Solutions to the Problems on Polynomials

1: Let $p(x)$ be a polynomial over \mathbf{Z} with at least four distinct integral roots. Show that there is no integer k such that $p(k)$ is prime.

Solution: Suppose that $p(a)=p(b)=p(c)=p(d)=0$ where a, b, c and d are distinct integers. Then we have $p(x)=(x-a)(x-b)(x-c)(x-d) h(x)$ for some polynomial $h(x)$. Thus for all $k \in \mathbf{Z}, p(k)$ is a multiple of each of the four distinct integers $(k-a),(k-b),(k-c)$ and $(k-d)$. Either one of these four integers is equal to zero, or two of these four integers are not equal to 0 or ± 1. In either case, $p(k)$ is not prime.

2: Let $p(x)$ be a polynomial over C. Show that $p(x)$ is even if and only if there exists a polynomial $q(x)$ over \mathbf{C} such that $p(x)=q(x) q(-x)$.
Solution: Suppose that $p(x)=q(x) q(-x)$ for some polynomial q. Then we have $p(-x)=q(-x) q(x)=p(x)$, so p is even. Conversely, suppose that p is even. Let $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where $a_{n} \neq 0$. Since p is even we have $p(x)=p(-x)$ for all x, so $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=a_{0}-a_{1} x+a_{2} x^{2}-\cdots+(-1)^{n} a_{n} x^{n}$ for all x. Comparing coefficients, we see that $0=a_{1}=a_{3}=a_{5}=\cdots$, so we have

$$
p(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{2 k} x^{2 k}=r\left(x^{2}\right)
$$

where $r(u)=a_{0}+a_{2} u+a_{4} u^{2}+\cdots+a_{2 k} u^{k}$. Say $r(u)=a_{2 k}\left(u-r_{1}\right)\left(u-r_{2}\right) \cdots\left(u-r_{k}\right)$. Then we have

$$
p(x)=r\left(x^{2}\right)=a_{2 k}\left(x^{2}-r_{1}\right)\left(x^{2}-r_{2}\right) \cdots\left(x^{2}-r_{k}\right)=(-1)^{k} a_{2 k}\left(r_{1}-x^{2}\right)\left(r_{2}-x^{2}\right) \cdots\left(r_{k}-x^{2}\right)
$$

Choose $b_{i} \in \mathbf{C}$ so that $b_{0}{ }^{2}=(-1)^{k} a_{2 k}$ and ${b_{i}}^{2}=r_{i}$ for $i \geq 1$. Then

$$
p(x)=b_{0}^{2}\left(b_{1}^{2}-x^{2}\right)\left({b_{2}}^{2}-x^{2}\right) \cdots\left(b_{k}^{2}-x^{2}\right)=q(-x) q(x),
$$

where $q(x)=b_{0}\left(b_{1}+x\right)\left(b_{2}+x\right) \cdots\left(b_{k}+x\right)$.
3: Let $p(x)$ be a polynomial over \mathbf{R} of odd degree. Show that $p(p(x))$ has at least as many real roots as $p(x)$.
Solution: Let $a_{1}, a_{2}, \cdots, a_{n}$ be the distinct real roots of $p(x)$. Note that since $p(x)$ has odd degree, it is onto, and so for each i, we can choose $x_{i} \in \mathbf{R}$ so that $p\left(x_{i}\right)=a_{i}$. Note that the numbers x_{i} are distinct (since $\left.x_{i}=x_{j} \Longrightarrow a_{i}=p\left(x_{i}\right)=p\left(x_{j}\right)=a_{j}\right)$ and we have $p\left(p\left(x_{i}\right)\right)=p\left(a_{i}\right)=0$ for all i.

4: Let $p(x)$ be a monic polynomial over \mathbf{Z} with the property that there exist positive integers k and l such that none of the integers $p(k+i)$ with $i=1,2, \cdots, l$ is divisible by l. Show that $p(x)$ has no rational roots.
Solution: Let a be a rational root of a monic polynomial p with integer coefficients, and let k and l be positive integers. Since p is monic, we have $a \in \mathbf{Z}$, so $p(x)=(x-a) q(x)$ for some monic polynomial $q(x)$ over Z. For all i we have $p(k+i)=(k+i-a) q(a)$. Choose i with $1 \leq i \leq l$ so that $l \mid(k+i-a)$. Then we have $l \mid p(k+i)$.

