Solutions to the Problems on Sequences, Series and Products

1: Let $a_{1}=1$ and for $n \geq 1$ let $a_{n+1}=\frac{6}{a_{n}+1}$. Determine whether $\left\{a_{n}\right\}$ converges, and if so then find the limit. Solution: Note that $a_{n+2}=\frac{6}{a_{n+1}+1}=\frac{6}{\frac{6}{a_{n}+1}+1}=\frac{6 a_{n}+6}{a_{n}+7}=6-\frac{36}{a_{n}+7}$. If the sequence of odd terms $\left\{a_{2 k+1}\right\}$ converges with $a_{2 k+1} \rightarrow l$, then we also have $a_{2 k+3} \rightarrow l$, so by taking the limit on both sides of the recurrence equation $a_{2 k+3}=6-\frac{36}{a_{2 k+1}+7}$ we have $l=6-\frac{36}{l+7} \Longrightarrow(l-6)(l+7)+36=0 \Longrightarrow l^{2}+l-6=0 \Longrightarrow l=-3$ or $l=2$. Note that $a_{1}=1$ and $a_{3}=6-\frac{36}{1+7}=\frac{3}{2}$. We claim that for all odd values of $n \geq 1$, we have $a_{n}<a_{n+2}<2$. The base case holds, so suppose inductively that $n \geq 1$ is odd and $a_{n}<a_{n+2}<2$. Then we have $a_{n}<a_{n+2}<2 \Longrightarrow a_{n}+7<a_{n+2}+7<9 \Longrightarrow \frac{1}{a_{n}+7}>\frac{1}{a_{n+2}+7}>\frac{1}{9} \Longrightarrow-\frac{36}{a_{n}+7}<-\frac{36}{a_{n+2}+7}<-4 \Longrightarrow$ $6-\frac{36}{a_{n}+7}<6-\frac{36}{a_{n+2}+7}<2 \Longrightarrow a_{n+2}<a_{n+4}<2$. Thus the claim holds, so the sequence $\left\{a_{2 k+1}\right\}$ is increasing and bounded above by 2 , so it converges to some limit l. We saw above that $l=-3$ or $l=2$, and since $a_{1}=1$ and the sequence $\left\{a_{2 k+1}\right\}$ is increasing, the limit must be $l=2$. A similar argument shows that the sequence of even terms $\left\{a_{2 k}\right\}$ is decreasing with limit $l=2$, and it follows that $\left\{a_{n}\right\}$ converges with limit $l=2$.

2: Let $a_{1}=1, a_{2}=2$, and for $n>2$ let $a_{n}=\sqrt{a_{n-1}}+\sqrt{a_{n-2}}$. Determine whether $\left\{a_{n}\right\}$ converges, and if so then find the limit.

Solution: Note that if $\left\{a_{n}\right\}$ does converge with $a_{n} \rightarrow l$, then we also have $a_{n-1} \rightarrow l$ and $a_{n-2} \rightarrow l$, and so taking the limit on both sides of of the recursion formula $a_{n}=\sqrt{a_{n-1}}+\sqrt{a_{n-2}}$ gives $l=2 \sqrt{l}$, so $l^{2}=4 l$ and so $l=0$ or $l=4$. Also note that, by induction, $a_{n} \geq 1$ for all n. Let $b_{n}=\left|4-a_{n}\right|$. Then $b_{n}=\left|4-\sqrt{a_{n-1}}-\sqrt{a_{n-2}}\right|=$ $\left|\left(2-\sqrt{a_{n-1}}\right)+\left(2-\sqrt{a_{n-2}}\right)\right|=\left|\frac{4-a_{n-1}}{2+\sqrt{a_{n-1}}}+\frac{4-a_{n-2}}{2+\sqrt{a_{n-2}}}\right| \leq \frac{\left|4-a_{n-1}\right|}{2+\sqrt{a_{n-1}}}+\frac{\left|4-a_{n-2}\right|}{2+\sqrt{a_{n-2}}} \leq \frac{b_{n-1}}{3}+\frac{b_{n-2}}{3}$. If we had $b_{n}=\frac{1}{3} b_{n-1}+\frac{1}{3} b_{n-2}$, that is $3 b_{n}-b_{n-1}-b_{n-2}$, then by solving $3 \lambda^{2}-\lambda-1=0$ to get $\lambda=\frac{1 \pm \sqrt{13}}{6}$, we would obtain $b_{n}=a\left(\frac{1+\sqrt{13}}{6}\right)^{n}+b\left(\frac{1-\sqrt{13}}{6}\right)^{n}$ for some constants a and b. Since we actually have $b_{n} \leq \frac{1}{3} b_{n-1}+\frac{1}{3} b_{n-2}$, we obtain $b_{n} \leq a\left(\frac{1+\sqrt{13}}{6}\right)^{n}+b\left(\frac{1-\sqrt{13}}{6}\right)^{n}$, and so $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, and hence $a_{n} \rightarrow 4$ as $n \rightarrow \infty$.

