Lesson 3: Combinatorics

- 1: Find the number of words of length n on the alphabet $\{0,1\}$ with exactly m blocks of the form 01.
- **2:** Find the number of words of length n on the alphabet $\{0, 1, 2, 3\}$ with an even number of zeros.
- **3:** Find the number of words of length n on the alphabet $\{0, 1, 2\}$ such that neighbours differ by at most 1.
- 4: Find the number of words on the alphabet $\{0, 1, 2\}$ with no neighbouring zeros.
- **5:** Find the number of subsets of $\{1, 2, \dots, n\}$ which do not contain two successive numbers.
- **6:** Find the number of ways to choose two disjoint nonempty subsets from the set $\{1, 2, \dots, n\}$.
- 7: Find the number of surjective maps from the set $\{1, 2, 3, 4, 5, 6\}$ to the set $\{1, 2, 3, 4\}$.
- 8: Find the number of permutations of order 6 in the group of all permutations of $\{1, 2, \dots, 8\}$.
- **9:** (a) Into how many regions do n great circles divide the surface of a sphere, given that no three of the great circles intersect at a point?

(b) Into how many regions do n spheres divide space, given that any two of the spheres intersect along a circle, no three intersect along a circle, and no four intersect at a point?

- 10: Find the number of paths in the set $\{(x, y) \in \mathbb{Z}^2 | 0 \le y \le x\}$ which move always to the right or upwards from the point (0, 0) to the point (n, n).
- 11: 2n distinct points lie on a circle. In how many ways can the points be paired so that when all pairs are joined by line segments, then resulting n line segments are disjoint.
- 12: In how many ways can you triangulate a convex *n*-gon?

Putnam Problems on Combinatorics

- 1: (1985 A1) Determine the number of ordered triples of sets (A, B, C) such that $A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A \cap B \cap C = \emptyset$.
- **2:** (1986 A4) Find the number of $n \times n$ matrices $A = (a_{ij})$ with each $a_{ij} \in \{-1, 0, 1\}$ such that for every permutation σ of $\{1, 2, \dots, n\}$ we have $\sum_{k=1}^{n} a_{k,\sigma(k)} = \operatorname{trace}(A)$.
- **3:** (1990 A6) For a finite set A, let |A| denote the number of elements in A. We define an ordered pair (A, B) of subsets of $\{1, 2, \dots, n\}$ to be admissible when we have a > |B| for every $a \in A$ and b > |A| for every $b \in B$. Determine the number of admissible ordered pairs of subsets of $\{1, 2, \dots, n\}$.
- 4: (1991 B5) Let p be prime. Find the number of elements $a \in \mathbb{Z}_p$ such that $a = x^2 = y^2 + 1$ for some $x, y \in \mathbb{Z}_p$.
- 5: (1992 B2) For $n, k \in \mathbf{N}$, let $c_{n,k}$ be the coefficient of x^k in the expansion of $(1+x+x^2+x^3)^n$. Show that $c_{n,k} = \sum_{i=0}^k {n \choose i} {n \choose k-2i}$.
- 6: (1993 A3) For $n, k \in \mathbb{Z}^+$, Let P(n) be the set of all subsets of $\{1, 2, \dots, n\}$, and let $c_{n,k}$ be the number of functions $f: P(n) \to \{1, 2, \dots, k\}$ with the property that for all $A, B \in P(n)$ we have $f(A \cap B) = \min\{f(A), f(B)\}$. Show that $c_{n,k} = \sum_{i=1}^{k} i^n$.
- 7: (1996 A3) Fix a set of six courses offered at a university. Each of 20 students chooses to take a (possibly empty) subset of this set of six courses. Determine whether it is necessary that there exist some 5 students and some two courses such that either all 5 students took both courses or none of the 5 students took either course.
- 8: (1996 B1) We define a subset $A \subseteq \{1, 2, \dots, n\}$ to be selfish when $|A| \in A$ (where |A| denotes the number of elements in A), and we define A to be minimal selfish when it is selfish and has no proper selfish subsets. Determine the number of minimal selfish subsets of $\{1, 2, \dots, n\}$.
- 9: (1996 B5) For a finite string α on the alphabet $\{0,1\}$, let $\Delta(\alpha)$ denote the number of 1's in α minus the number of 0's in α . We define such a string to be balanced when for every substring β in α , we have $-2 \leq \Delta(\beta) \leq 2$. Determine the number of balanced strings of length n.
- **10:** (1997 A5) Let N be the number of 10-tuples $(a_1, a_2, \dots, a_{10})$ with each $a_i \in \mathbf{Z}^+$ such that $\sum_{i=1}^{10} \frac{1}{a_i} = 1$. Determine whether N is even or odd.