5: Let $p(x)=\sum_{k=0}^{2 n}(-1)^{k}(2 n+1-k) x^{k}$. Show that $p(x)$ has no real roots.
Solution: When $x \leq 0, p(x)=(2 n+1)+(2 n)|x|+(2 n-1)|x|^{2}+\cdots+3|x|^{2 n-2}+2|x|^{2 n-1}+|x|^{2 n} \geq(2 n+1)>0$. Also, we have

$$
\begin{aligned}
p(x) & =(2 n+1)-(2 n) x+(2 n-1) x^{2}-\cdots+3 x^{2 n-2}-2 x^{2 n-1}+x^{2 n}, \text { and } \\
x p(x) & =(2 n+1) x-(2 n) x^{2}+\cdots-2 x^{2 n}+x^{2 n+1}, \text { so } \\
p(x)(1+x) & =(2 n+1)+x-x^{2}+x^{3}-\cdots+x^{2 n+1}=(2 n+1)+\frac{x\left(x^{2 n+1}+1\right)}{x+1}
\end{aligned}
$$

so that when $x>0$ we have $p(x)>0$. Thus $p(x)>0$ for all x.
6: Let $p(x)$ be a polynomial with non-negative real coefficients. Show that $p\left(a^{2}\right) p\left(b^{2}\right) \geq p(a b)^{2}$ for all $a, b \in \mathbf{R}$. Solution: Let $p(x)=\sum_{i=0}^{n} c_{i} x^{i}$ with each $c_{i} \geq 0$. Let $u, v \in \mathbf{R}^{n+1}$ be the vectors with $u_{i}=\sqrt{c_{i}} a^{i}$ and $v_{i}=\sqrt{c_{i}} b^{i}$ for $0 \leq i \leq n$. Then $|u|^{2}=u \cdot u=\sum_{i=0}^{n} c_{i} a^{2 i}=p\left(a^{2}\right)$, and $|v|^{2}=v \cdot v=\sum_{i=1}^{n} c_{i} b^{2 i}=p\left(b^{2}\right)$, and $u \cdot v=\sum_{i=0}^{n} c_{i} a^{i} b^{i}=p(a b)$. By the Cauchy-Schwarz Inequality, $p(a b)^{2}=(u \cdot v)^{2} \leq|u|^{2}|v|^{2}=p\left(a^{2}\right) p\left(b^{2}\right)$.

7: Let $p(x)$ be a polynomial over \mathbf{Z} of degree at least 2 . Show that there is a polynomial $q(x)$ over \mathbf{Z} such that $p(q(x))$ is reducible over \mathbf{Z}.
Solution: For $g(x)=p(x)-p(a)$ we have $g(a)=0$ and so $(x-a) \mid g(x)$. Say $g(x)=(x-a) h(x)$, that is $p(x)-p(a)=(x-a) h(x)$. Note that $\operatorname{since} \operatorname{deg}(p) \geq 2$ we have $\operatorname{deg}(h) \geq 1$. It follows that for any polynomial $f(x)$ we have $p(x)-p(f(x))=(x-f(x)) h(x)$. Take $f(x)=p(x)+x$ to get $p(x)-p(p(x)+x)=-p(x) h(x)$, so we have $p(p(x)+x)=p(x)(1+h(x))$. Thus we can take $q(x)=p(x)+x$.
8: Let a and b be distinct real numbers. Solve $(z-a)^{4}+(z-b)^{4}=(a-b)^{4}$ for $z \in \mathbf{C}$.
Solution: We expand and simplify to get

$$
\begin{gathered}
z^{4}-4 a z^{3}+6 a^{2} z^{2}-4 a^{3} z+a^{4}+z^{4}-4 b z^{3}+6 b^{2} z^{2}-4 b^{3} z+b^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} \\
2 z^{4}-4(a+b) z^{3}+6\left(a^{2}+b^{2}\right) z^{2}-4\left(a^{3}+b^{3}\right) z+4\left(a^{3} b+a b^{3}\right)-6 a^{2} b^{2}=0
\end{gathered}
$$