3: Let $a_{1}=\sqrt{2}$, for $n \geq 1$ let $a_{n+1}=\sqrt{2+a_{n}}$, and then let $b_{n}=4^{n}\left(2-a_{n}\right)$. Determine whether $\left\{b_{n}\right\}$ converges, and if so then find the limit.
Solution: Note that by repeatedly applying the identity $\cos \frac{\theta}{2}=\frac{\sqrt{2+2 \cos \theta}}{2}$ we obtain $\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$, $\cos \frac{\pi}{8}=$ $\frac{\sqrt{2+\sqrt{2}}}{2}, \cos \frac{\pi}{16}=\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}$ and so on, so $a_{n}=2 \cos \frac{\pi}{2^{n+1}}$. Thus $b_{n}=4^{n}\left(2-a_{n}\right)=4^{n}\left(2-2 \cos \frac{\pi}{2^{n+1}}\right)=$ $4^{n}\left(4 \sin ^{2} \frac{\pi}{2^{n+2}}\right)=\frac{\pi^{2}}{4}\left(\frac{\sin \frac{\pi}{2^{n+2}}}{2^{n+2}}\right)^{2} \rightarrow \frac{\pi^{2}}{4}$ as $n \rightarrow \infty$.

4: Let $a_{n}=\left(\frac{n^{n}}{n!}\right)^{1 / n}$. Determine whether $\left\{a_{n}\right\}$ converges, and if so then find the limit.
Solution: By the Root Test, $\lim _{n \rightarrow \infty} a_{n}$ is equal to the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n!}{n^{n}} x^{n}$. By the Ratio Test, this radius of convergence is also equal to $\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=e$.

5: For a real number x, let $\langle x\rangle$ denote the fractional part of x, that is $\langle x\rangle=x-\lfloor x\rfloor$. Show that if x is irrational then the sequence $\{\langle n x\rangle\}$ is dense in $[0,1]$.
Solution: Let x be irrational. We claim that given any $\epsilon>0$, we can find a positive integer m such that $\langle m x\rangle \in(0, \epsilon) \cup(1-\epsilon, 1)$. Let $\epsilon>0$. Choose an integer $p>\frac{1}{\epsilon}$, then divide $[0,1]$ into p equal-sized subintervals. By the Pigeonhole Principle we can choose k and l with $k<l$ so that $\langle k x\rangle$ and $\langle l x\rangle$ both lie in the same subinterval. Then we have $|\langle k x\rangle-\langle l x\rangle| \leq \frac{1}{p}<\epsilon$. Note that if we then set $m=l-k$ we either have $\langle m x\rangle<\epsilon$ or we have $\langle m x\rangle>1-\epsilon$. Since x is irrational, $m x$ is not an integer so $\langle m x\rangle \neq 0$, and so we have $\langle m x\rangle \in(0, \epsilon) \cup(1-\epsilon, 1)$, as claimed.

To show that $\{\langle n x\rangle\}$ is dense, we must show that given a point $a \in[0,1]$ and given $\epsilon>0$ it is possible to find a value of n such that $|\langle n x\rangle-a|<\epsilon$. Let $a \in[0,1]$ and let $\epsilon>0$. Choose m so that $\langle m x\rangle \in(0, \epsilon) \cup(1-\epsilon, 1)$. If $m \in(0, \epsilon)$, then let $r=\langle m x\rangle<\epsilon$, and notice that for $1 \leq k \leq\left\lfloor\frac{1}{r}\right\rfloor$ we have $\langle k m x\rangle=k\langle m x\rangle=k r$, and that one of the numbers $r, 2 r, 3 r, \cdots,\left\lfloor\frac{1}{r}\right\rfloor r$ will be within a distance of ϵ from a. If $m \in(1-\epsilon, 1)$, then let $r=1-\langle m x\rangle\left\langle\epsilon\right.$, and notice that for $1 \leq k \leq\left\lfloor\frac{1}{r}\right\rfloor$ we have $\langle k m x\rangle=1-k(1-\langle m x\rangle)=1-k r$ and that one of the numbers $1-r, 1-2 r, 1-3 r, \cdots, 1-\left\lfloor\frac{1}{r}\right\rfloor r$ will be within a distance of ϵ from a. In either case, we can choose k so that $|\langle k m x\rangle-a|<\epsilon$.

