Solutions to the Problems on Polynomials

: Let p(z) be a polynomial over Z with at least four distinct integral roots. Show that there is no integer k
such that p(k) is prime.

Solution: Suppose that p(a) = p(b) = p(c) = p(d) = 0 where a, b, ¢ and d are distinct integers. Then we
have p(z) = (z — a)(z — b)(x — ¢)(x — d)h(x) for some polynomial h(x). Thus for all k € Z, p(k) is a multiple
of each of the four distinct integers (k — a), (kK —b), (k — ¢) and (k — d). Either one of these four integers is
equal to zero, or two of these four integers are not equal to 0 or 1. In either case, p(k) is not prime.

: Let p(x) be a polynomial over C. Show that p(z) is even if and only if there exists a polynomial ¢(z) over
C such that p(z) = g(z)g(—x).

Solution: Suppose that p(r) = g(x)q(—x) for some polynomial g. Then we have p(—z) = ¢(—z)q(z) = p(z),
so p is even. Conversely, suppose that p is even. Let p(z) = ap + a1z + - - - + a,z™ where a,, # 0. Since p is
even we have p(z) = p(—z) for all @, s0 ag + a1z + agx? + -+ - + 2™ = ag — a1 v + agx® — -+ + (=1)"a, 2"
for all x. Comparing coefficients, we see that 0 = a; = a3 = a5 = - - -, so we have
p(z) = ag + asx® + agz* + - + agpx®® = r(2?),
where 7(u) = ag + agu + agu® + - - + agpu’. Say r(u) = agr(u —71)(u —72) -+ (u — 7). Then we have
p(z) = r(@?) = agr(2® — ) (@2 — 1) - (22 — 1) = (=D Fage(r1 — 22)(rg — 2%) - - (rp — 22).
Choose b; € C so that by? = (—1)*ag;, and b;2 = r; for i > 1. Then
p(x) = b (b1? — %) (be* — %) - (b, — &%) = q(—2)q(x),
where g(z) = bo(by + x)(ba + ) - - - (b + ).
: Let p(z) be a polynomial over R of odd degree. Show that p(p(z)) has at least as many real roots as p(z).

Solution: Let ay,az,- -, a, be the distinct real roots of p(z). Note that since p(x) has odd degree, it is onto,
and so for each i, we can choose z; € R so that p(x;) = a;. Note that the numbers x; are distinct (since
z; = x; = a; = p(x;) = p(z;) = a;) and we have p(p(z;)) = p(a;) = 0 for all i.

: Let p(z) be a monic polynomial over Z with the property that there exist positive integers k and [ such that
none of the integers p(k + ) with ¢ = 1,2,---,1 is divisible by I. Show that p(z) has no rational roots.

Solution: Let a be a rational root of a monic polynomial p with integer coefficients, and let £ and [ be
positive integers. Since p is monic, we have a € Z, so p(z) = (z — a)q(z) for some monic polynomial g(x)
over Z. For all i we have p(k + i) = (k + i — a)q(a). Choose i with 1 <i <1 so that I|(k + i — a). Then we
have I|p(k + i).

2n
: Let p(z) = > (—=1)¥(2n + 1 — k) z*. Show that p(x) has no real roots.

k=0
Solution: When x < 0, p(z) = (2n+1)+(2n)|z|+(2n—1)|z|?+- - -+ 3|z 2 42|z~ 1+ |2]?" > (2n+1) > 0.
Also, we have

p(x)=(2n+1) — 2n)z + (2n — Da? — - 4+ 32272 — 222" 4 22" and
zp(x) = (2n + Dz — (2n)z? +--- — 22°" + 22" | so

(2?4 1)

p)1+z)=2n+ 1) 4z —a?+a2%— - 22" = 2n41) + 1
x

b

so that when x > 0 we have p(z) > 0. Thus p(z) > 0 for all .

: Let p(z) be a polynomial with non-negative real coefficients. Show that p(a?)p(b?) > p(ab)? for all a,b € R.

n . .
Solution: Let p(z) = Y ¢z’ with each ¢; > 0. Let u,v € R be the vectors with u; = ,/¢;a’ and
i=0
. n . n .
v; = /¢ b* for 0 <4 < n. Then [ul2? =u-u= 3 ca* = p(a?), and |[v]> =v-v = 3 ¢;b* = p(b?), and
i=0 i=1

uev=> ¢ a’b’ = p(ab). By the Cauchy-Schwarz Inequality, p(ab)? = (u + v)? < |ul?|v]? = p(a?)p(b?).
i=0
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Let p(z) be a polynomial over Z of degree at least 2. Show that there is a polynomial ¢(z) over Z such that
p(q(x)) is reducible over Z.

