Solutions to the Combinatorics Problems

1: Find the number of words of length n on the alphabet $\{0,1\}$ with exactly m blocks of the form 01 .
Solution: There are $n-1$ locations between the digits in such a word. Let us call a location at which the digits switch (either from 0 to 1 or from 1 to 0) a switch-location. For a word of the required form which starts and ends with a 1 , there must be $2 m$ switch-locations (with every second switch-location giving a 01block) so there are $\binom{n-1}{2 m}$ such words. For a word of the required form which starts with a 1 and ends with a 0 , there must be $2 m+1$ switch-locations, so there are $\binom{n-1}{2 m+1}$ such words. A word that starts with 0 and ends with 1 must have $2 m-1$ switch-locations, so there are $\binom{n-1}{2 m-1}$ such words, and a word that starts and ends with 0 must have $2 m$ swith-locations, so there are $\binom{n-1}{2 m}$ such words. Altogether there are $\binom{n-1}{2 m}+\binom{n-1}{2 m+1}+\binom{n-1}{2 m-1}+\binom{n-1}{2 m}=\binom{n}{2 m+1}+\binom{n}{2 m}=\binom{n+1}{2 m+1}$ such words.

Alternatively, a nice trick is to note that if we append a 1 to the beginning and a 0 to the end of a word of the required form, then the new word will be of length $n+2$ and will still have m 01-blocks; there will be $n+1$ locations between the digits in the word, and $2 m+1$ of these locations will be switch-locations, so there are $\binom{n+1}{2 m+1}$ such words.

2: Find the number of words of length n on the alphabet $\{0,1,2,3\}$ with an even number of zeros.
Solution: Let a_{n} be the number of words of length n with an even number of 0 's, and let b_{n} be the number of words of length n with an odd number of 0 's. Note that any word of length $n+1$ with an even number of 0 's can be obtained either by appending a 1,2 or 3 to the end of a word of length n with an even number of 0 's, or by appending a 0 to the end of a sequence of length n with an odd number of 0 's, and so we have the recurrence relation $a_{n+1}=3 a_{n}+b_{n}$. Similarly, we have and $b_{n+1}=a_{n}+3 b_{n}$. The first few values of a_{n} and b_{n} are listed below.

$$
\begin{array}{cccccc}
n & 1 & 2 & 3 & 4 & \cdots \\
a_{n} & 3 & 10 & 36 & 136 & \cdots \\
b_{n} & 1 & 6 & 28 & 120 & \cdots
\end{array}
$$

We can combine the recurrence formulas for $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ to get a single recurrence formula for $\left\{a_{n}\right\}$ as follows. $a_{n+2}=3 a_{n+1}+b_{n+1}=3 a_{n+1}+\left(a_{n}+3 b_{n}\right)=3 a_{n+1}-8 a_{n}+\left(9 a_{n}+3 b_{n}\right)=3 a_{n+1}-8 a_{n}+3 a_{n+1}=6 a_{n+1}-8 a_{n}$
To solve this, we solve its characteristic equation $\lambda^{2}-6 \lambda+8=0$ to get $\lambda=2$, 4 , so the formula for a_{n} is of the form $a_{n}=A \cdot 2^{n}+B \cdot 4^{n}$. Put in $n=1$ and $n=2$ to get $2 A+4 B=3$ and $4 A+16 B=10$. Solve these to get $A=B=\frac{1}{2}$, and so we have $a_{n}=\frac{1}{2}\left(2^{n}+4^{n}\right)$.