6: (a) Find $\sum_{k=2}^{n} \frac{1}{\log _{k} e}$.
Solution: Note that $\log _{k} e=\frac{\ln e}{\ln k}=\frac{1}{\ln k}$, so $\sum_{k=2}^{n} \frac{1}{\log _{k} e}=\sum_{k=2}^{n} \ln k=\ln \left(\prod_{k=2}^{n} k\right)=\ln (n!)$.
(b) Find $\sum_{k=1}^{n}(2 k-1)^{3}$.

Solution: Recall that $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{2}$, so we have $\sum_{k=1}^{n}(2 k-1)^{3}=\sum_{k=1}^{2 n} k^{3}-\sum_{k=1}^{n}(2 k)^{3}=\sum_{k=1}^{2 n} k^{3}-2^{3} \sum_{k=1}^{n} k^{3}=$ $\frac{(2 n)^{2}(2 n+1)^{2}}{4}-\frac{2^{3} n^{2}(n+1)^{2}}{4}=n^{2}(2 n+1)^{2}-2 n^{2}(n+1)^{2}=n^{2}\left(\left(4 n^{2}+4 n+1\right)-2\left(n^{2}+2 n+1\right)\right)=n^{2}\left(2 n^{2}-1\right)$.
7: (a) Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n+i}$.
Solution: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n+i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}} \cdot \frac{1}{n}=\int_{0}^{1} \frac{d x}{1+x}=[\ln (1+x)]_{0}^{1}=\ln 2$.
(b) Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i^{2}}}$.

Solution: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i^{2}}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{1+\left(\frac{i}{n}\right)^{2}}} \cdot \frac{1}{n}=\int_{0}^{1} \frac{d x}{\sqrt{1+x^{2}}}=\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta d \theta}{\sec \theta}=\int_{0}^{\pi / 4} \sec \theta d \theta=$ $[\ln (\sec \theta+\tan \theta)]_{0}^{\pi / 4}=\ln (\sqrt{2}+1)$, where we made the change of variables $\tan \theta=x$.

8: (a) Find $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2}$.
Solution: For $|x|<1$ we have $\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}=\frac{1}{1+x^{3}}$, so $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{3 n+1}=\int_{0}^{x} \frac{d t}{1+t^{3}}$. By Abel's Theorem we can put in $x=1$ to get $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n+1}=\int_{0}^{1} \frac{d t}{1+t^{3}}$. Thus $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2}=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3 n-2}=\frac{1}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n+1}=$ $\frac{1}{2}+\int_{0}^{1} \frac{d t}{t^{3}+1}$. We can solve this integral using partial fractions. To get $\frac{1}{t^{3}+1}=\frac{A}{t+1}+\frac{B(2 t-1)+C}{t^{2}-t+1}$, we need $A\left(t^{2}-t+1\right)+B\left(2 t^{2}+t-1\right)+C(t+1)=1$. Equate coefficients to get the three equations $A+2 B=0,-A+B+C=0$ and $A-B+C=1$. Solve these to get $A=\frac{1}{3}, B=-\frac{1}{6}$ and $C=\frac{1}{2}$. Thus we find that $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2}=$ $\frac{1}{2}+\int_{0}^{1} \frac{d t}{t^{3}+1}=\frac{1}{2}+\int_{0}^{1} \frac{\frac{1}{3}}{t+1}-\frac{\frac{1}{6}(2 t-1)+\frac{1}{2}}{t^{2}-t+1} d t=\frac{1}{2}+\left[\frac{1}{3} \ln (t+1)-\frac{1}{6} \ln \left(t^{2}-t+1\right)+\frac{1}{\sqrt{3}} \tan ^{-1} \frac{\left(t-\frac{1}{2}\right)}{\frac{\sqrt{3}}{2}}\right]_{0}^{1}$ $=\frac{1}{2}+\frac{1}{3} \ln 2+\frac{1}{\sqrt{3}} \tan ^{-1} \frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}} \tan ^{-1} \frac{1}{\sqrt{3}}=\frac{1}{2}+\frac{1}{3} \ln 2+\frac{\pi}{3 \sqrt{3}}$.
(b) Find $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}$.