Thus we need to solve $f(z)=0$ where $f(z)=z^{4}-2(a+b) z^{3}+3\left(a^{2}+b^{2}\right) z^{2}-2\left(a^{3}+b^{3}\right) z+\left(2 a^{3} b-3 a^{2} b^{2}+2 a b^{3}\right)$. Note that $f(a)=f(b)=0$. Let a, b, c and d be the four roots of $f(z)$. Then we must have

$$
\begin{gathered}
a+b+c+d=2(a+b) \text { and } \\
a b c d=a b\left(2 a^{2}-3 a b+2 b^{2}\right) .
\end{gathered}
$$

Thus we have $c+d=a+b$ and $c d=\left(2 a^{2}-3 a b+2 b^{2}\right)$, so c and d are the two solutions of the equation $z^{2}-(a+b) z+\left(2 a^{2}-3 a b+2 b^{2}\right)=0$, which are given by

$$
\begin{aligned}
c, d & =\frac{(a+b) \pm \sqrt{\left(a^{2}+2 a b+b^{2}\right)-4\left(2 a^{2}-3 a b+2 b^{2}\right)}}{2} \\
& =\frac{(a+b) \pm \sqrt{14 a b-7\left(a^{2}+b^{2}\right)}}{2}=\frac{(a+b) \pm i(a-b) \sqrt{7}}{2} .
\end{aligned}
$$

9: Let $a_{1}, a_{2}, \cdots, a_{n}$ be distinct integers. Show that $p(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)-1$ is irreducible.
Solution: Suppose, for a contradiction, that $p(x)$ is reducible. Say $p(x)=f(x) g(x)$ where f and g are both of degree less than n. For each i we have $p\left(a_{i}\right)=-1$ so $f\left(a_{i}\right) g\left(a_{i}\right)=-1$, and so either $f\left(a_{i}\right)=1$ and $g\left(a_{i}\right)=-1$ or $f\left(a_{i}\right)=-1$ and $g\left(a_{i}\right)=1$. Thus for all i we have we have $f\left(a_{i}\right)+g\left(a_{i}\right)=0$. Since $f+g$ is of degree less than n, and the a_{i} are distinct, we must have $f(x)+g(x)=0$ for all x. Since $g(x)=-f(x)$, we have $p(x)=f(x) g(x)=-f(x)^{2}$. But the coefficient of x^{n} in $p(x)$ is equal to 1 , and the coefficient of x^{n} in $-f(x)^{2}$ is equal to -1 , so this is not possible.

10: Let $p_{1}(x)=x^{2}-2$ and for $k \geq 2$ let $p_{k}(x)=p_{1}\left(p_{k-1}(x)\right)$. Show that the roots of $p_{n}(x)-x$ are real and distinct for all n.

Solution: Let $x(t)=2 \cos t$ for $0 \leq t \leq \pi$. We have $p_{1}(x(t))=(2 \cos t)^{2}-2=4 \cos ^{2} t-2=2 \cos 2 t$. Verify using mathematical induction that $p_{n}(x(t))=2 \cos \left(2^{n} t\right)$ for all $n \geq 1$. For $0 \leq t \leq \pi$ we have

$$
\begin{aligned}
p_{n}(x(t))=x(t) & \Longleftrightarrow 2 \cos \left(2^{n} t\right)=2 \cos t \Longleftrightarrow \cos 2^{n} t=\cos t \\
& \Longleftrightarrow 2^{n} t= \pm t+2 \pi k, \text { for some } k \in \mathbf{Z} \\
& \Longleftrightarrow t=\frac{2 \pi k}{2^{n} \pm 1}, \text { for some } k \in\{0,1,2, \cdots, n-1\}
\end{aligned}
$$

Thus we have found $2 n$ distinct solutions $x(t)$ with $0 \leq t \leq \pi$, and since the polynomial $p_{n}(x)-x$ is of degree $2 n$, these are all of the roots of $p_{n}(x)-x$.

