
Solutions to the Problems on Sequences, Series and Products

1: Let a1 = 1 and for n ≥ 1 let an+1 =
6

an + 1
. Determine whether {an} converges, and if so then find the limit.

Solution: Note that an+2 =
6

an+1 + 1
=

6
6

an+1 + 1
=

6an + 6

an + 7
= 6− 36

an + 7
. If the sequence of odd terms {a2k+1}

converges with a2k+1 → l, then we also have a2k+3 → l, so by taking the limit on both sides of the recurrence

equation a2k+3 = 6− 36

a2k+1 + 7
we have l = 6− 36

l + 7
=⇒ (l− 6)(l+ 7) + 36 = 0 =⇒ l2 + l− 6 = 0 =⇒ l = −3

or l = 2. Note that a1 = 1 and a3 = 6 − 36
1+7 = 3

2 . We claim that for all odd values of n ≥ 1, we have
an < an+2 < 2. The base case holds, so suppose inductively that n ≥ 1 is odd and an < an+2 < 2. Then we
have an < an+2 < 2 =⇒ an + 7 < an+2 + 7 < 9 =⇒ 1

an+7 >
1

an+2+7 >
1
9 =⇒ − 36

an+7 < −
36

an+2+7 < −4 =⇒
6− 36

an+7 < 6− 36
an+2+7 < 2 =⇒ an+2 < an+4 < 2. Thus the claim holds, so the sequence {a2k+1} is increasing

and bounded above by 2, so it converges to some limit l. We saw above that l = −3 or l = 2, and since a1 = 1
and the sequence {a2k+1} is increasing, the limit must be l = 2. A similar argument shows that the sequence
of even terms {a2k} is decreasing with limit l = 2, and it follows that {an} converges with limit l = 2.

2: Let a1 = 1, a2 = 2, and for n > 2 let an =
√
an−1 +

√
an−2. Determine whether {an} converges, and if so then

find the limit.

Solution: Note that if {an} does converge with an → l, then we also have an−1 → l and an−2 → l, and so taking
the limit on both sides of of the recursion formula an =

√
an−1 +

√
an−2 gives l = 2

√
l, so l2 = 4l and so l = 0

or l = 4. Also note that, by induction, an ≥ 1 for all n. Let bn = |4− an|. Then bn =
∣∣4−√an−1 −√an−2∣∣ =∣∣∣(2 −√an−1) + (2 −√an−2)

∣∣∣ =

∣∣∣∣ 4− an−1
2 +
√
an−1

+
4− an−2

2 +
√
an−2

∣∣∣∣ ≤ |4− an−1|2 +
√
an−1

+
|4− an−2|
2 +
√
an−2

≤ bn−1
3

+
bn−2

3
. If we

had bn = 1
3bn−1 + 1

3bn−2, that is 3bn− bn−1− bn−2, then by solving 3λ2−λ− 1 = 0 to get λ = 1±
√
13

6 , we would

obtain bn = a
(

1+
√
13

6

)n
+ b
(

1−
√
13

6

)n
for some constants a and b. Since we actually have bn ≤ 1

3bn−1 + 1
3bn−2,

we obtain bn ≤ a
(

1+
√
13

6

)n
+ b

(
1−
√
13

6

)n
, and so bn → 0 as n→∞, and hence an → 4 as n→∞.

3: Let a1 =
√

2, for n ≥ 1 let an+1 =
√

2 + an, and then let bn = 4n(2− an). Determine whether {bn} converges,
and if so then find the limit.

Solution: Note that by repeatedly applying the identity cos θ2 =
√
2+2 cos θ

2 we obtain cos π4 =
√
2
2 , cos π8 =

√
2+
√
2

2 , cos π
16 =

√
2+
√

2+
√
2

2 and so on, so an = 2 cos π
2n+1 . Thus bn = 4n(2 − an) = 4n

(
2− 2 cos π

2n+1

)
=

4n
(
4 sin2 π

2n+2

)
= π2

4

(
sin π

2n+2
π

2n+2

)2
→ π2

4 as n→∞.

4: Let an =

(
nn

n!

)1/n

. Determine whether {an} converges, and if so then find the limit.

