
Solutions to the Problems on Polynomials

1: Let p(x) be a polynomial over Z with at least four distinct integral roots. Show that there is no integer k
such that p(k) is prime.

Solution: Suppose that p(a) = p(b) = p(c) = p(d) = 0 where a, b, c and d are distinct integers. Then we
have p(x) = (x−a)(x− b)(x− c)(x−d)h(x) for some polynomial h(x). Thus for all k ∈ Z, p(k) is a multiple
of each of the four distinct integers (k − a), (k − b), (k − c) and (k − d). Either one of these four integers is
equal to zero, or two of these four integers are not equal to 0 or ±1. In either case, p(k) is not prime.

2: Let p(x) be a polynomial over C. Show that p(x) is even if and only if there exists a polynomial q(x) over
C such that p(x) = q(x)q(−x).

Solution: Suppose that p(x) = q(x)q(−x) for some polynomial q. Then we have p(−x) = q(−x)q(x) = p(x),
so p is even. Conversely, suppose that p is even. Let p(x) = a0 + a1x+ · · ·+ anx

n where an 6= 0. Since p is
even we have p(x) = p(−x) for all x, so a0 + a1x+ a2x

2 + · · ·+ anx
n = a0 − a1x+ a2x

2 − · · ·+ (−1)nanx
n

for all x. Comparing coefficients, we see that 0 = a1 = a3 = a5 = · · ·, so we have

p(x) = a0 + a2x
2 + a4x

4 + · · ·+ a2kx
2k = r(x2),

where r(u) = a0 + a2u+ a4u
2 + · · ·+ a2ku

k. Say r(u) = a2k(u− r1)(u− r2) · · · (u− rk). Then we have

p(x) = r(x2) = a2k(x2 − r1)(x2 − r2) · · · (x2 − rk) = (−1)ka2k(r1 − x2)(r2 − x2) · · · (rk − x2) .

Choose bi ∈ C so that b0
2 = (−1)ka2k and bi

2 = ri for i ≥ 1. Then

p(x) = b0
2(b1

2 − x2)(b2
2 − x2) · · · (bk2 − x2) = q(−x)q(x) ,

where q(x) = b0(b1 + x)(b2 + x) · · · (bk + x).

3: Let p(x) be a polynomial over R of odd degree. Show that p(p(x)) has at least as many real roots as p(x).

Solution: Let a1, a2, · · · , an be the distinct real roots of p(x). Note that since p(x) has odd degree, it is onto,
and so for each i, we can choose xi ∈ R so that p(xi) = ai. Note that the numbers xi are distinct (since
xi = xj =⇒ ai = p(xi) = p(xj) = aj) and we have p

(
p(xi)

)
= p(ai) = 0 for all i.

4: Let p(x) be a monic polynomial over Z with the property that there exist positive integers k and l such that
none of the integers p(k + i) with i = 1, 2, · · · , l is divisible by l. Show that p(x) has no rational roots.

Solution: Let a be a rational root of a monic polynomial p with integer coefficients, and let k and l be
positive integers. Since p is monic, we have a ∈ Z, so p(x) = (x − a)q(x) for some monic polynomial q(x)
over Z. For all i we have p(k + i) = (k + i− a)q(a). Choose i with 1 ≤ i ≤ l so that l

∣∣(k + i− a). Then we

have l
∣∣p(k + i).

5: Let p(x) =
2n∑
k=0

(−1)k(2n+ 1− k)xk. Show that p(x) has no real roots.

Solution: When x ≤ 0, p(x) = (2n+1)+(2n)|x|+(2n−1)|x|2+· · ·+3|x|2n−2+2|x|2n−1+|x|2n ≥ (2n+1) > 0.
Also, we have

p(x) = (2n+ 1)− (2n)x+ (2n− 1)x2 − · · ·+ 3x2n−2 − 2x2n−1 + x2n , and

xp(x) = (2n+ 1)x− (2n)x2 + · · · − 2x2n + x2n+1 , so

p(x)(1 + x) = (2n+ 1) + x− x2 + x3 − · · ·+ x2n+1 = (2n+ 1) +
x(x2n+1 + 1)

x+ 1
,

so that when x > 0 we have p(x) > 0. Thus p(x) > 0 for all x.

6: Let p(x) be a polynomial with non-negative real coefficients. Show that p(a2)p(b2) ≥ p(ab)2 for all a, b ∈ R.

Solution: Let p(x) =
n∑

i=0

cix
i with each ci ≥ 0. Let u, v ∈ Rn+1 be the vectors with ui =

√
ci a

i and

vi =
√
ci b

i for 0 ≤ i ≤ n. Then |u|2 = u.u =
n∑

i=0

cia
2i = p(a2), and |v|2 = v . v =

n∑
i=1

cib
2i = p(b2), and

u. v =
n∑

i=0

ci a
ibi = p(ab). By the Cauchy-Schwarz Inequality, p(ab)2 = (u. v)2 ≤ |u|2|v|2 = p(a2)p(b2).



7: Let p(x) be a polynomial over Z of degree at least 2. Show that there is a polynomial q(x) over Z such that
p(q(x)) is reducible over Z.

