Lesson 7: Derivatives and Integrals

1: Let $0<k<1$, and let $f(x)$ be differentiable with $f^{\prime}(x) \leq k$ for all $x \in \mathbf{R}$. Show that $f(x)$ has a fixed point.

2: Suppose that $f(x)$ is differentiable for all $0 \neq x \in \mathbf{R}$, continuous at $x=0$, and $\lim _{x \rightarrow 0} f^{\prime}(x)$ exists and is finite. Does it follow that $f(x)$ is differentiable at $x=0$?

3: A person walks 6 kilometers in one hour, at varying speed. Show that at some point along the way, the person walks 1 kilometer in exactly 10 minutes.

4: Let $f(x)$ be \mathcal{C}^{∞} on \mathbf{R} with $f\left(\frac{1}{n}\right)=0$ for all positive integers n. Show that $f^{(k)}(0)=0$ for all positive integers k.

5: A car with tires of radius r drives at constant velocity v. Find the maximum height which can be reached by a particle which is thrown from the tire.

6: Let $y=f(x)$ be the solution to the differential equation $y^{2} y^{\prime \prime}+1=0$ with $y(0)=2$ and $y^{\prime}(0)=0$. Find the value of $x>0$ such that $f(x)=1$.

7: Let $f(x)$ be differentiable with $f(0)=0$ and $0 \leq f^{\prime}(x) \leq|f(x)|$ for all $x \in \mathbf{R}$. Show that $f(x)=0$ for all $x \in \mathbf{R}$.
8: Let $f(x)$ be integrable on $[0,1]$ with $\int_{0}^{1} f(x) d x=1$ and $\int_{0}^{1} x f(x) d x=1$. Show that $\int_{0}^{1}(f(x))^{2} d x \geq 4$.
9: Let $f(x)$ be continuous on $[0,1]$. Show that $\int_{x=0}^{1} \int_{y=x}^{1} \int_{z=x}^{y} f(x) f(y) f(z) d x d y d z=\frac{1}{3!}\left(\int_{t=0}^{1} f(t) d t\right)^{3}$.
10: Evaluate each of the following integrals.
(a) $\int_{0}^{\pi / 2} \frac{d x}{1+\sqrt{\tan x}}$
(b) $\int_{0}^{\pi / 2} \frac{d x}{1+(\tan x)^{\sqrt{2}}}$
(c) $\int_{0}^{\pi} \ln (\sin x) d x$
(d) $\int_{0}^{\infty} \frac{\ln x}{1+x^{2}} d x$
(e) $\int_{0}^{\infty} \frac{\tan ^{-1}(\pi x)-\tan ^{-1}(x)}{x} d x$
(f) $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x y}$

Putnam Problems on Derivatives and Integrals

1: (1987 A3) Let $y=f(x)$ be a real-valued function such that $y^{\prime \prime}-2 y^{\prime}+y=2 e^{x}$ for all $x \in \mathbf{R}$.
(a) If $f(x)>0$ for all $x \in \mathbf{R}$ then must we also have $f^{\prime}(x)>0$ for all $x \in \mathbf{R}$?
(b) If $f^{\prime}(x)>0$ for all $x \in \mathbf{R}$ then must we also have $f(x)>0$ for all $x \in \mathbf{R}$?

2: (1987 B1) Find $\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}$.
3: (1989 A2) Let $a, b>0$. Evaluate $\int_{x=0}^{a} \int_{y=0}^{b} e^{\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}} d y d x$.
4: (1990 B1) Find every real-valued continuously differentiable function $f(x)$ such that we have $f(x)^{2}=1990+\int_{0}^{x} f(t)^{2}+f^{\prime}(t)^{2} d t$ for all $x \in \mathbf{R}$.
5: (1991 A5) Find the maximum possible value of $\int_{0}^{y} \sqrt{x^{4}+\left(y-y^{2}\right)^{2}} d x$ where $0 \leq y \leq 1$.
6: (1992 A2) For $a \in \mathbf{R}$, let $c(a)$ be the coefficient of x^{1992} in the binomial series for $(1+x)^{a}$. Evaluate $\int_{0}^{1} c(-y-1)\left(\frac{1}{y+1}+\frac{1}{y+2}+\frac{1}{y+3}+\cdots+\frac{1}{y+1992}\right) d y$.

7: (1994 B3) Find the set of all real numbers k with the property that for every differentiable function $f(x)$ with $f^{\prime}(x)>f(x)>0$ for all $x \in \mathbf{R}$, there exists a number N such that $f(x)>e^{k x}$ for all $x>N$.

8: (1995 B2) An ellipse which is congruent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ rolls without slipping along the curve $y=c \sin \left(\frac{x}{a}\right)$. Find the relationship between a, b and c which ensures that the ellipse completes exactly one revolution as it traverses one period of the curve.
9: (1997 A3) Find $\int_{0}^{\infty}\left(x-\frac{x^{3}}{2}+\frac{x^{5}}{2 \cdot 4}-\frac{x^{7}}{2 \cdot 4 \cdot 6}+\cdots\right)\left(1+\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots\right) d x$
10: (1998 A3) Let $f(x)$ be a real-valued function such that $f^{\prime \prime \prime}(x)$ is continuous for all $x \in \mathbf{R}$. Show that there exists a point $a \in \mathbf{R}$ such that $f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0$.