Solution: For all x we have $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, so $x e^{x}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$. Differentiate to get $(x+1) e^{x}=\sum_{n=0}^{\infty} \frac{(n+1) x^{n}}{n!}$, so $\left(x^{2}+x\right) e^{x}=\sum_{n=0}^{\infty} \frac{(n+1) x^{n+1}}{n!}$. Differentiate again to get $\left(x^{2}+3 x+1\right) e^{x}=\sum_{n=0}^{\infty} \frac{(n+1)^{2} x^{n}}{n!}$. Put in $x=1$ to get $5 e=\sum_{n=0}^{\infty} \frac{(n+1)^{2}}{n!}=1+\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}$. Thus $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}=5 e-1$.

9: Find $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k^{2}\right)^{-1}$.
Solution: Recall that $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$, so we have $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k^{2}\right)^{-1}=\sum_{n=1}^{\infty} \frac{6}{n(n+1)(2 n+1)}$. To get $\frac{A}{n}+\frac{B}{n+1}+\frac{C}{2 n+1}=\frac{6}{n(n+1)(2 n+1)}$ we need $A\left(2 n^{2}+3 n+1\right)+B\left(2 n^{2}+n\right)+C\left(n^{2}+1\right)=6$. Equate coefficients to get the three equations $2 A+2 B+C=0,3 A+B+C=0$ and $A=6$. Solve these to get $A=6, B=6$ and $C=-24$. Thus $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k^{2}\right)^{-1}=\sum_{n=1}^{\infty} \frac{6}{n}+\frac{6}{n+1}-\frac{24}{2 n+1}$. When n is even, the $n^{\text {th }}$ partial sum is $S_{n}=18-12\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{n}\right)+\frac{6}{n+1}-24\left(\frac{1}{n+1}+\frac{1}{n+3}+\frac{1}{n+5}+\cdots+\frac{1}{2 n-1}\right)-\frac{24}{2 n+1}$. To find the limit of the sum $\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{n}\right)$, note that for $|x|<1$ we have $\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots$, so $\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots$. By Abel's Theorem, we can put in $x=1$ to get $\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$. The other sum is a Riemann sum: $\left(\frac{1}{n+1}+\frac{1}{n+3}+\frac{1}{n+5}+\cdots+\frac{1}{2 n-1}\right)=\frac{1}{2} \cdot \frac{2}{n}\left(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{3}{n}}+\cdots+\frac{1}{1+\frac{n-1}{n}}\right) \rightarrow$ $\frac{1}{2} \int_{0}^{1} \frac{1}{1+x} d x=\frac{1}{2}[\ln (1+x)]_{0}^{1}=\frac{1}{2} \ln 2$. Thus the limit of the even partial sums is $18-24 \ln 2$. A similar calculation shows that the limit of the odd partial sums is also equal to $18-24 \ln 2$, so $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k^{2}\right)^{-1}=18-24 \ln 2$.

10: Find $\int_{0}^{\pi} \sin x d x$ by evaluating the limit of a sequence of Riemann sums.
Solution: We have $\int_{0}^{\pi} \sin x d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\pi}{n} \sin \left(\frac{k \pi}{n}\right)$. To find $\sum_{k=1}^{n} \sin \left(\frac{k \pi}{n}\right)$, let $\alpha=e^{i \pi / n}$ so $\sin \frac{k \pi}{n}=\operatorname{Im}\left(\alpha^{k}\right)$. Then $\sum_{k=1}^{n} \sin \frac{k \pi}{n}=\operatorname{Im}\left(\sum_{k=1}^{n} \alpha^{k}\right)=\operatorname{Im}\left(\frac{\alpha-\alpha^{n+1}}{1-\alpha}\right)=\operatorname{Im}\left(\frac{\alpha\left(1-\alpha^{n}\right)(1-\bar{\alpha})}{1-2 \operatorname{Re}(\alpha)+\alpha \bar{\alpha}}\right)=\operatorname{Im}\left(\frac{2(\alpha-\alpha \bar{\alpha})}{1-2 \operatorname{Re}(\alpha)+\alpha \bar{\alpha}}\right)=$ $\operatorname{Im}\left(\frac{\alpha-1}{1-\operatorname{Re}(\alpha)}\right)=\frac{\operatorname{Im}(\alpha)}{1-\operatorname{Re}(\alpha)}=\frac{\sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}}$, since $\alpha^{n}=-1$ and $\alpha \bar{\alpha}=1$. So $\int_{0}^{\pi} \sin x d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\pi}{n} \sin \left(\frac{k \pi}{n}\right)$ $=\lim _{n \rightarrow \infty} \frac{\frac{\pi}{n} \sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}}=\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}=2$, by using l'Hôpital's Rule twice or by using power series.