Solution: For g(x) = p(x) − p(a) we have g(a) = 0 and so (x − a)
∣∣g(x). Say g(x) = (x − a)h(x), that is

p(x)−p(a) = (x−a)h(x). Note that since deg(p) ≥ 2 we have deg(h) ≥ 1. It follows that for any polynomial
f(x) we have p(x)−p

(
f(x)

)
=
(
x−f(x)

)
h(x). Take f(x) = p(x) +x to get p(x)−p

(
p(x) +x

)
= −p(x)h(x),

so we have p
(
p(x) + x

)
= p(x)

(
1 + h(x)

)
. Thus we can take q(x) = p(x) + x.

8: Let a and b be distinct real numbers. Solve (z − a)4 + (z − b)4 = (a− b)4 for z ∈ C.

Solution: We expand and simplify to get

z4 − 4a z3 + 6a2z2 − 4a3z + a4 + z4 − 4b z3 + 6b2z2 − 4b3z + b4 = a4 − 4a3b+ 6a2b2 − 4ab3 + b4

2z4 − 4(a+ b)z3 + 6(a2 + b2)z2 − 4(a3 + b3)z + 4(a3b+ ab3)− 6a2b2 = 0 .

Thus we need to solve f(z) = 0 where f(z) = z4−2(a+b)z3+3(a2+b2)z2−2(a3+b3)z+(2a3b−3a2b2+2ab3).
Note that f(a) = f(b) = 0. Let a, b, c and d be the four roots of f(z). Then we must have

a+ b+ c+ d = 2(a+ b) and

abcd = ab(2a2 − 3ab+ 2b2) .

Thus we have c + d = a + b and cd = (2a2 − 3ab + 2b2), so c and d are the two solutions of the equation
z2 − (a+ b)z + (2a2 − 3ab+ 2b2) = 0, which are given by

c, d =
(a+ b)±

√
(a2 + 2ab+ b2)− 4(2a2 − 3ab+ 2b2)

2

=
(a+ b)±

√
14ab− 7(a2 + b2)

2
=

(a+ b)± i (a− b)
√

7

2
.

9: Let a1, a2, · · · , an be distinct integers. Show that p(x) =
n∏

i=1

(x− ai)− 1 is irreducible.

Solution: Suppose, for a contradiction, that p(x) is reducible. Say p(x) = f(x)g(x) where f and g are both
of degree less than n. For each i we have p(ai) = −1 so f(ai)g(ai) = −1, and so either f(ai) = 1 and
g(ai) = −1 or f(ai) = −1 and g(ai) = 1. Thus for all i we have we have f(ai) + g(ai) = 0. Since f + g is of
degree less than n, and the ai are distinct, we must have f(x) + g(x) = 0 for all x. Since g(x) = −f(x), we
have p(x) = f(x)g(x) = −f(x)2. But the coefficient of xn in p(x) is equal to 1, and the coefficient of xn in
−f(x)2 is equal to −1, so this is not possible.

10: Let p1(x) = x2 − 2 and for k ≥ 2 let pk(x) = p1(pk−1(x)). Show that the roots of pn(x) − x are real and
distinct for all n.

Solution: Let x(t) = 2 cos t for 0 ≤ t ≤ π. We have p1(x(t)) = (2 cos t)2 − 2 = 4 cos2 t− 2 = 2 cos 2t. Verify
using mathematical induction that pn(x(t)) = 2 cos(2nt) for all n ≥ 1. For 0 ≤ t ≤ π we have

pn(x(t)) = x(t) ⇐⇒ 2 cos(2nt) = 2 cos t ⇐⇒ cos 2nt = cos t

⇐⇒ 2nt = ±t+ 2π k , for some k ∈ Z

⇐⇒ t =
2πk

2n ± 1
, for some k ∈ {0, 1, 2, · · · , n− 1} .

Thus we have found 2n distinct solutions x(t) with 0 ≤ t ≤ π, and since the polynomial pn(x) − x is of
degree 2n, these are all of the roots of pn(x)− x.

11: Let p(x) =
n∑

i=0

aix
i with a0 = an = 1 and ai > 0 for all i. Show that if p(x) has n distinct real roots then

p(2) ≥ 3n.

Solution: Since every ai ≥ 0, all of the roots of p(x) must be negative. Say the roots are −r1,−r2, · · · ,−rn,
so we have p(x) = (x+ r1)(x+ r2) · · · (x+ rn). Using the fact that 2 + r ≥ 3r1/3 for all r > 0, and the fact
that r1r2 · · · rn = p(0) = 1, we have

p(2) = (2 + r1)(2 + r2) · · · (2 + rn) ≥
(
3r1

1/3
)(

3r2
1/3
)
· · ·
(
3rn

1/3
)

= 3n
(
r1r2 · · · rn

)1/3
= 3n .



12: Let p(x) be the polynomial of degree n such that that p(k) = k
k+1 for k = 0, 1, · · · , n. Find p(n+ 1).