Solution: By the Root Test, lim
n→∞

an is equal to the radius of convergence of the power series

∞∑
n=0

n!

nn
xn. By the

Ratio Test, this radius of convergence is also equal to lim
n→∞

(n+ 1)n+1

(n+ 1)!
· n!

nn
= lim
n→∞

(
n+ 1

n

)n
= e.



5: For a real number x, let 〈x〉 denote the fractional part of x, that is 〈x〉 = x−
⌊
x
⌋
. Show that if x is irrational

then the sequence
{
〈nx〉

}
is dense in [0, 1].

Solution: Let x be irrational. We claim that given any ε > 0, we can find a positive integer m such that
〈mx〉 ∈ (0, ε) ∪ (1− ε, 1). Let ε > 0. Choose an integer p > 1

ε , then divide [0, 1] into p equal-sized subintervals.
By the Pigeonhole Principle we can choose k and l with k < l so that 〈kx〉 and 〈lx〉 both lie in the same
subinterval. Then we have

∣∣ 〈kx〉 − 〈lx〉 ∣∣ ≤ 1
p < ε. Note that if we then set m = l − k we either have

〈mx〉 < ε or we have 〈mx〉 > 1 − ε. Since x is irrational, mx is not an integer so 〈mx〉 6= 0, and so we have
〈mx〉 ∈ (0, ε) ∪ (1− ε, 1), as claimed.

To show that
{
〈nx〉

}
is dense, we must show that given a point a ∈ [0, 1] and given ε > 0 it is possible to

find a value of n such that | 〈nx〉−a| < ε. Let a ∈ [0, 1] and let ε > 0. Choose m so that 〈mx〉 ∈ (0, ε)∪(1−ε, 1).
If m ∈ (0, ε), then let r = 〈mx〉 < ε, and notice that for 1 ≤ k ≤

⌊
1
r

⌋
we have 〈kmx〉 = k 〈mx〉 = kr, and

that one of the numbers r, 2r, 3r, · · · ,
⌊
1
r

⌋
r will be within a distance of ε from a. If m ∈ (1 − ε, 1), then let

r = 1 − 〈mx〉 < ε, and notice that for 1 ≤ k ≤
⌊
1
r

⌋
we have 〈kmx〉 = 1 − k(1 − 〈mx〉) = 1 − kr and that one

of the numbers 1 − r, 1 − 2r, 1 − 3r, · · · , 1 −
⌊
1
r

⌋
r will be within a distance of ε from a. In either case, we can

choose k so that
∣∣ 〈kmx〉 − a∣∣ < ε.

6: (a) Find

n∑
k=2

1

logk e
.

Solution: Note that logk e =
ln e

ln k
=

1

ln k
, so

n∑
k=2

1

logk e
=

n∑
k=2

ln k = ln

(
n∏
k=2

k

)
= ln(n!).

(b) Find

n∑
k=1

(2k − 1)3 .

Solution: Recall that
n∑
k=1

k3 = n2(n+1)2

2 , so we have
n∑
k=1

(2k − 1)3 =
2n∑
k=1

k3 −
n∑
k=1

(2k)3 =
2n∑
k=1

k3 − 23
n∑
k=1

k3 =

(2n)2(2n+1)2

4 − 23n2(n+1)2

4 = n2(2n+ 1)2 − 2n2(n+ 1)2 = n2
(
(4n2 + 4n+ 1)− 2(n2 + 2n+ 1)

)
= n2(2n2 − 1).

7: (a) Find lim
n→∞

n∑
i=1

1

n+ i
.

Solution: lim
n→∞

n∑
i=1

1

n+ i
= lim
n→∞

n∑
i=1

1

1 + i
n

· 1

n
=

∫ 1

0

dx

1 + x
=
[

ln(1 + x)
]1
0

= ln 2.

(b) Find lim
n→∞

n∑
i=1

1√
n2 + i2

.

Solution: lim
n→∞

n∑
i=1

1√
n2 + i2

= lim
n→∞

n∑
i=1

1√
1 +

(
i
n

)2 · 1

n
=

∫ 1

0

dx√
1 + x2

=

∫ π/4

0

sec2 θ dθ

sec θ
=

∫ π/4

0

sec θ dθ =

[
ln(sec θ + tan θ)

]π/4
0

= ln(
√

2 + 1), where we made the change of variables tan θ = x.



8: (a) Find

∞∑
n=0

(−1)n+1

3n− 2
.

