Solutions to the Problems on Sequences, Series and Products

1: Let $a_1 = 1$ and for $n \ge 1$ let $a_{n+1} = \frac{6}{a_n + 1}$. Determine whether $\{a_n\}$ converges, and if so then find the limit.

Solution: Note that $a_{n+2} = \frac{6}{a_{n+1}+1} = \frac{6}{\frac{6}{a_n+1}+1} = \frac{6a_n+6}{a_n+7} = 6 - \frac{36}{a_n+7}$. If the sequence of odd terms $\{a_{2k+1}\}$ converges with $a_{2k+1} \rightarrow l$, then we also have $a_{2k+3} \rightarrow l$, so by taking the limit on both sides of the recurrence equation $a_{2k+3} = 6 - \frac{36}{a_{2k+1}+7}$ we have $l = 6 - \frac{36}{l+7} \Longrightarrow (l-6)(l+7) + 36 = 0 \Longrightarrow l^2 + l - 6 = 0 \Longrightarrow l = -3$ or l = 2. Note that $a_1 = 1$ and $a_3 = 6 - \frac{36}{1+7} = \frac{3}{2}$. We claim that for all odd values of $n \ge 1$, we have $a_n < a_{n+2} < 2$. The base case holds, so suppose inductively that $n \ge 1$ is odd and $a_n < a_{n+2} < 2$. Then we have $a_n < a_{n+2} < 2 \Longrightarrow a_n + 7 < a_{n+2} + 7 < 9 \Longrightarrow \frac{1}{a_n+7} > \frac{1}{a_{n+2}+7} > \frac{1}{9} \Longrightarrow -\frac{36}{a_n+7} < -\frac{36}{a_{n+2}+7} < -4 \Longrightarrow 6 - \frac{36}{a_{n+2}+7} < 6 - \frac{36}{a_{n+2}+7} < 2 \Longrightarrow a_{n+2} < a_{n+4} < 2$. Thus the claim holds, so the sequence $\{a_{2k+1}\}$ is increasing and bounded above by 2, so it converges to some limit l. We saw above that l = -3 or l = 2, and since $a_1 = 1$ and the sequence $\{a_{2k+1}\}$ is increasing, the limit must be l = 2. A similar argument shows that the sequence of even terms $\{a_{2k}\}$ is decreasing with limit l = 2, and it follows that $\{a_n\}$ converges with limit l = 2.

2: Let $a_1 = 1$, $a_2 = 2$, and for n > 2 let $a_n = \sqrt{a_{n-1}} + \sqrt{a_{n-2}}$. Determine whether $\{a_n\}$ converges, and if so then find the limit.

Solution: Note that if $\{a_n\}$ does converge with $a_n \to l$, then we also have $a_{n-1} \to l$ and $a_{n-2} \to l$, and so taking the limit on both sides of the recursion formula $a_n = \sqrt{a_{n-1}} + \sqrt{a_{n-2}}$ gives $l = 2\sqrt{l}$, so $l^2 = 4l$ and so l = 0 or l = 4. Also note that, by induction, $a_n \ge 1$ for all n. Let $b_n = |4 - a_n|$. Then $b_n = |4 - \sqrt{a_{n-1}} - \sqrt{a_{n-2}}| = |(2 - \sqrt{a_{n-1}}) + (2 - \sqrt{a_{n-2}})| = \left|\frac{4 - a_{n-1}}{2 + \sqrt{a_{n-1}}} + \frac{4 - a_{n-2}}{2 + \sqrt{a_{n-2}}}\right| \le \frac{|4 - a_{n-1}|}{2 + \sqrt{a_{n-2}}} + \frac{|4 - a_{n-2}|}{2 + \sqrt{a_{n-2}}} \le \frac{b_{n-1}}{3} + \frac{b_{n-2}}{3}$. If we had $b_n = \frac{1}{3}b_{n-1} + \frac{1}{3}b_{n-2}$, that is $3b_n - b_{n-1} - b_{n-2}$, then by solving $3\lambda^2 - \lambda - 1 = 0$ to get $\lambda = \frac{1\pm\sqrt{13}}{6}$, we would obtain $b_n = a\left(\frac{1+\sqrt{13}}{6}\right)^n + b\left(\frac{1-\sqrt{13}}{6}\right)^n$ for some constants a and b. Since we actually have $b_n \le \frac{1}{3}b_{n-1} + \frac{1}{3}b_{n-2}$, we obtain $b_n \le a\left(\frac{1+\sqrt{13}}{6}\right)^n + b\left(\frac{1-\sqrt{13}}{6}\right)^n$, and so $b_n \to 0$ as $n \to \infty$, and hence $a_n \to 4$ as $n \to \infty$.