Solution: For g(z) = p(z) — p(a) we have g(a) = 0 and so (z — a)|g(z). Say g(z) = (x — a)h(z), that is
p(z) —p(a) = (x—a)h(x). Note that since deg(p) > 2 we have deg(h) > 1. It follows that for any polynomial
f(z) we have p(z) —p(f(2)) = (z — f(2))h(z). Take f(z) = p(z) += to get p(z) — p(p(z) +x) = —p(x)h(z),
so we have p(p(z) + ) = p(z)(1 + h(z)). Thus we can take ¢(z) = p(z) + z.

: Let a and b be distinct real numbers. Solve (z — a)* + (z — b)* = (a — b)* for z € C.

Solution: We expand and simplify to get
2t —daz® +6a?2% —4aPz +a* + 2t — 4b 2 + 60727 — 4b32 4+ b* = a* — 4a®b + 6a%V? — dab® + b*
2% —4(a +b)2% +6(a® + )22 — 4(a® + )z + 4(a®b + ab®) — 6a*b* = 0.
Thus we need to solve f(z) = 0 where f(z) = 24 —2(a+b)2>+3(a®+b?)22 —2(a3+b3) 2+ (2a®b—3ab? +2ab?).
Note that f(a) = f(b) = 0. Let a, b, ¢ and d be the four roots of f(z). Then we must have
a+b+c+d=2(a+b)and
abed = ab(2a* — 3ab + 2b%) .
Thus we have ¢ +d = a + b and cd = (2a® — 3ab + 2b?), so ¢ and d are the two solutions of the equation
22 — (a +b)z + (2a% — 3ab + 2b?) = 0, which are given by
(a+b) £ /(a2 + 2ab + b%) — 4(2a2 — 3ab + 2b2)
2
(a+b) £ +/14ab—T(a2 +b%)  (a+b)+i(a—bVT

2 2

c,d=

n

: Let a1, aq,- -, a, be distinct integers. Show that p(xz) = [ (z — a;) — 1 is irreducible.

=1

Solution: Suppose, for a contradiction, that p(x) is reducible. Say p(z) = f(z)g(x) where f and g are both

of degree less than n. For each ¢ we have p(a;) = —1 so f(a;)g(a;) = —1, and so either f(a;) = 1 and
g(a;) = —1or f(a;) = —1 and g(a;) = 1. Thus for all 7 we have we have f(a;) + g(a;) = 0. Since f + g is of
degree less than n, and the a; are distinct, we must have f(x) + g(x) = 0 for all z. Since g(z) = — f(x), we

have p(x) = f(z)g(x) = —f(x)?. But the coefficient of 2™ in p(z) is equal to 1, and the coefficient of 2™ in
—f(x)? is equal to —1, so this is not possible.

Let p1(z) = 22 — 2 and for k > 2 let px(z) = p1(pk—1(z)). Show that the roots of p,(z) — z are real and
distinct for all n.

Solution: Let z(t) = 2cost for 0 <t < m. We have py(z(t)) = (2cost)? — 2 = 4cos?t — 2 = 2cos 2. Verify
using mathematical induction that p,(x(t)) = 2 cos(2"t) for all n > 1. For 0 < ¢t < 7 we have
pr(x(t)) = 2(t) <= 2cos(2"t) = 2cost <= cos2"t = cost
— 2™ =+t + 27k, for some k € Z
2rk

2n 4+ 1
Thus we have found 2n distinct solutions z(t) with 0 < ¢ < 7, and since the polynomial p,(z) — x is of
degree 2n, these are all of the roots of p,(z) — z.

= t= , for some k € {0,1,2,---,n—1}.

n .

Let p(x) = > a;a* with ag = a, = 1 and a; > 0 for all i. Show that if p(x) has n distinct real roots then
i=0

p(2) > 3.

Solution: Since every a; > 0, all of the roots of p(x) must be negative. Say the roots are —ry, —rg, -, —ry,
so we have p(z) = (z +71)(z +732) - (x + 7). Using the fact that 2 +r > 3r/3 for all 7 > 0, and the fact
that ryrg -7, = p(0) = 1, we have

p(2)=2+7r)2+7r) - (24+71,) > (37,11/3) (37,21/3) e (37,n1/3) —3n (7’17‘2 e rn)l/S _ 3
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Let p(z) be the polynomial of degree n such that that p(k) = kLH for k=0,1,---,n. Find p(n + 1).

