Lesson 6: Sequences, Series and Products

1: Let $a_{1}=1$ and for $n \geq 1$ let $a_{n+1}=\frac{6}{a_{n}+1}$. Determine whether $\left\{a_{n}\right\}$ converges, and if so then find the limit.

2: Let $a_{1}=1, a_{2}=2$, and for $n>2$ let $a_{n}=\sqrt{a_{n-1}}+\sqrt{a_{n-2}}$. Determine whether $\left\{a_{n}\right\}$ converges, and if so then find the limit.

3: Let $a_{1}=\sqrt{2}$, for $n \geq 1$ let $a_{n+1}=\sqrt{2+a_{n}}$, and then let $b_{n}=4^{n}\left(2-a_{n}\right)$. Determine whether $\left\{b_{n}\right\}$ converges, and if so then find the limit.
4: Let $a_{n}=\left(\frac{n^{n}}{n!}\right)^{1 / n}$. Determine whether $\left\{a_{n}\right\}$ converges, and if so then find the limit.
5: For a real number x, let $\langle x\rangle$ denote the fractional part of x, that is $\langle x\rangle=x-\lfloor x\rfloor$. Show that if x is irrational then the sequence $\{\langle n x\rangle\}$ is dense in $[0,1]$.
6: (a) Find $\sum_{k=2}^{n} \frac{1}{\log _{k} e}$.
(b) Find $\sum_{k=1}^{n}(2 k-1)^{3}$.

7: (a) Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n+i}$.
(b) Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i^{2}}}$.

8: (a) Find $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2}$.
(b) Find $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}$.

9: Find $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k^{2}\right)^{-1}$.
10: Find $\int_{0}^{\pi} \sin x d x$ by evaluating the limit of a sequence of Riemann sums.
11: Let $a_{n}>0$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges.
12: Find $\prod_{n=0}^{\infty}\left(1+\frac{1}{2^{2^{n}}}\right)$.
13: Find $\prod_{n=2}^{\infty} \frac{n^{3}-1}{n^{3}+1}$.

Putnam Problems on Sequences, Series and Products

1: (1985 A3) Fix a real number d. For each positive integer n, let $a_{n}(0)=d / 2^{n}$ and for $j \geq 0$ let $a_{n}(j+1)=a_{n}(j)^{2}+2 a_{n}(j)$. Find $\lim _{n \rightarrow \infty} a_{n}(n)$.
2: (1987 A6) For a positive integer n, let $a(n)$ be the number of zeros in the base 3 representation of n. Find the set of all real numbers x such that the series $\sum_{n=1}^{\infty} \frac{x^{a(n)}}{n^{3}}$ converges.

3: (1988 B4) Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers. Show that if the series $\sum_{n=1}^{\infty} a_{n}$ converges then so does $\sum_{n=1}^{\infty} a_{n}{ }^{n /(n+1)}$.
4: (1990 A2) Determine whether there exist sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of positive integers such that $\lim _{n \rightarrow \infty}\left(\sqrt[3]{a_{n}}-\sqrt[3]{b_{n}}\right)=\sqrt{2}$.
5: (1993 A2) Let $\left\{a_{n}\right\}, n \geq 0$ be a sequence of real numbers such that ${a_{n}}^{2}=1+a_{n-1} a_{n+1}$ for all $n \geq 1$. Show that there is a real number c such that $a_{n}=c a_{n-1}-a_{n-2}$ for all $n \geq 2$.

6: (1993 A6) Let $\left\{a_{n}\right\}=\{2,3,3,2,3,3,3,2,3,3,3,2,3,3,2, \cdots\}$ be the infinite sequence of 2 s and 3 s , with $a_{1}=2$, which is determined by the following property: if we form the sequence $\left\{b_{n}\right\}, n \geq 1$ by defining b_{n} to be equal to the number of 3 s between the $n^{t h}$ and the $(n+1)^{s t}$ 2 s in $\left\{a_{n}\right\}$, then we have $b_{n}=a_{n}$ for all $n \geq 1$. Show that there exists a real number r such that for all n, we have $a_{n}=2 \Longleftrightarrow n=1+\lfloor r k\rfloor$ for some positive integer k.

7: (1995 B4) Find positive integers a, b, c, d such that $\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\cdots}}}=\frac{a+b \sqrt{c}}{d}$.
8: (1996 B2) Show that $\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<\prod_{k=1}^{n}(2 k-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}$ for all $1 \leq n \in \mathbf{Z}$.
9: (1997 B1) For a real number x, let $\langle x\rangle$ denote the distance between x and the nearest integer. For a positive integer n, evaluate $\sum_{k=1}^{6 n-1} \min \left(\left\langle\frac{k}{6 n}\right\rangle,\left\langle\frac{k}{3 n}\right\rangle\right)$.

10: (1999 B3) Let $A=\left\{(x, y) \in \mathbf{R}^{2} \mid 0 \leq x, y<1\right\}$. Define $S: A \rightarrow \mathbf{R}$ by $S(x, y)=\sum_{\frac{1}{2} \leq \frac{m}{n} \leq 2} x^{m} y^{n}$, where the sum ranges over pairs (m, n) of positive integers with $\frac{1}{2} \leq \frac{m}{n} \leq 2$. Evaluate the limit $\lim _{\substack{(x, y) \rightarrow(1,1) \\(x, y) \in A}}\left(1-x y^{2}\right)\left(1-x^{2} y\right) S(x, y)$.