3: Find the number of words of length n on the alphabet $\{0,1,2\}$ such that neighbours differ by at most 1 .
Solution: Let a_{n} be the number of such words that end with 0 , let b_{n} be the number of such words that end with 1 , let c_{n} be the number of such words that end with 2 , and let x_{n} be the total number of such words, so $x_{n}=a_{n}+b_{n}+c_{n}$. By interchanging 0's and 2's we obtain a bijection between the set of words of the required form that end with 0 with the set of such words that end with 2 , and so we have $a_{n}=c_{n}$ and $x_{n}=2 a_{n}+b_{n}$. Note that $a_{1}=b_{1}=1$, and we have the recursion $a_{n+1}=a_{n}+b_{n}$ and $b_{n+1}=a_{n}+b_{n}+c_{n}=2 a_{n}=x_{n}$. The first few values are listed below.

n	1	2	3	4	5	\ldots
a_{n}	1	2	5	12	29	\ldots
b_{n}	1	3	7	17	41	\ldots
x_{n}	3	7	17	41	99	\ldots

We can combine these paired recurrence formulas for $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ to get a single one for $\left\{b_{n}\right\}$ as follows.

$$
b_{n+2}=2 a_{n+1}+b_{n+1}=2\left(a_{n}+b_{n}\right)+b_{n+1}=\left(2 a_{n}+b_{n}\right)+b_{n}+b_{n+1}=b_{n+1}+b_{n}+b_{n+1}=2 b_{n+1}+b_{n} .
$$

To solve this, we solve its characteristic equation $\lambda^{2}-2 \lambda-1=0$ to get $\lambda=1 \pm \sqrt{2}$, so the formula for b_{n} is of the form $b_{n}=A(1+\sqrt{2})^{n}+B(1-\sqrt{2})^{n}(*)$. Extend the sequence $\left\{b_{n}\right\}$ to include $b_{0}=1$ (so the recurrence relation is still satisfied), then put $n=0$ and $n=1$ into equation $(*)$ to get $A+B=1(1)$ and $A(1+\sqrt{2})+B(1-\sqrt{2})=1$ (2). Solve equations (1) and (2) to get $A=B=\frac{1}{2}$, and so $b_{n}=\frac{1}{2}\left((1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}\right)$. Thus the number of words of the required form is $x_{n}=b_{n+1}=\frac{1}{2}\left((1+\sqrt{2})^{n+1}+(1-\sqrt{2})^{n+1}\right)$.

4: Find the number of words on the alphabet $\{0,1,2\}$ with no neighbouring zeros.
Solution: This is similar to problem 3. The answer is

$$
\frac{1}{6}\left((3+2 \sqrt{3})(1+\sqrt{3})^{n}+(3-2 \sqrt{3})(1-\sqrt{3})^{n}\right) .
$$

5: Find the number of subsets of $\{1,2, \cdots, n\}$ which do not contain two successive numbers.
Solution: Given a subset $A \subset\{1,2, \cdots, n\}$ we associate the word $e_{1} e_{2} \cdots e_{3}$ on $\{0,1\}$ given by $e_{k}=\left\{\begin{array}{l}1 \text { if } k \in A \\ 0 \text { if } k \notin A\end{array}\right.$. Note that A contains two successive numbers if and only if the word has a block of the form 11 . Thus the required number of subsets is equal to the number of words of length n on $\{0,1\}$ with no 11-blocks. Let a_{n} be the number of such words that end with 0 , let b_{n} be the number of such words that end with 1 , and let x_{n} be the total number of such words so $x_{n}=a_{n}+b_{n}$. Then $a_{1}=b_{1}=1$ and we have the recurrence formulas $a_{n+1}=a_{n}+b_{n}$ and $b_{n+1}=a_{n}$, so $x_{n}=a_{n+1}$. We combine these to get $a_{n+2}=a_{n+1}+b_{n+1}=a_{n+1}+a_{n}$, so we see that $a_{n}=f_{n+1}$ and so $x_{n}=f_{n+2}$, where f_{n} denotes the $n^{\text {th }}$ Fibonacci number. Solving the recursion formula for the Fibonacci numbers gives $f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$, so $x_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right)$.

