## Lesson 3: Combinatorics

1: Find the number of words of length $n$ on the alphabet $\{0,1\}$ with exactly $m$ blocks of the form 01.

2: Find the number of words of length $n$ on the alphabet $\{0,1,2,3\}$ with an even number of zeros.

3: Find the number of words of length $n$ on the alphabet $\{0,1,2\}$ such that neighbours differ by at most 1 .

4: Find the number of words on the alphabet $\{0,1,2\}$ with no neighbouring zeros.
5: Find the number of subsets of $\{1,2, \cdots, n\}$ which do not contain two successive numbers.
6: Find the number of ways to choose two disjoint nonempty subsets from the set $\{1,2, \cdots, n\}$.
7: Find the number of surjective maps from the set $\{1,2,3,4,5,6\}$ to the set $\{1,2,3,4\}$.
8: Find the number of permutations of order 6 in the group of all permutations of $\{1,2, \cdots, 8\}$.
9: (a) Into how many regions do $n$ great circles divide the surface of a sphere, given that no three of the great circles intersect at a point?
(b) Into how many regions do $n$ spheres divide space, given that any two of the spheres intersect along a circle, no three intersect along a circle, and no four intersect at a point?

10: Find the number of paths in the set $\left\{(x, y) \in \mathbf{Z}^{2} \mid 0 \leq y \leq x\right\}$ which move always to the right or upwards from the point $(0,0)$ to the point $(n, n)$.

11: $2 n$ distinct points lie on a circle. In how many ways can the points be paired so that when all pairs are joined by line segments, then resulting $n$ line segments are disjoint.

12: In how many ways can you triangulate a convex $n$-gon?

## Putnam Problems on Combinatorics

1: (1985 A1) Determine the number of ordered triples of sets $(A, B, C)$ such that

$$
A \cup B \cup C=\{1,2,3,4,5,6,7,8,9,10\} \text { and } A \cap B \cap C=\emptyset
$$

2: (1986 A4) Find the number of $n \times n$ matrices $A=\left(a_{i j}\right)$ with each $a_{i j} \in\{-1,0,1\}$ such that for every permutation $\sigma$ of $\{1,2, \cdots, n\}$ we have $\sum_{k=1}^{n} a_{k, \sigma(k)}=\operatorname{trace}(A)$.

3: (1990 A6) For a finite set $A$, let $|A|$ denote the number of elements in $A$. We define an ordered pair $(A, B)$ of subsets of $\{1,2, \cdots, n\}$ to be admissible when we have $a>|B|$ for every $a \in A$ and $b>|A|$ for every $b \in B$. Determine the number of admissible ordered pairs of subsets of $\{1,2, \cdots, 10\}$.

4: (1991 B5) Let $p$ be prime. Find the number of elements $a \in \mathbf{Z}_{p}$ such that $a=x^{2}=y^{2}+1$ for some $x, y \in \mathbf{Z}_{p}$.

5: (1992 B2) For $n, k \in \mathbf{N}$, let $c_{n, k}$ be the coefficient of $x^{k}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Show that $c_{n, k}=\sum_{i=0}^{k}\binom{n}{i}\binom{n}{k-2 i}$.

6: (1993 A3) For $n, k \in \mathbf{Z}^{+}$, Let $P(n)$ be the set of all subsets of $\{1,2, \cdots, n\}$, and let $c_{n, k}$ be the number of functions $f: P(n) \rightarrow\{1,2, \cdots, k\}$ with the property that for all $A, B \in P(n)$ we have $f(A \cap B)=\min \{f(A), f(B)\}$. Show that $c_{n, k}=\sum_{i=1}^{k} i^{n}$.

7: (1996 A3) Fix a set of six courses offered at a university. Each of 20 students chooses to take a (possibly empty) subset of this set of six courses. Determine whether it is necessary that there exist some 5 students and some two courses such that either all 5 students took both courses or none of the 5 students took either course.

8: (1996 B1) We define a subset $A \subseteq\{1,2, \cdots, n\}$ to be selfish when $|A| \in A$ (where $|A|$ denotes the number of elements in $A$ ), and we define $A$ to be minimal selfish when it is selfish and has no proper selfish subsets. Determine the number of minimal selfish subsets of $\{1,2, \cdots, n\}$.

9: (1996 B5) For a finite string $\alpha$ on the alphabet $\{0,1\}$, let $\Delta(\alpha)$ denote the number of 1's in $\alpha$ minus the number of 0 's in $\alpha$. We define such a string to be balanced when for every substring $\beta$ in $\alpha$, we have $-2 \leq \Delta(\beta) \leq 2$. Determine the number of balanced strings of length $n$.

10: (1997 A5) Let $N$ be the number of 10 -tuples $\left(a_{1}, a_{2}, \cdots, a_{10}\right)$ with each $a_{i} \in \mathbf{Z}^{+}$such that $\sum_{i=1}^{10} \frac{1}{a_{i}}=1$. Determine whether $N$ is even or odd.