11: Let $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ with $a_{0}=a_{n}=1$ and $a_{i}>0$ for all i. Show that if $p(x)$ has n distinct real roots then $p(2) \geq 3^{n}$.
Solution: Since every $a_{i} \geq 0$, all of the roots of $p(x)$ must be negative. Say the roots are $-r_{1},-r_{2}, \cdots,-r_{n}$, so we have $p(x)=\left(x+r_{1}\right)\left(x+r_{2}\right) \cdots\left(x+r_{n}\right)$. Using the fact that $2+r \geq 3 r^{1 / 3}$ for all $r>0$, and the fact that $r_{1} r_{2} \cdots r_{n}=p(0)=1$, we have

$$
p(2)=\left(2+r_{1}\right)\left(2+r_{2}\right) \cdots\left(2+r_{n}\right) \geq\left(3 r_{1}^{1 / 3}\right)\left(3 r_{2}^{1 / 3}\right) \cdots\left(3 r_{n}^{1 / 3}\right)=3^{n}\left(r_{1} r_{2} \cdots r_{n}\right)^{1 / 3}=3^{n}
$$

12: Let $p(x)$ be the polynomial of degree n such that that $p(k)=\frac{k}{k+1}$ for $k=0,1, \cdots, n$. Find $p(n+1)$.
Solution: Let $q(x)=(x+1) p(x)-x$. Then $\operatorname{deg}(q)=n+1$ and we have $q(k)=(k+1) \frac{k}{k+1}-k=0$ for $0 \leq k \leq n$, and so $q(x)=c(x-0)(x-1) \cdots(x-n)$ for some constant c. Also, note that $q(-1)=-1$ so that $c(-1)(-2) \cdots(-1-n)=-1$, and so we have $c=\frac{(-1)^{n+1}}{(n+1)!}$. Thus $q(x)=\frac{(-1)^{n+1}}{(n+1)!}(x-0)(x-1) \cdots(x-n)$. In particular $q(n+1)=\frac{(-1)^{n+1}}{(n+1)!}(n+1)(n) \cdots(1)=(-1)^{n+1}$. Since $q(x)=(x+1) p(x)-x$, we have $p(x)=\frac{q(x)+x}{x+1}$, and in particular

$$
p(n+1)=\frac{(-1)^{n+1}+(n+1)}{n+2}=\left\{\begin{array}{cl}
\frac{n}{n+2} & \text { if } n \text { is even } \\
1 \quad \text { if } n \text { is odd }
\end{array}\right.
$$

13: Find all polynomials over \mathbf{C} whose coefficients are all equal to ± 1 and whose roots are all real.
Solution: Let $p(x)=\sum_{i=0}^{n} c_{i} x^{i}$ with each $c_{i}= \pm 1$, and suppose the roots of $p(x)$ are all real. Let the roots be $a_{1}, a_{2}, \cdots, a_{n}$, repeated if necessary according to multiplicity, so that $p(x)=c_{n}\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$. By partially expanding this product, we see that $c_{0}=(-1)^{n} c_{n} \prod_{1 \leq i \leq n} a_{i}$, and $c_{n-1}=-c_{n} \sum_{1 \leq i \leq n} a_{i}$, and $c_{n-2}=c_{n} \sum_{1 \leq i<j \leq n} a_{i} a_{j}$. From the formulas for c_{n-1} and c_{n-2} we have

$$
\sum_{1 \leq i \leq n} a_{i}^{2}=\left(\sum_{1 \leq i<j \leq n} a_{i}\right)^{2}-2 \sum_{1 \leq i \leq n} a_{i} a_{j}=\left(\frac{c_{n-1}}{c_{n}}\right)^{2}-2\left(\frac{c_{n-2}}{c_{n}}\right)
$$