6: Find the number of ways to choose two disjoint nonempty subsets from the set $\{1,2, \cdots, n\}$.
Solution: To a given ordered pair (A, B) of disjoint subsets $A, B \subset\{1,2, \cdots, n\}$, we associate the word $e_{1} e_{2} \cdots e_{n}$ on $\{0,1,2\}$ given by

$$
e_{k}=\left\{\begin{array}{l}
0 \text { if } k \notin A \cap B \\
1 \text { if } k \in A \\
2 \text { if } k \in B
\end{array} .\right.
$$

We have $A=\emptyset$ if and only if the associated word is a word on $\{0,1\}$, and $B=\emptyset$ if and only if the associated word is a word on $\{0,2\}$. Of the 3^{n} words of length n, there are 2^{n} which are words on $\{0,1\}$ and 2^{n} which are words on $\{0,2\}$, and only 1 which is a word on $\{0\}$. Thus the number of ordered pairs of disjoint subsets of $\{1,2, \cdots, n\}$ is equal to $3^{n}-2 \cdot 2^{n}+1$, and so the number of unordered pairs of disjoint subsets is $\frac{1}{2}\left(3^{n}+1\right)-2^{n}$.

7: Find the number of surjective maps from the set $\{1,2,3,4,5,6\}$ to the set $\{1,2,3,4\}$.
Solution: Note first that there are n^{k} maps from any set of k elements to any set of n elements, (since there are n choices for the image of each of the k elements), but some of these maps are not surjective. Let A be a set with k elements and let $B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$ be a set with n elements. For each $i=1, \cdots, n$, let $B_{i}=B \backslash\left\{b_{i}\right\}$. Note that a map from A to B is not surjective when its image lies in one of the subsets B_{i}. Let S_{i} be the set of maps from A to B_{i}. Note that for $i<j, S_{i} \cap S_{j}$ is the set of maps from A to $B_{i} \cap B_{j}=B \backslash\{i, j\}$, and for $i<j<k, S_{i} \cap S_{j} \cap S_{k}$ is the set of maps from A to $B \backslash\{i, j, k\}$, and so on. By the remark made in our first sentence, we have $\left|S_{i}\right|=(n-1)^{k},\left|S_{i} \cap S_{j}\right|=(n-2)^{k},\left|S_{i} \cap S_{j} \cap S_{k}\right|=(n-3)^{k}$ and so on. By the Principle of Inclusion and Exclusion, the total number of non-surjective maps from A to B is

$$
\begin{aligned}
\left|S_{1} \cup \cdots \cup S_{n}\right| & =\sum_{i}\left|S_{i}\right|-\sum_{i<j}\left|S_{i} \cap S_{j}\right|+\sum_{i<j<k}\left|S_{i} \cap S_{j} \cap S_{k}\right|-\cdots \\
& =\binom{n}{1}(n-1)^{k}-\binom{n}{2}(n-2)^{k}+\binom{n}{3}(n-3)^{k}-\cdots \pm\binom{ n}{n-1}(1)^{k}
\end{aligned}
$$

Thus the number of surjective maps from A to B is

$$
n^{k}-\binom{n}{1}(n-1)^{k}+\binom{n}{2}(n-2)^{k}-\binom{n}{3}(n-3)^{k}+\cdots \pm\binom{ n}{n-1}(1)^{k}
$$

In particular, when $k=6$ and $n=4$, there are $4^{6}-4 \cdot 3^{6}+6 \cdot 2^{6}-4 \cdot 1^{6}=4096-2916+384-4=1560$.
8: Find the number of permutations of order 6 in the group of all permutations of $\{1,2, \cdots, 8\}$.
Solution: Given distinct elements $a_{1}, a_{2}, \cdots, a_{l} \in\{1,2, \cdots, n\}$, we write $\left(a_{1}, a_{2}, \cdots, a_{l}\right)$ for the permutation σ of $\{1,2, \cdots, n\}$ defined by $\sigma\left(a_{1}\right)=a_{2}, \sigma\left(a_{2}\right)=a_{3}, \cdots, \sigma\left(a_{l-1}\right)=a_{l}$ and $\sigma\left(a_{l}\right)=a_{1}$ and $\sigma(k)=k$ if $k \neq a_{i}$ for any i. Such a permutation is called a cycle of length l. Two cycles $\left(a_{1}, \cdots, a_{k}\right)$ and $\left(b_{1}, \cdots, b_{l}\right)$ are called disjoint when $a_{i} \neq b_{j}$ for any i, j. The following facts are well known and not difficult to prove.