Solution: Let ¢(r) = (x + 1)p(z) — . Then deg(q) = n + 1 and we have ¢(k) = (kK + 1) kL_H —k =0 for
0<k<mn,andso q(z) =c(x—0)(x—1) - (x —n) for some constant c¢. Also, note that g(—1) = —1 so that

e(—=1)(=2)--- (=1 —=n) = —1, and so we have ¢ = % Thus ¢(z) = % (z—=0)(z—1)---(z—n). In

(n+1)(n)--- (1) = (=1)"*1. Since ¢(z) = (x+1)p(z)—z, we have p(z) = %,

_1)yntl

particular g(n+1) = ((nT)'

and in particular

p(n 1) = )"+ (n+1)

n+2 1 ifnis odd.

n . .
5 if n is even,

Find all polynomials over C whose coefficients are all equal to +1 and whose roots are all real.

n .
Solution: Let p(z) = > ¢;x" with each ¢; = £1, and suppose the roots of p(x) are all real. Let the roots be

i=0

ai,as, - -, an, repeated if necessary according to multiplicity, so that p(z) = ¢, (z — a1)(z — az) - - - (x — ap).
By partially expanding this product, we see that ¢¢ = (—1)"¢, [] a;, and ¢,o1 = —¢, D a4, and

1<i<n 1<i<n
Ch—2=¢Cn . a;a;. From the formulas for ¢,_; and ¢,_2 we have
1<i<j<n
2
S oat=( X w) -2 % w=(22) - 2(e2).
1<i<n 1<i<j<n 1<i<n " "
Since each ¢; = £1 this gives Y ;2 =142, and since Y. ;%> >0 we must have . a;2=1+2=3.
1<i<n 1<i<n 1<i<n

By the Algebraic Geometric Mean Inequality, we have

> oa? 3
1=VT=%/c?= ] [ a?<=E0 =2
n

1<i<n n

and so we must have n < 3. When n = 1 we find that all 4 polynomials p(x) = £z £ 1 have real roots.
When n = 2 we find that of the 8 polynomials +22 + 2 + 1, only the 4 polynomials p(z) = (22 2 — 1)
have real roots. When n = 3, we must have equality in the Algebraic Geometric Mean Inequality, and this
occurs when a;2 = ap? = az? = 1. Of the 8 polynomials +(z — 1)3, £(x — 1)?(x + 1), £(x — 1)(z + 1) and
+(x + 1)3, only the 4 polynomials p(x) = £(z — 1)?(x + 1), £(z — 1)(z + 1)? have all coefficients +1.

Find all polynomials p(x) over R such that p(z)p(z + 1) = p(2? + x + 1).

Solution: Let p(z) be a polynomial over R with p(z)p(x + 1) = p(2? + x + 1). If p(x) is constant, say
p(x) = ¢, then ¢ = ¢ so that ¢ = 0 or 1. Suppose that p(z) is not constant. By replacing = by = — 1, we
see that p(z — 1)p(z) = p((z — 1)+ (x — 1) + 1) = p(x® — 2+ 1). Let a € C be a root of p(z) of largest
possible norm. Then we have p(a? +a+ 1) = p(a)p(a+1) = 0 and we have p(a? —a+1) = p(a —1)p(a) = 0.
Note that for any 0 # u € C, one of the two complex numbers u + a has larger norm than a (indeed, since
lu &+ a|® = |u|? £ 2Re(ua) + |a|?, we see that if Re(ua) > 0 then |u + a| > |a| and if Re(ua) < 0 then
lu—al| > |a|). In particular, if a # +i then a® 4+ 1 # 0 and so one of a® + a + 1 has a larger norm than a, but
since a? 4 a + 1 are both roots of p(x), this would contradict our choice of a. Thus we must have a = =i.
Say p(z) = (22 + 1)kq(z) where g(£i) # 0. Then since (22 + 1)(z% + 22 +2) = (22 + x + 1)? + 1 we have
pe)  patl)  p@ i)

(@ +1DF (@2 +204+2)% (@2 424+1)2+1)"
and so ¢(x) satisfies the same recursion as p(z). As above, if g(x) was not constant then its roots of largest
norm would be a = =+i, but we have ¢(£i) # 0 and so ¢(z) must be constant, say ¢(x) = c¢. Also as

above, we must have g(z) = 0 or ¢(z) = 1. But we cannot have g(x) = 0 since this would imply that
p(z) = (22 + 1)*q(x) = 0. Thus ¢(z) =1 and p(z) = (2% + 1)¥q(z) = (22 + 1)*.

q(z)q(z +1) = =q(z*+z+1)