Since each $c_{i}= \pm 1$ this gives $\sum_{1 \leq i \leq n} a_{i}^{2}=1 \pm 2$, and since $\sum_{1 \leq i \leq n} a_{i}{ }^{2} \geq 0$ we must have $\sum_{1 \leq i \leq n} a_{i}^{2}=1+2=3$. By the Algebraic Geometric Mean Inequality, we have

$$
1=\sqrt[n]{1}=\sqrt[n]{c_{0}^{2}}=\sqrt[n]{\prod_{1 \leq i \leq n} a_{i}^{2}} \leq \frac{\sum_{1 \leq i \leq n} a_{i}^{2}}{n}=\frac{3}{n}
$$

and so we must have $n \leq 3$. When $n=1$ we find that all 4 polynomials $p(x)= \pm x \pm 1$ have real roots. When $n=2$ we find that of the 8 polynomials $\pm x^{2} \pm x \pm 1$, only the 4 polynomials $p(x)= \pm\left(x^{2} \pm x-1\right)$ have real roots. When $n=3$, we must have equality in the Algebraic Geometric Mean Inequality, and this occurs when $a_{1}{ }^{2}=a_{2}{ }^{2}=a_{3}{ }^{2}=1$. Of the 8 polynomials $\pm(x-1)^{3}, \pm(x-1)^{2}(x+1), \pm(x-1)(x+1)^{2}$ and $\pm(x+1)^{3}$, only the 4 polynomials $p(x)= \pm(x-1)^{2}(x+1), \pm(x-1)(x+1)^{2}$ have all coefficients ± 1.
14: Find all polynomials $p(x)$ over \mathbf{R} such that $p(x) p(x+1)=p\left(x^{2}+x+1\right)$.
Solution: Let $p(x)$ be a polynomial over \mathbf{R} with $p(x) p(x+1)=p\left(x^{2}+x+1\right)$. If $p(x)$ is constant, say $p(x)=c$, then $c^{2}=c$ so that $c=0$ or 1 . Suppose that $p(x)$ is not constant. By replacing x by $x-1$, we see that $p(x-1) p(x)=p\left((x-1)^{2}+(x-1)+1\right)=p\left(x^{2}-x+1\right)$. Let $a \in \mathbf{C}$ be a root of $p(x)$ of largest possible norm. Then we have $p\left(a^{2}+a+1\right)=p(a) p(a+1)=0$ and we have $p\left(a^{2}-a+1\right)=p(a-1) p(a)=0$. Note that for any $0 \neq u \in \mathbf{C}$, one of the two complex numbers $u \pm a$ has larger norm than a (indeed, since $|u \pm a|^{2}=|u|^{2} \pm 2 \operatorname{Re}(u \bar{a})+|a|^{2}$, we see that if $\operatorname{Re}(u \bar{a}) \geq 0$ then $|u+a|>|a|$ and if $\operatorname{Re}(u \bar{a}) \leq 0$ then $|u-a|>|a|)$. In particular, if $a \neq \pm i$ then $a^{2}+1 \neq 0$ and so one of $a^{2} \pm a+1$ has a larger norm than a, but since $a^{2} \pm a+1$ are both roots of $p(x)$, this would contradict our choice of a. Thus we must have $a= \pm i$. Say $p(x)=\left(x^{2}+1\right)^{k} q(x)$ where $q(\pm i) \neq 0$. Then since $\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)=\left(x^{2}+x+1\right)^{2}+1$ we have

$$
q(x) q(x+1)=\frac{p(x)}{\left(x^{2}+1\right)^{k}} \cdot \frac{p(x+1)}{\left(x^{2}+2 x+2\right)^{k}}=\frac{p\left(x^{2}+x+1\right)}{\left.\left(\left(x^{2}+x+1\right)^{2}+1\right)\right)^{k}}=q\left(x^{2}+x+1\right)
$$

and so $q(x)$ satisfies the same recursion as $p(x)$. As above, if $q(x)$ was not constant then its roots of largest norm would be $a= \pm i$, but we have $q(\pm i) \neq 0$ and so $q(x)$ must be constant, say $q(x)=c$. Also as above, we must have $q(x)=0$ or $q(x)=1$. But we cannot have $q(x)=0$ since this would imply that $p(x)=\left(x^{2}+1\right)^{k} q(x)=0$. Thus $q(x)=1$ and $p(x)=\left(x^{2}+1\right)^{k} q(x)=\left(x^{2}+1\right)^{k}$.