1. Every permutation of $\{1,2, \cdots, n\}$ is a product of disjoint cycles, and the product is unique up to the order of the cycles and the cyclic ordering of the elements in each cycle.
2. The order of a product of disjoint cycles is the least common multiples of their lengths.

We illustrate how to count the number of permutations of $\{1,2, \cdots, n\}$ which are equal to a product of disjoint cycles of specified lengths, by finding the number of permutations of $\{1,2, \cdots, 26\}$ of the form

$$
(a b c d e f)(g h i j)(k l m n)(o p q)(r s t)(u v w) .
$$

There are $\binom{26}{6}$ ways to choose the 6 unordered elements a, b, c, d, e, f. We can take a to be the smallest of these, then there are 5 ! ways to choose the remaining 5 ordered elements b, c, d, e, f. Next there are $\binom{20}{8}$ ways to choose the next 8 unordered elements g, h, i, j, k, l, m, n. We take g to be the smallest of these 8 , then there are $7 \cdot 6 \cdot 5$ ways to choose the ordered elements h, i, j, then we take k to be the smallest of the 4 elements k, l, m, n, and then there are $3 \cdot 2 \cdot 1$ ways to choose the ordered elements l, m, n. Finally, there are $\binom{12}{9}$ ways to choose the unordered elements $o, p, q, r, s, t, u, v, w$, we take o to be the smallest, there are $8 \cdot 7$ choices for p, q, we take r to be the smallest of the 6 elements r, s, t, u, v, w, there are $5 \cdot 4$ choices for s, t, then we take u to be the smallest of u, v, w and there are $2 \cdot 1$ choices for v, w. Thus the total number of permutations of the above form is equal to

$$
\binom{26}{6} 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1\binom{20}{8} 7 \cdot 6 \cdot 5 \cdot 3 \cdot 2 \cdot 1\binom{12}{9} 8 \cdot 7 \cdot 5 \cdot 4 \cdot 2 \cdot 1
$$

Using this counting method, we now count the total number of permutations of $\{1,2, \cdots, 8\}$ of order 6 . We make a table showing all possible forms for such permutations, and the number of permutations of each form.

$$
\begin{array}{cc}
\text { form } & \text { no. of elements } \\
(a b c)(d e) & \binom{8}{3} \cdot 2 \cdot\binom{5}{2}=1120 \\
(a b c)(d e)(\mathrm{fg}) & \binom{8}{3} \cdot 2 \cdot\binom{5}{4} \cdot 3=1680 \\
(a b c)(d e f)(g h) & \binom{8}{6} \cdot 5 \cdot 4 \cdot 2=1120 \\
(a b c d e f) & \binom{8}{6} \cdot 5!=3360 \\
(a b c d e f)(g h) & \binom{8}{6} \cdot 5!=3360
\end{array}
$$

Thus the total number is $1120+1680+1120+3360+3360=10640$.

9: (a) Into how many regions do n great circles divide the surface of a sphere, given that no three of the great circles intersect at a point?
Solution: Each of the $\binom{n}{2}$ pairs of great circles intersect in two points, so the total number of points (or vertices) is $V=2\binom{n}{2}=n(n-1)$. Each of the n great circles meets each of the other $(n-1)$ great circles at two points, so there are $2(n-1)$ points along each great circle, so each great circle is divided into $2(n-1)$ arcs (or edges), and the total number of edges is $E=2 n(n-1)=2 V$. The Euler characteristic of the sphere is $\chi=2$ so we have $V-E+F=2$ where F is the required number of regions (or faces). Thus $F=E-V+2=V+2=n^{2}-n+2$. (b) Into how many regions do n spheres divide space, given that any two of the spheres intersect along a circle, no three intersect along a circle, and no four intersect at a point?