Solution: Let q(x) = (x + 1)p(x) − x. Then deg(q) = n + 1 and we have q(k) = (k + 1) k
k+1 − k = 0 for

0 ≤ k ≤ n, and so q(x) = c(x− 0)(x− 1) · · · (x−n) for some constant c. Also, note that q(−1) = −1 so that

c(−1)(−2) · · · (−1− n) = −1, and so we have c = (−1)n+1

(n+1)! . Thus q(x) = (−1)n+1

(n+1)! (x− 0)(x− 1) · · · (x− n). In

particular q(n+1) = (−1)n+1

(n+1)! (n+1)(n) · · · (1) = (−1)n+1. Since q(x) = (x+1)p(x)−x, we have p(x) = q(x)+x
x+1 ,

and in particular

p(n+ 1) =
(−1)n+1 + (n+ 1)

n+ 2
=


n

n+ 2
if n is even,

1 if n is odd.

13: Find all polynomials over C whose coefficients are all equal to ±1 and whose roots are all real.

Solution: Let p(x) =
n∑

i=0

cix
i with each ci = ±1, and suppose the roots of p(x) are all real. Let the roots be

a1, a2, · · · , an, repeated if necessary according to multiplicity, so that p(x) = cn(x− a1)(x− a2) · · · (x− an).
By partially expanding this product, we see that c0 = (−1)n cn

∏
1≤i≤n

ai, and cn−1 = −cn
∑

1≤i≤n

ai, and

cn−2 = cn
∑

1≤i<j≤n

aiaj . From the formulas for cn−1 and cn−2 we have

∑
1≤i≤n

ai
2 =

( ∑
1≤i<j≤n

ai

)2
− 2

∑
1≤i≤n

aiaj =
( cn−1

cn

)2 − 2
(

cn−2

cn

)
.

Since each ci = ±1 this gives
∑

1≤i≤n

ai
2 = 1± 2, and since

∑
1≤i≤n

ai
2 ≥ 0 we must have

∑
1≤i≤n

ai
2 = 1 + 2 = 3.

By the Algebraic Geometric Mean Inequality, we have

1 =
n
√

1 = n
√
c02 = n

√ ∏
1≤i≤n

ai
2 ≤

∑
1≤i≤n

ai
2

n
=

3

n
,

and so we must have n ≤ 3. When n = 1 we find that all 4 polynomials p(x) = ±x ± 1 have real roots.
When n = 2 we find that of the 8 polynomials ±x2 ± x ± 1, only the 4 polynomials p(x) = ±(x2 ± x − 1)
have real roots. When n = 3, we must have equality in the Algebraic Geometric Mean Inequality, and this
occurs when a1

2 = a2
2 = a3

2 = 1. Of the 8 polynomials ±(x− 1)3, ±(x− 1)2(x+ 1), ±(x− 1)(x+ 1)2 and
±(x+ 1)3, only the 4 polynomials p(x) = ±(x− 1)2(x+ 1) , ±(x− 1)(x+ 1)2 have all coefficients ±1.

14: Find all polynomials p(x) over R such that p(x)p(x+ 1) = p(x2 + x+ 1).

Solution: Let p(x) be a polynomial over R with p(x)p(x + 1) = p(x2 + x + 1). If p(x) is constant, say
p(x) = c, then c2 = c so that c = 0 or 1. Suppose that p(x) is not constant. By replacing x by x − 1, we
see that p(x − 1)p(x) = p

(
(x − 1)2 + (x − 1) + 1

)
= p(x2 − x + 1). Let a ∈ C be a root of p(x) of largest

possible norm. Then we have p(a2 + a+ 1) = p(a)p(a+ 1) = 0 and we have p(a2− a+ 1) = p(a− 1)p(a) = 0.
Note that for any 0 6= u ∈ C, one of the two complex numbers u± a has larger norm than a

(
indeed, since

|u ± a|2 = |u|2 ± 2 Re(uā) + |a|2, we see that if Re(uā) ≥ 0 then |u + a| > |a| and if Re(uā) ≤ 0 then
|u− a| > |a|

)
. In particular, if a 6= ±i then a2 + 1 6= 0 and so one of a2± a+ 1 has a larger norm than a, but

since a2 ± a + 1 are both roots of p(x), this would contradict our choice of a. Thus we must have a = ±i.
Say p(x) = (x2 + 1)kq(x) where q(±i) 6= 0. Then since (x2 + 1)(x2 + 2x+ 2) = (x2 + x+ 1)2 + 1 we have

q(x)q(x+ 1) =
p(x)

(x2 + 1)k
·

p
(
x+ 1)(

x2 + 2x+ 2)k
=

p(x2 + x+ 1)(
(x2 + x+ 1)2 + 1)

)k = q(x2 + x+ 1)

and so q(x) satisfies the same recursion as p(x). As above, if q(x) was not constant then its roots of largest
norm would be a = ±i, but we have q(±i) 6= 0 and so q(x) must be constant, say q(x) = c. Also as
above, we must have q(x) = 0 or q(x) = 1. But we cannot have q(x) = 0 since this would imply that
p(x) = (x2 + 1)kq(x) = 0. Thus q(x) = 1 and p(x) = (x2 + 1)kq(x) = (x2 + 1)k.