3: Let $a_1 = \sqrt{2}$, for $n \ge 1$ let $a_{n+1} = \sqrt{2 + a_n}$, and then let $b_n = 4^n(2 - a_n)$. Determine whether $\{b_n\}$ converges, and if so then find the limit.

Solution: Note that by repeatedly applying the identity $\cos \frac{\theta}{2} = \frac{\sqrt{2+2\cos\theta}}{2}$ we obtain $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\cos \frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$, $\cos \frac{\pi}{16} = \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}$ and so on, so $a_n = 2\cos \frac{\pi}{2^{n+1}}$. Thus $b_n = 4^n(2-a_n) = 4^n\left(2-2\cos \frac{\pi}{2^{n+1}}\right) = 4^n\left(4\sin^2 \frac{\pi}{2^{n+2}}\right) = \frac{\pi^2}{4}\left(\frac{\sin \frac{\pi}{2^{n+2}}}{\frac{\pi}{2^{n+2}}}\right)^2 \to \frac{\pi^2}{4}$ as $n \to \infty$.

4: Let $a_n = \left(\frac{n^n}{n!}\right)^{1/n}$. Determine whether $\{a_n\}$ converges, and if so then find the limit.

Solution: By the Root Test, $\lim_{n \to \infty} a_n$ is equal to the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n!}{n^n} x^n$. By the Ratio Test, this radius of convergence is also equal to $\lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^n = e.$

5: For a real number x, let $\langle x \rangle$ denote the fractional part of x, that is $\langle x \rangle = x - \lfloor x \rfloor$. Show that if x is irrational then the sequence $\{ \langle nx \rangle \}$ is dense in [0, 1].

Solution: Let x be irrational. We claim that given any $\epsilon > 0$, we can find a positive integer m such that $\langle mx \rangle \in (0, \epsilon) \cup (1 - \epsilon, 1)$. Let $\epsilon > 0$. Choose an integer $p > \frac{1}{\epsilon}$, then divide [0, 1] into p equal-sized subintervals. By the Pigeonhole Principle we can choose k and l with k < l so that $\langle kx \rangle$ and $\langle lx \rangle$ both lie in the same subinterval. Then we have $|\langle kx \rangle - \langle lx \rangle| \leq \frac{1}{p} < \epsilon$. Note that if we then set m = l - k we either have $\langle mx \rangle < \epsilon$ or we have $\langle mx \rangle > 1 - \epsilon$. Since x is irrational, mx is not an integer so $\langle mx \rangle \neq 0$, and so we have $\langle mx \rangle \in (0, \epsilon) \cup (1 - \epsilon, 1)$, as claimed.

To show that $\{ \langle nx \rangle \}$ is dense, we must show that given a point $a \in [0, 1]$ and given $\epsilon > 0$ it is possible to find a value of n such that $|\langle nx \rangle - a| < \epsilon$. Let $a \in [0, 1]$ and let $\epsilon > 0$. Choose m so that $\langle mx \rangle \in (0, \epsilon) \cup (1 - \epsilon, 1)$. If $m \in (0, \epsilon)$, then let $r = \langle mx \rangle < \epsilon$, and notice that for $1 \le k \le \lfloor \frac{1}{r} \rfloor$ we have $\langle kmx \rangle = k \langle mx \rangle = kr$, and that one of the numbers $r, 2r, 3r, \dots, \lfloor \frac{1}{r} \rfloor r$ will be within a distance of ϵ from a. If $m \in (1 - \epsilon, 1)$, then let $r = 1 - \langle mx \rangle < \epsilon$, and notice that for $1 \le k \le \lfloor \frac{1}{r} \rfloor$ we have $\langle kmx \rangle = 1 - kr$ and that one of the numbers $1 - r, 1 - 2r, 1 - 3r, \dots, 1 - \lfloor \frac{1}{r} \rfloor r$ will be within a distance of ϵ from a. In either case, we can choose k so that $|\langle kmx \rangle - a| < \epsilon$.