Solution: For |x| < 1 we have

∞∑
n=0

(−1)nx3n =
1

1 + x3
, so

∞∑
n=0

(−1)nx3n+1

3n+ 1
=

∫ x

0

dt

1 + t3
. By Abel’s Theorem we

can put in x = 1 to get

∞∑
n=0

(−1)n

3n+ 1
=

∫ 1

0

dt

1 + t3
. Thus

∞∑
n=0

(−1)n+1

3n− 2
= 1

2 +

∞∑
n=1

(−1)n+1

3n− 2
= 1

2 +

∞∑
n=0

(−1)n

3n+ 1
=

1
2 +

∫ 1

0

dt

t3 + 1
. We can solve this integral using partial fractions. To get

1

t3 + 1
=

A

t+ 1
+
B(2t− 1) + C

t2 − t+ 1
, we need

A(t2−t+1)+B(2t2+t−1)+C(t+1) = 1. Equate coefficients to get the three equationsA+2B = 0, −A+B+C = 0

and A − B + C = 1. Solve these to get A = 1
3 , B = − 1

6 and C = 1
2 . Thus we find that

∞∑
n=0

(−1)n+1

3n− 2
=

1
2 +

∫ 1

0

dt

t3 + 1
= 1

2 +

∫ 1

0

1
3

t+ 1
−

1
6 (2t− 1) + 1

2

t2 − t+ 1
dt = 1

2 +
[
1
3 ln(t + 1) − 1

6 ln(t2 − t + 1) + 1√
3

tan−1
(t− 1

2 )√
3

2

]1
0

= 1
2 + 1

3 ln 2 + 1√
3

tan−1 1√
3
− 1√

3
tan−1 1√

3
= 1

2 + 1
3 ln 2 + π

3
√
3
.

(b) Find

∞∑
n=1

(n+ 1)2

n!
.

Solution: For all x we have ex =

∞∑
n=0

xn

n!
, so x ex =

∞∑
n=0

xn+1

n!
. Differentiate to get (x + 1) ex =

∞∑
n=0

(n+ 1)xn

n!
,

so (x2 + x) ex =

∞∑
n=0

(n+ 1)xn+1

n!
. Differentiate again to get (x2 + 3x+ 1) ex =

∞∑
n=0

(n+ 1)2xn

n!
. Put in x = 1 to

get 5 e =

∞∑
n=0

(n+ 1)2

n!
= 1 +

∞∑
n=1

(n+ 1)2

n!
. Thus

∞∑
n=1

(n+ 1)2

n!
= 5 e− 1.

9: Find

∞∑
n=1

(
n∑
k=1

k2

)−1
.

Solution: Recall that

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
, so we have

∞∑
n=1

(
n∑
k=1

k2

)−1
=

∞∑
n=1

6

n(n+ 1)(2n+ 1)
. To get

A

n
+

B

n+ 1
+

C

2n+ 1
=

6

n(n+ 1)(2n+ 1)
we need A(2n2 + 3n + 1) + B(2n2 + n) + C(n2 + 1) = 6. Equate

coefficients to get the three equations 2A + 2B + C = 0, 3A + B + C = 0 and A = 6. Solve these to get

A = 6, B = 6 and C = −24. Thus

∞∑
n=1

(
n∑
k=1

k2

)−1
=

∞∑
n=1

6

n
+

6

n+ 1
− 24

2n+ 1
. When n is even, the nth partial

sum is Sn = 18 − 12
(
1− 1

2 + 1
3 −

1
4 + · · · − 1

n

)
+ 6

n+1 − 24
(

1
n+1 + 1

n+3 + 1
n+5 + · · ·+ 1

2n−1

)
− 24

2n+1 . To find

the limit of the sum
(
1− 1

2 + 1
3 −

1
4 + · · · − 1

n

)
, note that for |x| < 1 we have 1

1+x = 1 − x + x2 − x3 + · · ·, so

ln(1 +x) = x− 1
2x

2 + 1
3x

3− 1
4x

4 + · · ·. By Abel’s Theorem, we can put in x = 1 to get ln 2 = 1− 1
2 + 1

3 −
1
4 + · · ·.

