of distinct non-consecutive Fibonacci
numbers.

Solution: Let an denote the nth Fibonacci number (so a1 = a2 = 1 and an = an−1 + an−2 for n ≥ 3). We
interpret the statement of the problem to mean that every n ∈ Z+ can be represented uniquely in the form
n = aj1 + aj2 + · · ·+ ajm for some m ∈ Z+ and some ji with

2 ≤ j1 , j1 + 2 ≤ j2 , j2 + 2 ≤ j3 , · · · , jm−1 + 2 ≤ jm .

First we claim that if n ∈ Z+ can be represented in this form then we must have jm = l where l is the index
for which al ≤ n < al+1. Suppose, for a contradiction that jm < l. Then we have jm ≤ l − 1, jm−1 ≤ l − 3,
jm−2 ≤ l − 5 and so on, and so

n = ajm + ajm−1 + ajm−2 + · · ·+ aj1 ≤ al−1 + al−3 + aj−5 + · · ·+ aε

where ε = 2 when l is odd and ε = 3 when n is even. Using induction, it is easy to show that

a2 + a4 + · · ·+ a2k = a2k+1 − 1

a3 + a5 + · · ·+ a2k−1 = a2k − 1

and so we have al ≤ n ≤ al−1 + al−3 + · · ·+ aε = al − 1, giving the desired contradiction.
Now let n ∈ Z+ and let l be the index for which al ≤ n < al+1. If n = al then we take m = 1 and j1 = l

to get the unique representation n = aj1 = al. Suppose that n > al. Then we have n = al + (n − al) with
1 ≤ (n− al) < al+1 − al = al−1. We may suppose, inductively, that n− al has a unique representation as a
sum of distinct non-consecutive Fibonacci numbers, say

n− al = aj1 + aj2 + · · ·+ ajr .

Note that by our above claim, since n− al < al−1 we must have jj < l − 1. Thus the unique representation
for n as a sum of distinct non-consecutive Fibonacci numbers is

n = aj1 + aj2 + · · ·+ ajr + al.

10: Let (a1, a2, · · · , an) ∈ Zn with
n∑
i=1

ai = 1. For k, l ∈ {1, 2, · · · , n}, let

Skl =
l∑

i=k

ai =

{
ak + ak+1 + · · ·+ al if k ≤ l ≤ n,

ak + · · ·+ an + a1 + · · ·+ al if 1 ≤ l < k.

Show that there exists a unique k such that Skl > 0 for every l.

Solution: We introduce some terminology. A unit-sum n-tuple is an n-tuple a = (a1, a2, · · · , an) ∈ Zn with∑
ai = 1. For k ∈ {1, 2, · · · , n} we write k ∗ a = (ak, ak+1, · · · , an, a1, · · · , ak−1). The sums Skl are called the

partial sums for k ∗ a. A positive shift for a is an element k ∈ {1, 2, · · · , n} such that Skl > 0 for all l. Note
that there is only one unit-sum 1-tuple, namely a = (1), and it has a unique positive shift in {1}, namely
k = 1. Fix n ≥ 1 and suppose, inductively, that every unit-sum n-tuple has a unique positive shift. Let
b = (b1, b2, · · · , bn+1) be a unit-sum (n+ 1)-tuple. Note that since each bi ∈ Z and

∑
bi = 1, we can choose

an index m so that bm > 0 and bm+1 ≤ 0 (where we treat indices modulo n + 1 so that if m = n + 1 then
m+1 = 1). By cyclicly permuting the terms bi, we may suppose that m = n so we have bn > 0 and bn+1 ≤ 0.
Construct a unit-sum n-tuple a = (a1, a2, · · · , an) be defining ai = bi for 1 ≤ i < n and an = bn+ bn+1. Note
that k = n+1 is not a good shift for b because we have Sn+1,n+1 = bn+1 ≤ 0. For k ∈ {1, 2, · · · , n}, note that k
is a good shift for a if and only if k is a good shift for b because k∗a and k∗b have the same partial sums except
that k∗b has the one additional partial sum bk+bk+1+ · · ·+bn−1+bn = ak+ · · ·+an−1+bn > ak+ · · ·+an−1
(in the case that k = n, this additional partial sum is equal to bn > 0). Since, by the induction hypothesis,
a has a unique positive shift, so does b. By induction, for all n ∈ Z+, every unit-sum n-tuple has a unique
positive shift.



11: Let n ∈ Z+. Suppose that n distinct points are chosen on the unit circle and a line segment is drawn between
each of the

(
n
2

)
pairs of points and suppose that no three of the line segments are coincident. Let an be the

number of regions into which the unit disc is divided by these line segments.

(a) Find a1, a2, · · · , a5 and conjecture a formula for an.

Solution: By drawing some pictures, you can check that a1 = 1, a2 = 2, a3 = 4 and a4 = 8 and a5 = 16.
You will then no doubt be tempted to guess that an = 2n−1 for all n ≥ 1, but this is not the case! Indeed
you can draw one more picture to see that a6 = 31.

(b) The obvious conjecture from Part (a) is incorrect. Find the correct formula for an.

Solution: We claim first that that when a disc is divided into regions by l line segments (no 3 of which
intersect) which have p points of intersection inside the circle (not counting the points of intersection that
are on the boundary circle), the number of regions is l+p+ 1. We prove this by induction on l. When l = 0,
we must have p = 0 (when there are no line segments, there are certainly no intersection points) so we have
l+p+ 1 = 0 + 0 + 1 = 1, and indeed when there are no line segments the circle has not been divided so there
is 1 region. Thus the claim is true when l = 0. Let k ≥ 0 and suppose (inductively) that the claim is true
whenever l = k (that is, whenever there are k line segments). Suppose that we had k line segments with q
intersection points in the circle, and then we add one more line segment (so that now there are l = k + 1
line segments), and suppose that there are r new intersection points which lie along this line (so there are
now p = q+ r intersection points). By the induction hypothesis, there used to be k+ q+ 1 regions before we
added the final line. Notice that the r intersection points on the final line segment divide into r + 1 smaller
segments, and each of these segments divides one of the previous regions into two new regions. Thus the
number of regions increases by r+ 1. The old number of regions was k+ q+ 1, so the new number of regions
is (k + q + 1) + (r + 1) = (k + 1) + (q + r) + 1 = l + p+ 1, so the claim is still true now that l = k + 1. By
mathematical induction, the claim is true for all l ≥ 1.

When n = 1, so there is one point on the circle, there are no line segments and no points of intersection,
and so we have a1 = 0 + 0 + 1 = 1. When n = 2 there is one line segment and no intersection points, so
we have a2 = 1 + 0 + 1 = 2. When n = 3, there are 3 line segments and no intersection points (inside the
circle) so a3 = 3 + 0 + 1 = 4. When n ≥ 4, the number of line segments is l =

(
n
2

)
(since each line segment

is determined by its two endpoints, and there are
(
n
2

)
ways to choose the 2 endpoints), and the number of

intersection points in the circle is
(
n
4

)
(since each intersection point is determined by the 4 endpoints of the

two line segments that contain the point). Thus we have

an =
(n

2

)
+
(n

4

)
+ 1 .

If you expand and simplify, you will find that

an =
n4 − 6n3 + 23n2 − 18n+ 24

24
.

As you can check, this formula also works when n = 1, 2 and 3 (it even works in the case that n = 0, that
is when there are no points on the circle, and it is not divided, so there is 1 region).

12: Let p be an odd prime and suppose that Up2 = 〈a〉. Show that Upk = 〈a〉 for all k ≥ 2.

Solution: I may include a solution later.


