Lesson 6: Sequences, Series and Products

- **1:** Let $a_1 = 1$ and for $n \ge 1$ let $a_{n+1} = \frac{6}{a_n + 1}$. Determine whether $\{a_n\}$ converges, and if so then find the limit.
- **2:** Let $a_1 = 1$, $a_2 = 2$, and for n > 2 let $a_n = \sqrt{a_{n-1}} + \sqrt{a_{n-2}}$. Determine whether $\{a_n\}$ converges, and if so then find the limit.
- **3:** Let $a_1 = \sqrt{2}$, for $n \ge 1$ let $a_{n+1} = \sqrt{2 + a_n}$, and then let $b_n = 4^n(2 a_n)$. Determine whether $\{b_n\}$ converges, and if so then find the limit.
- **4:** Let $a_n = \left(\frac{n^n}{n!}\right)^{1/n}$. Determine whether $\{a_n\}$ converges, and if so then find the limit.
- **5:** For a real number x, let $\langle x \rangle$ denote the fractional part of x, that is $\langle x \rangle = x \lfloor x \rfloor$. Show that if x is irrational then the sequence $\{ \langle nx \rangle \}$ is dense in [0, 1].

6: (a) Find
$$\sum_{k=2}^{n} \frac{1}{\log_{k} e}$$
.
7: (a) Find $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n+i}$.
8: (a) Find $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3n-2}$.
9: Find $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k^{2}\right)^{-1}$.
(b) Find $\sum_{n=1}^{n} (2k-1)^{3}$.
(b) Find $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i^{2}}}$.
(c) Find $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}$.

10: Find $\int_0^{\pi} \sin x \, dx$ by evaluating the limit of a sequence of Riemann sums.

11: Let $a_n > 0$. Show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\prod_{n=1}^{\infty} (1 + a_n)$ converges.

12: Find $\prod_{n=0}^{\infty} \left(1 + \frac{1}{2^{2^n}}\right)$. **13:** Find $\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}$.

Putnam Problems on Sequences, Series and Products

- 1: (1985 A3) Fix a real number d. For each positive integer n, let $a_n(0) = d/2^n$ and for $j \ge 0$ let $a_n(j+1) = a_n(j)^2 + 2a_n(j)$. Find $\lim_{n \to \infty} a_n(n)$.
- 2: (1987 A6) For a positive integer n, let a(n) be the number of zeros in the base 3 representation of n. Find the set of all real numbers x such that the series $\sum_{n=1}^{\infty} \frac{x^{a(n)}}{n^3}$ converges.
- **3:** (1988 B4) Let $\{a_n\}$ be a sequence of positive real numbers. Show that if the series $\sum_{n=1}^{\infty} a_n$ converges then so does $\sum_{n=1}^{\infty} a_n^{n/(n+1)}$.
- 4: (1990 A2) Determine whether there exist sequences $\{a_n\}$ and $\{b_n\}$ of positive integers such that $\lim_{n\to\infty} \left(\sqrt[3]{a_n} \sqrt[3]{b_n}\right) = \sqrt{2}$.
- **5:** (1993 A2) Let $\{a_n\}$, $n \ge 0$ be a sequence of real numbers such that $a_n^2 = 1 + a_{n-1}a_{n+1}$ for all $n \ge 1$. Show that there is a real number c such that $a_n = c a_{n-1} a_{n-2}$ for all $n \ge 2$.
- 6: (1993 A6) Let $\{a_n\} = \{2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, ...\}$ be the infinite sequence of 2s and 3s, with $a_1 = 2$, which is determined by the following property: if we form the sequence $\{b_n\}, n \ge 1$ by defining b_n to be equal to the number of 3s between the n^{th} and the $(n+1)^{st}$ 2s in $\{a_n\}$, then we have $b_n = a_n$ for all $n \ge 1$. Show that there exists a real number r such that for all n, we have $a_n = 2 \iff n = 1 + \lfloor rk \rfloor$ for some positive integer k.
- **7:** (1995 B4) Find positive integers a, b, c, d such that $\sqrt[8]{2207 \frac{1}{2207 \frac{1}{2207 \cdots}}} = \frac{a + b\sqrt{c}}{d}$.

8: (1996 B2) Show that
$$\left(\frac{2n-1}{e}\right)^{\frac{2n-1}{2}} < \prod_{k=1}^{n} (2k-1) < \left(\frac{2n+1}{e}\right)^{\frac{2n+1}{2}}$$
 for all $1 \le n \in \mathbb{Z}$.

- **9:** (1997 B1) For a real number x, let $\langle x \rangle$ denote the distance between x and the nearest integer. For a positive integer n, evaluate $\sum_{k=1}^{6n-1} \min\left(\left\langle \frac{k}{6n} \right\rangle, \left\langle \frac{k}{3n} \right\rangle\right)$.
- **10:** (1999 B3) Let $A = \{(x, y) \in \mathbb{R}^2 | 0 \le x, y < 1\}$. Define $S : A \to \mathbb{R}$ by $S(x, y) = \sum_{\substack{\frac{1}{2} \le \frac{m}{n} \le 2\\ n}} x^m y^n$, where the sum ranges over pairs (m, n) of positive integers with $\frac{1}{2} \le \frac{m}{n} \le 2$. Evaluate the limit $\lim_{\substack{(x,y) \to (1,1)\\ (x,y) \in A}} (1 xy^2)(1 x^2y)S(x, y)$.