6: (a) Find
$$\sum_{k=2}^{n} \frac{1}{\log_k e}$$

Solution: Note that $\log_k e = \frac{\ln e}{\ln k} = \frac{1}{\ln k}$, so $\sum_{k=2}^n \frac{1}{\log_k e} = \sum_{k=2}^n \ln k = \ln \left(\prod_{k=2}^n k\right) = \ln(n!)$.

(b) Find $\sum_{k=1}^{n} (2k-1)^3$.

Solution: Recall that $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{2}$, so we have $\sum_{k=1}^{n} (2k-1)^3 = \sum_{k=1}^{2n} k^3 - \sum_{k=1}^{n} (2k)^3 = \sum_{k=1}^{2n} k^3 - 2^3 \sum_{k=1}^{n} k^3 = \frac{(2n)^2(2n+1)^2}{4} - \frac{2^3n^2(n+1)^2}{4} = n^2(2n+1)^2 - 2n^2(n+1)^2 = n^2((4n^2+4n+1)-2(n^2+2n+1)) = n^2(2n^2-1).$

7: (a) Find $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n+i}$. Solution: $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n+i} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}} \cdot \frac{1}{n} = \int_{0}^{1} \frac{dx}{1+x} = \left[\ln(1+x)\right]_{0}^{1} = \ln 2.$ (b) Find $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i^{2}}}$. Solution: $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i^{2}}} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{1+\left(\frac{i}{n}\right)^{2}}} \cdot \frac{1}{n} = \int_{0}^{1} \frac{dx}{\sqrt{1+x^{2}}} = \int_{0}^{\pi/4} \frac{\sec^{2}\theta \, d\theta}{\sec \theta} = \int_{0}^{\pi/4} \sec \theta \, d\theta = \left[\ln(\sec \theta + \tan \theta)\right]_{0}^{\pi/4} = \ln(\sqrt{2} + 1),$ where we made the change of variables $\tan \theta = x.$ 8: (a) Find $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3n-2}$.

Solution: For |x| < 1 we have $\sum_{n=0}^{\infty} (-1)^n x^{3n} = \frac{1}{1+x^3}$, so $\sum_{n=0}^{\infty} \frac{(-1)^n x^{3n+1}}{3n+1} = \int_0^x \frac{dt}{1+t^3}$. By Abel's Theorem we can put in x = 1 to get $\sum_{n=0}^{\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{dt}{1+t^3}$. Thus $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3n-2} = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3n-2} = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{(-1)^n}{3n+1} = \frac{1}{2} + \int_0^1 \frac{dt}{t^3+1}$. We can solve this integral using partial fractions. To get $\frac{1}{t^3+1} = \frac{A}{t+1} + \frac{B(2t-1)+C}{t^2-t+1}$, we need $A(t^2-t+1)+B(2t^2+t-1)+C(t+1) = 1$. Equate coefficients to get the three equations A+2B = 0, -A+B+C = 0 and A-B+C = 1. Solve these to get $A = \frac{1}{3}$, $B = -\frac{1}{6}$ and $C = \frac{1}{2}$. Thus we find that $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3n-2} = \frac{1}{2} + \int_0^1 \frac{dt}{t^3+1} = \frac{1}{2} + \int_0^1 \frac{\frac{1}{3}}{t+1} - \frac{\frac{1}{6}(2t-1)+\frac{1}{2}}{t^2-t+1} dt = \frac{1}{2} + \left[\frac{1}{3}\ln(t+1) - \frac{1}{6}\ln(t^2-t+1) + \frac{1}{\sqrt{3}}\tan^{-1}\frac{(t-\frac{1}{2})}{\frac{\sqrt{3}}{2}}\right]_0^1 = \frac{1}{2} + \frac{1}{3}\ln 2 + \frac{1}{\sqrt{3}}\tan^{-1}\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}}\tan^{-1}\frac{1}{\sqrt{3}} = \frac{1}{2} + \frac{1}{3}\ln 2 + \frac{\pi}{3\sqrt{3}}$.