Solution: Let a_{n} denote the required number of regions. Note that $a_{1}=2$ and $a_{2}=4$. When we add an $(n+1)^{\text {st }}$ sphere, it intersects the other n spheres along n circles, each pair of which intersect at two points and no 3 of which intersect at a point. By the proof of part (a) (with every occurrence of the word "great" removed) these n circles divide the $(n+1)^{\text {st }}$ sphere into $n^{2}-n+2$ regions. Each of the regions corresponds to a subdivision of a region in space into two parts, so we obtain the following recursion formula:

$$
a_{n}=a_{n}+\left(n^{2}-n+2\right) .
$$

Thus we have

$$
a_{n}=2+2+4+\cdots+\left((n-1)^{2}-(n-1)+2\right)=\sum_{k=0}^{n-1} k^{2}-k+2
$$

Evaluate this sum to get $a_{n}=\frac{n\left(n^{2}-3 n+8\right)}{3}$.
10: Find the number of paths in the set $\left\{(x, y) \in \mathbf{Z}^{2} \mid 0 \leq y \leq x\right\}$ which move always to the right or upwards from the point $(0,0)$ to the point (n, n).
Solution: First we solve the easier problem of finding the number of paths in \mathbf{Z}^{2} which move always to the right and upwards from the point (a, b) to the point $(a+k, b+l)$. Such a path consists of $k+l$ steps with k of the steps to the right and l of the steps upwards, so it corresponds in a natural way to a word of length $k+l$ on $\{r, u\}$ with $k r$'s and $l u$'s (with each r indicating a step to the right and each u indicating a step upwards). There are $\binom{k+l}{k}$ such words, and hence the same number of such paths.

Now we return to the given problem. From the previous paragraph we know that there are $\binom{2 n}{n}$ paths from $(0,0)$ to (n, n) (moving upwards and to the right). Let us call such a path good if it remains below or touches the line $y=x$, and let us call such a path bad if it crosses the line $y=x$, that is if it touches the line $y=x+1$. We must count the number of good paths.

There is a lovely trick which helps us to count the number of bad paths. Given a bad path from $(0,0)$ to (n, n) we associate a path from $(-1,1)$ to (n, n) as follows: find the first point p where the bad path touches the line $y=x+1$ and reflect the initial portion of the bad path (the portion from $(0,0)$ to p) in the line $y=x+1$ to obtain a path from $(-1,1)$ to (n, n). Notice that we can recover the given bad path from the resulting path by performing the same operation, and so this gives a bijective correspondence between the set of bad paths from $(0,0)$ to (n, n) and the set of all paths from $(-1,1)$ to (n, n). By the result of the first paragraph there are $\binom{2 n}{n+1}$ such paths. Thus the total number of good paths from $(0,0)$ to (n, n) is $\binom{2 n}{n}-\binom{2 n}{n+1}=\frac{1}{n+1}\binom{2 n}{n}$.

11: $2 n$ distinct points lie on a circle. In how many ways can the points be paired so that when all pairs are joined by line segments, then resulting n line segments are disjoint.
Solution: Let c_{n} denote the number of ways that $2 n$ points on a circle can be paired so that the various line segments joining the pairs do not cross. Let a_{1} be one of the $2 n$ points, and let $a_{2}, a_{3}, \cdots, a_{2 n}$ be the rest of the points in order around the circle (say clockwise). Note that a_{1} cannot be paired with a_{k} for k odd, since if it were then we would have an odd number of points $a_{2}, a_{3}, \cdots, a_{k-1}$ between a_{1} and a_{k}, one of which would have to be paired with a point on the other side of the line segment $a_{1} a_{k}$. Thus a_{1} can only be paired with $a_{2}, a_{4}, \cdots, a_{2 n}$. When a_{1} is paired with $a_{2 k}$, the $2(k-1)$ points $a_{2}, a_{3}, \cdots, a_{2 k-1}$ points must be paired amongst themselves and there are c_{k-1} ways to do this, and the $2(n-k)$ points $a_{k+1}, a_{k+2}, \cdots a_{2 n}$ must be paired amongst themselves and there are c_{n-k} ways to do this. Thus, setting $c_{0}=1$, we have the following recurrence relation for $\left\{c_{n}\right\}$:

$$
c_{n}=c_{0} c_{n-1}+c_{1} c_{n-2}+c_{2} c_{n-3}+\cdots+c+n-1 c_{0} .
$$

The first few values are as follows

$$
\begin{array}{ccccccc}
n & 0 & 1 & 2 & 3 & 4 & \cdots \\
c_{n} & 1 & 1 & 2 & 5 & 14 & \cdots
\end{array}
$$