11: Let $a_{n}>0$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges.
Solution: If $\sum_{n=1}^{\infty} a_{n}$ converges then $a_{n} \rightarrow 0$ so $\lim _{n \rightarrow \infty} \frac{a_{n}}{\ln \left(1+a_{n}\right)}=\lim _{x \rightarrow 0} \frac{x}{\ln (1+x)}=1$. If $\sum_{n=1}^{\infty} \ln \left(1+a_{n}\right)$ converges then $\ln \left(1+a_{n}\right) \rightarrow 0$ so $\left(1+a_{n}\right) \rightarrow 1$ and so $a_{n} \rightarrow 0$ and we again have $\lim _{n \rightarrow \infty} \frac{a_{n}}{\ln \left(1+a_{n}\right)}=1$. By the Limit Comparison Test, $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} \ln \left(1+a_{n}\right)$ converges. Also, if we write $P_{n}=\prod_{k=1}^{n}\left(1+a_{n}\right)$ and $S_{n}=\sum_{k=1}^{n} \ln \left(1+a_{n}\right)$ then we have $\ln \left(P_{n}\right)=S_{n}$, so $\left\{P_{n}\right\}$ converges if and only if $\left\{S_{n}\right\}$ converges, that is $\sum_{n=1}^{\infty} \ln \left(1+a_{n}\right)$ converges if and only if $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges.

12: Find $\prod_{n=0}^{\infty}\left(1+\frac{1}{2^{2^{n}}}\right)$.
Solution: Let $P_{n}=\prod_{k=0}^{n}\left(1+\frac{1}{2^{2^{k}}}\right)$. Then $\left(1-\frac{1}{2}\right) P_{n}=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{4}}\right) \cdots\left(1+\frac{1}{2^{2^{n}}}\right)=$ $\left(1-\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{4}}\right) \cdots\left(1+\frac{1}{2^{2^{n}}}\right)=\left(1-\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right) \cdots\left(1+\frac{1}{2^{2^{n}}}\right)=\cdots=\left(1-\frac{1}{2^{2^{n}}}\right)\left(1+\frac{1}{2^{2^{n}}}\right)$ $=\left(1-\frac{1}{2^{2^{n+1}}}\right)$. Thus $P_{n}=\frac{1-\frac{1}{2^{2^{n+1}}}}{1-\frac{1}{2}} \rightarrow \frac{1}{1-\frac{1}{2}}=2$ as $n \rightarrow \infty$.

13: Find $\prod_{n=2}^{\infty} \frac{n^{3}-1}{n^{3}+1}$.
Solution: Let $P_{n}=\prod_{k=2}^{n} \frac{k^{3}-1}{k^{3}+1}$. Then $P_{n}=\prod_{k=2}^{n} \frac{(k-1)\left(k^{2}+k+1\right)}{(k+1)\left(k^{2}-k+1\right)}=\prod_{k=2}^{n} \frac{k-1}{k+1} \prod_{k=2}^{n} \frac{k^{2}+k+1}{(k-1)^{2}+(k-1)+1}=$ $\left(\frac{1}{3} \cdot \frac{2}{4} \cdot \frac{3}{5} \cdots \frac{k-2}{k} \cdot \frac{k-1}{k+1}\right)\left(\frac{7}{3} \cdot \frac{13}{7} \cdot \frac{21}{13} \cdots \frac{(k-1)^{2}+(k-1)+1}{(k-2)^{2}+(k-2)+1} \cdot \frac{k^{2}+k+1}{(k-1)^{2}+(k-1)+1}\right)=\left(\frac{1 \cdot 2}{k(k+1)}\right)\left(\frac{k^{2}+k+1}{3}\right) \rightarrow \frac{2}{3}$ as $n \rightarrow \infty$.