Solution: For all x we have $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, so $x e^x = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$. Differentiate to get $(x+1)e^x = \sum_{n=0}^{\infty} \frac{(n+1)x^n}{n!}$, so $(x^2+x)e^x = \sum_{n=0}^{\infty} \frac{(n+1)x^{n+1}}{n!}$. Differentiate again to get $(x^2+3x+1)e^x = \sum_{n=0}^{\infty} \frac{(n+1)^2x^n}{n!}$. Put in x = 1 to get $5e = \sum_{n=0}^{\infty} \frac{(n+1)^2}{n!} = 1 + \sum_{n=1}^{\infty} \frac{(n+1)^2}{n!}$. Thus $\sum_{n=1}^{\infty} \frac{(n+1)^2}{n!} = 5e - 1$.

9: Find $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k^2 \right)^{-1}$.

Solution: Recall that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, so we have $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k^2\right)^{-1} = \sum_{n=1}^{\infty} \frac{6}{n(n+1)(2n+1)}$. To get $\frac{A}{n} + \frac{B}{n+1} + \frac{C}{2n+1} = \frac{6}{n(n+1)(2n+1)}$ we need $A(2n^2 + 3n + 1) + B(2n^2 + n) + C(n^2 + 1) = 6$. Equate coefficients to get the three equations 2A + 2B + C = 0, 3A + B + C = 0 and A = 6. Solve these to get A = 6, B = 6 and C = -24. Thus $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k^2\right)^{-1} = \sum_{n=1}^{\infty} \frac{6}{n} + \frac{6}{n+1} - \frac{24}{2n+1}$. When n is even, the n^{th} partial sum is $S_n = 18 - 12\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{n}\right) + \frac{6}{n+1} - 24\left(\frac{1}{n+1} + \frac{1}{n+3} + \frac{1}{n+5} + \dots + \frac{1}{2n-1}\right) - \frac{24}{2n+1}$. To find the limit of the sum $\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{n}\right)$, note that for |x| < 1 we have $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots$, so $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$ By Abel's Theorem, we can put in x = 1 to get $\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$. The other sum is a Riemann sum: $\left(\frac{1}{n+1} + \frac{1}{n+3} + \frac{1}{n+5} + \dots + \frac{1}{2n-1}\right) = \frac{1}{2} \cdot \frac{2}{n} \left(\frac{1}{1+\frac{1}{1+\frac{1}{n}}} + \frac{1}{1+\frac{3}{n}} + \frac{1}{1+\frac{1}{n+\frac{1}{n}}}\right) \rightarrow \frac{1}{2} \int_{0}^{1} \frac{1}{1+x} dx = \frac{1}{2} \left[\ln(1+x)\right]_{0}^{1} = \frac{1}{2} \ln 2$. Thus the limit of the even partial sums is $18 - 24 \ln 2$. A similar calculation shows that the limit of the odd partial sums is also equal to $18 - 24 \ln 2$, so $\sum_{n=1}^{\infty} \left(\sum_{n=1}^{n} k^2\right)^{-1} = 18 - 24 \ln 2$.

10: Find $\int_0^{\pi} \sin x \, dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: We have
$$\int_0^{\pi} \sin x \, dx = \lim_{n \to \infty} \sum_{k=1}^n \frac{\pi}{n} \sin\left(\frac{k\pi}{n}\right)$$
. To find $\sum_{k=1}^n \sin\left(\frac{k\pi}{n}\right)$, let $\alpha = e^{i\pi/n}$ so $\sin\frac{k\pi}{n} = \operatorname{Im}(\alpha^k)$.
Then $\sum_{k=1}^n \sin\frac{k\pi}{n} = \operatorname{Im}\left(\sum_{k=1}^n \alpha^k\right) = \operatorname{Im}\left(\frac{\alpha - \alpha^{n+1}}{1 - \alpha}\right) = \operatorname{Im}\left(\frac{\alpha(1 - \alpha^n)(1 - \overline{\alpha})}{1 - 2\operatorname{Re}(\alpha) + \alpha\overline{\alpha}}\right) = \operatorname{Im}\left(\frac{2(\alpha - \alpha\overline{\alpha})}{1 - 2\operatorname{Re}(\alpha) + \alpha\overline{\alpha}}\right) = \operatorname{Im}\left(\frac{\alpha - 1}{1 - \operatorname{Re}(\alpha)}\right) = \frac{\operatorname{Im}(\alpha)}{1 - \operatorname{Re}(\alpha)} = \frac{\sin\frac{\pi}{n}}{1 - \cos\frac{\pi}{n}}$, since $\alpha^n = -1$ and $\alpha\overline{\alpha} = 1$. So $\int_0^{\pi} \sin x \, dx = \lim_{n \to \infty} \sum_{k=1}^n \frac{\pi}{n} \sin\left(\frac{k\pi}{n}\right)$
 $= \lim_{n \to \infty} \frac{\frac{\pi}{n} \sin\frac{\pi}{n}}{1 - \cos\frac{\pi}{n}} = \lim_{x \to 0} \frac{x \sin x}{1 - \cos x} = 2$, by using l'Hôpital's Rule twice or by using power series.