To solve this recurrence relation, let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$. Then

$$
f(x)^{2}=\left(c_{0} c_{0}\right)+\left(c_{0} c_{1}+c_{1} c_{0}\right) x+\left(c_{0} c_{2}+c_{1} c_{1}+c_{2} c_{0}\right) x^{2}+\cdots=c_{1}+c_{2} x+c_{3} x^{2}+\cdots
$$

and so we have $x f(x)^{2}=f(x)-1$. By the quadratic formula, we have $f(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}$. In order to have $\lim _{x \rightarrow 0} f(x)=c_{0}$, we must use the negative sign, so $f(x)=\frac{1-\sqrt{1-4 x}}{2 x}$. Using the binomial expansion $(1-x)^{1 / 2}=1-\sum_{n=1}^{\infty} \frac{2}{n} \frac{(2 n-2)!}{\left(2^{n}(n-1)!\right)^{2}}$ we obtain

$$
f(x)=\frac{1}{2 x}(1-\sqrt{1-4 x})=\frac{1}{2 x} \sum_{n=1}^{\infty} \frac{2}{n}\binom{2 n-2}{n-1} x^{n}=\sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n-1}=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}
$$

Thus we obtain $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$. These numbers c_{n} are called the Catalan numbers.
It seems a most remarkable coincidence that this problem has the same answer as the previous problem. There is a wonderful way to see why this relationship holds. Given a pairing of the $2 n$ points $a_{1}, a_{2}, \cdots, a_{2 n}$ on the circle, connect them by nonintersecting line segments then form a word $e_{1} e_{2} \cdots e_{2 n}$ on $\{r, u\}$ as follows. Begin at a_{1} and set $e_{1}=r$, then move clockwise around the circle visiting the vertices a_{2}, a_{3}, \cdots. When we arrive at the vertex a_{k}, which is an end point of some line segment, set $e_{k}=r$ if it is the first time that we have visited this line segment, and set $e_{k}=u$ if it is the second time we have visited the line segment. Convince yourself that this word corresponds to a good path from $(0,0)$ to (n, n) and that the correspondence is bijective.

12: In how many ways can you triangulate a convex n-gon?
Solution: Let t_{n} denote the number of such triangulations. Note that $t_{3}=1$. Label the vertices of a given convex n-gon by $a_{1}, a_{2}, \cdots, a_{n}$ in order around the edge (say clockwise). Consider the edge $a_{1} a_{2}$. It must be an edge of a triangle in any triangulation. If $a_{1} a_{2} a_{3}$ is a triangle in some triangulation, then the $(n-1)$-gon $a_{1} a_{3} a_{4} \cdots a_{n}$ will be triangulated (by that same triangulation); if $a_{1} a_{2} a_{n}$ is a triangle in some triangulation then the $(n-1)$-gon $a_{2} a_{3} \cdots a_{n}$ will also be triangulated; and if $a_{1} a_{2} a_{k}$ is a triangle in some triangulation where $3<k<n$, then both the $(k-1)$-gon $a_{2} a_{3} \cdots a_{k}$ and also the ($n-k+2$)-gon $a_{k} a_{k+1} \cdots a_{n}$ will be triangulated. Thus, setting $t_{2}=1$, we obtain the following recurrence formula for $\left\{t_{n}\right\}$:

$$
t_{n}=t_{2} t_{n-1}+t_{3} t_{n-2}+t_{4} t_{n-3}+\cdots+t_{n-1} t_{2}
$$

This is the same recursion formula satisfied by the Catalan numbers, but with the indices shifted by 2 , so we have $t_{n}=c_{n-2}=\frac{1}{n-1}\binom{2 n-4}{n-2}$.