The other sum is a Riemann sum:
(

1
n+1 + 1

n+3 + 1
n+5 + · · ·+ 1

2n−1

)
= 1

2 ·
2
n

(
1

1+ 1
n

+ 1
1+ 3

n

+ · · ·+ 1
1+n−1

n

)
→

1
2

∫ 1

0

1
1+x dx = 1

2

[
ln(1+x)

]1
0

= 1
2 ln 2. Thus the limit of the even partial sums is 18−24 ln 2. A similar calculation

shows that the limit of the odd partial sums is also equal to 18− 24 ln 2, so

∞∑
n=1

(
n∑
k=1

k2

)−1
= 18− 24 ln 2.



10: Find

∫ π

0

sinx dx by evaluating the limit of a sequence of Riemann sums.

Solution: We have

∫ π

0

sinx dx = lim
n→∞

n∑
k=1

π
n sin

(
kπ
n

)
. To find

n∑
k=1

sin
(
kπ
n

)
, let α = e

iπ/n
so sin kπ

n = Im(αk).

Then

n∑
k=1

sin
kπ

n
= Im

(
n∑
k=1

αk

)
= Im

(
α− αn+1

1− α

)
= Im

(
α(1− αn)(1− α)

1− 2Re(α) + αα

)
= Im

(
2(α− αα)

1− 2Re(α) + αα

)
=

Im

(
α− 1

1− Re(α)

)
=

Im(α)

1− Re(α)
=

sin π
n

1− cos πn
, since αn = −1 and αα = 1. So

∫ π

0

sinx dx = lim
n→∞

n∑
k=1

π
n sin

(
kπ
n

)
= lim
n→∞

π
n sin π

n

1− cos πn
= lim
x→0

x sinx

1− cosx
= 2, by using l’Hôpital’s Rule twice or by using power series.

11: Let an > 0. Show that
∞∑
n=1

an converges if and only if
∞∏
n=1

(1 + an) converges.

Solution: If
∞∑
n=1

an converges then an → 0 so lim
n→∞

an
ln(1 + an)

= lim
x→0

x

ln(1 + x)
= 1. If

∞∑
n=1

ln(1 + an) converges

then ln(1 + an) → 0 so (1 + an) → 1 and so an → 0 and we again have lim
n→∞

an
ln(1 + an)

= 1. By the Limit

Comparison Test,
∞∑
n=1

an converges if and only if
∞∑
n=1

ln(1 + an) converges. Also, if we write Pn =
n∏
k=1

(1 + an)

and Sn =
n∑
k=1

ln(1 + an) then we have ln(Pn) = Sn, so {Pn} converges if and only if {Sn} converges, that is

∞∑
n=1

ln(1 + an) converges if and only if
∞∏
n=1

(1 + an) converges.

12: Find

∞∏
n=0

(
1 +

1

22n

)
.

Solution: Let Pn =

n∏
k=0

(
1 +

1

22k

)
. Then

(
1− 1

2

)
Pn =

(
1− 1

2

) (
1 + 1

2

) (
1 + 1

22

) (
1 + 1

24

)
· · ·
(
1 + 1

22n
)

=(
1− 1

22

) (
1 + 1

22

) (
1 + 1

24

)
· · ·
(
1 + 1

22n
)

=
(
1− 1

24

) (
1 + 1

24

) (
1 + 1

28

)
· · ·
(
1 + 1

22n
)

= · · · =
(
1− 1

22n
) (

1 + 1
22n
)

=
(

1− 1

22n+1

)
. Thus Pn =

1− 1

22n+1

1− 1
2

→ 1

1− 1
2

= 2 as n→∞.

13: Find

∞∏
n=2

n3 − 1

n3 + 1
.

Solution: Let Pn =

n∏
k=2

k3 − 1

k3 + 1
. Then Pn =

n∏
k=2

(k − 1)(k2 + k + 1)

(k + 1)(k2 − k + 1)
=

n∏
k=2

k − 1

k + 1

n∏
k=2

k2 + k + 1

(k − 1)2 + (k − 1) + 1
=(

1
3 ·

2
4 ·

3
5 · · ·

k−2
k ·

k−1
k+1

)(
7
3 ·

13
7 ·

21
13 · · ·

(k−1)2+(k−1)+1
(k−2)2+(k−2)+1 ·

k2+k+1
(k−1)2+(k−1)+1

)
=
(

1·2
k(k+1)

)(
k2+k+1

3

)
→ 2

3 as n→∞.