11: Let $a_n > 0$. Show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\prod_{n=1}^{\infty} (1 + a_n)$ converges.

Solution: If $\sum_{n=1}^{\infty} a_n$ converges then $a_n \to 0$ so $\lim_{n \to \infty} \frac{a_n}{\ln(1+a_n)} = \lim_{x \to 0} \frac{x}{\ln(1+x)} = 1$. If $\sum_{n=1}^{\infty} \ln(1+a_n)$ converges then $\ln(1+a_n) \to 0$ so $(1+a_n) \to 1$ and so $a_n \to 0$ and we again have $\lim_{n \to \infty} \frac{a_n}{\ln(1+a_n)} = 1$. By the Limit Comparison Test, $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} \ln(1+a_n)$ converges. Also, if we write $P_n = \prod_{k=1}^{n} (1+a_n)$ and $S_n = \sum_{k=1}^{n} \ln(1+a_n)$ then we have $\ln(P_n) = S_n$, so $\{P_n\}$ converges if and only if $\{S_n\}$ converges, that is $\sum_{n=1}^{\infty} \ln(1+a_n)$ converges if and only if $\prod_{n=1}^{\infty} (1+a_n)$ converges.

12: Find $\prod_{n=0}^{\infty} \left(1 + \frac{1}{2^{2^n}}\right)$.

Solution: Let $P_n = \prod_{k=0}^n \left(1 + \frac{1}{2^{2^k}}\right)$. Then $\left(1 - \frac{1}{2}\right) P_n = \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2^2}\right) \left(1 + \frac{1}{2^4}\right) \cdots \left(1 + \frac{1}{2^{2^n}}\right) = \left(1 - \frac{1}{2^4}\right) \left(1 + \frac{1}{2^4}\right) \left(1 + \frac{1}{2^8}\right) \cdots \left(1 + \frac{1}{2^{2^n}}\right) = \left(1 - \frac{1}{2^4}\right) \left(1 + \frac{1}{2^4}\right) \left(1 + \frac{1}{2^8}\right) \cdots \left(1 + \frac{1}{2^{2^n}}\right) = \cdots = \left(1 - \frac{1}{2^{2^n}}\right) \left(1 + \frac{1}{2^{2^n}}\right) = \left(1 - \frac{1}{2^{2^{n+1}}}\right)$. Thus $P_n = \frac{1 - \frac{1}{2^{2^{n+1}}}}{1 - \frac{1}{2}} \to \frac{1}{1 - \frac{1}{2}} = 2$ as $n \to \infty$.

13: Find $\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}$.

Solution: Let
$$P_n = \prod_{k=2}^n \frac{k^3 - 1}{k^3 + 1}$$
. Then $P_n = \prod_{k=2}^n \frac{(k-1)(k^2 + k + 1)}{(k+1)(k^2 - k + 1)} = \prod_{k=2}^n \frac{k-1}{k+1} \prod_{k=2}^n \frac{k^2 + k + 1}{(k-1)^2 + (k-1) + 1} = \left(\frac{1}{3} \cdot \frac{2}{4} \cdot \frac{3}{5} \cdots \frac{k-2}{k} \cdot \frac{k-1}{k+1}\right) \left(\frac{7}{3} \cdot \frac{13}{7} \cdot \frac{21}{13} \cdots \frac{(k-1)^2 + (k-1)+1}{(k-2)^2 + (k-2)+1} \cdot \frac{k^2 + k + 1}{(k-1)^2 + (k-1)+1}\right) = \left(\frac{1\cdot 2}{k(k+1)}\right) \left(\frac{k^2 + k + 1}{3}\right) \to \frac{2}{3}$ as $n \to \infty$.