Lesson 5: Polynomials

1: Let $p(x)$ be a polynomial over \mathbf{Z} with at least four distinct integral roots. Show that there is no integer k such that $p(k)$ is prime.

2: Let $p(x)$ be a polynomial over \mathbf{C}. Show that $p(x)$ is even if and only if there exists a polynomial $q(x)$ over \mathbf{C} such that $p(x)=q(x) q(-x)$.

3: Let $p(x)$ be a polynomial over \mathbf{R} of odd degree. Show that $p(p(x))$ has at least as many real roots as $p(x)$.

4: Let $p(x)$ be a monic polynomial over \mathbf{Z} with the property that there exist positive integers k and l such that none of the integers $p(k+i)$ with $i=1,2, \cdots, l$ is divisible by l. Show that $p(x)$ has no rational roots.

5: Let $p(x)=\sum_{k=0}^{2 n}(-1)^{k}(2 n+1-k) x^{k}$. Show that $p(x)$ has no real roots.
6: Let $p(x)$ be a polynomial with non-negative real coefficients. Show that $p\left(a^{2}\right) p\left(b^{2}\right) \geq p(a b)^{2}$ for all $a, b \in \mathbf{R}$.

7: Let $p(x)$ be a polynomial over \mathbf{Z} of degree at least 2 . Show that there is a polynomial $q(x)$ over \mathbf{Z} such that $p(q(x))$ is reducible over \mathbf{Z}.

8: Let a and b be distinct real numbers. Solve $(z-a)^{4}+(z-b)^{4}=(a-b)^{4}$ for $z \in \mathbf{C}$.
9: Let $a_{1}, a_{2}, \cdots, a_{n}$ be distinct integers. Show that $p(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)-1$ is irreducible.
10: Let $p_{1}(x)=x^{2}-2$ and for $k \geq 2$ let $p_{k}(x)=p_{1}\left(p_{k-1}(x)\right)$. Show that the roots of $p_{n}(x)-x$ are real and distinct for all n.
11: Let $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ with $a_{0}=a_{n}=1$ and $a_{i}>0$ for all i. Show that if $p(x)$ has n distinct real roots then $p(2) \geq 3^{n}$.

12: Let $p(x)$ be the polynomial of degree n such that that $p(k)=\frac{k}{k+1}$ for $k=0,1, \cdots, n$. Find $p(n+1)$.

13: Find all polynomials over \mathbf{C} whose coefficients are all equal to ± 1 and whose roots are all real.

14: Find all polynomials $p(x)$ over \mathbf{R} such that $p(x) p(x+1)=p\left(x^{2}+x+1\right)$.

Putnam Problems on Polynomials

1: (1987 A4) Let $p(x, y, z)$ be a polynomial over \mathbf{R} with $p(1,0,0)=4, p(0,1,0)=5, p(0,0,1)=6$, and let $f(x, y)$ be a real valued function such that $p(u x, u y, u z)=u^{2} f(y-x, z-x)$ for all real u, x, y, z. Given complex numbers a, b and c with $p(a, b, c)=0$ and $|b-a|=10$, find $|c-a|$.

2: (1988 A5) Show that there is a unique function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$such that $f(f(x))=6 x-f(x)$ for all $x>0$.

3: (1990 B5) Determine whether there exists a sequence $a_{0}, a_{1}, a_{2} \cdots$ of non-zero real numbers such that for every positive integer n, the polynomial $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ has n distinct real roots.

4: (1991 A3) Find every polynomial $p(x)$ of degree $n \geq 2$ over \mathbf{R} for which there exist real numbers $r_{1}<r_{2}<\cdots<r_{n}$ such that $p\left(r_{i}\right)=0$ and $p^{\prime}\left(\frac{1}{2}\left(r_{i}+r_{i+1}\right)\right)=0$ for all i.
5: (1992 B4) Let $p(x)$ be a nonzero polynomial over \mathbf{R} of degree at most 1992 with no factors in common with $x^{3}-x$, and let $\frac{d^{1992}}{d x^{1992}}\left(\frac{p(x)}{x^{3}-x}\right)=\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomials. Find the minimum possible degree for $f(x)$.

6: (1994 B2) Determine which real numbers c have the property that there is a line in the plane which intersects the curve $y=x^{4}+9 x^{3}+c x^{2}+9 x+4$ in four distinct points.

7: (1999 A2) Let $p(x)$ be a polynomial over \mathbf{R} such that $p(x) \geq 0$ for all x. Show that $p(x)$ is equal to a sum of squares of polynomials over \mathbf{R}.

8: (1999 A5) Show that there exists a constant $c \in \mathbf{R}$ with the property that for every polynomial $p(x)$ of degree 1999 over \mathbf{R} we have $|p(0)| \leq c \int_{-1}^{1}|p(x)| d x$.

9: (1999 B2) Let $p(x)$ be a polynomial of degree n over \mathbf{C} such that $p^{\prime \prime}(x)$ divides $p(x)$. Show that if $p(x)$ has at least two distinct roots then it has n distinct roots.

10: (2000 A6) Let $p(x)$ be a polynomial over \mathbf{Z}. Let $a_{0}=0$ and for $n \geq 0$ let $a_{n+1}=p\left(a_{n}\right)$. Show that if $a_{m}=0$ for some $m>0$ then either $a_{1}=0$ or $a_{2}=0$.

