Lesson 7: Derivatives and Integrals

- 1: Let 0 < k < 1, and let f(x) be differentiable with $f'(x) \le k$ for all $x \in \mathbf{R}$. Show that f(x) has a fixed point.
- **2:** Suppose that f(x) is differentiable for all $0 \neq x \in \mathbf{R}$, continuous at x = 0, and $\lim_{x \to 0} f'(x)$ exists and is finite. Does it follow that f(x) is differentiable at x = 0?
- **3:** A person walks 6 kilometers in one hour, at varying speed. Show that at some point along the way, the person walks 1 kilometer in exactly 10 minutes.
- 4: Let f(x) be \mathcal{C}^{∞} on **R** with $f\left(\frac{1}{n}\right) = 0$ for all positive integers n. Show that $f^{(k)}(0) = 0$ for all positive integers k.
- 5: A car with tires of radius r drives at constant velocity v. Find the maximum height which can be reached by a particle which is thrown from the tire.
- 6: Let y = f(x) be the solution to the differential equation $y^2y'' + 1 = 0$ with y(0) = 2 and y'(0) = 0. Find the value of x > 0 such that f(x) = 1.
- **7:** Let f(x) be differentiable with f(0) = 0 and $0 \le f'(x) \le |f(x)|$ for all $x \in \mathbf{R}$. Show that f(x) = 0 for all $x \in \mathbf{R}$.
- 8: Let f(x) be integrable on [0,1] with $\int_0^1 f(x) dx = 1$ and $\int_0^1 x f(x) dx = 1$. Show that $\int_0^1 (f(x))^2 dx \ge 4$.

9: Let f(x) be continuous on [0,1]. Show that $\int_{x=0}^{1} \int_{y=x}^{1} \int_{z=x}^{y} f(x)f(y)f(z) \, dx \, dy \, dz = \frac{1}{3!} \left(\int_{t=0}^{1} f(t) \, dt \right)^{3}$.

10: Evaluate each of the following integrals.

(a)
$$\int_0^{\pi/2} \frac{dx}{1 + \sqrt{\tan x}}$$
 (b) $\int_0^{\pi/2} \frac{dx}{1 + (\tan x)^{\sqrt{2}}}$ (c) $\int_0^{\pi} \ln(\sin x) dx$
(d) $\int_0^\infty \frac{\ln x}{1 + x^2} dx$ (e) $\int_0^\infty \frac{\tan^{-1}(\pi x) - \tan^{-1}(x)}{x} dx$ (f) $\int_0^1 \int_0^1 \frac{dx \, dy}{1 - xy}$

Putnam Problems on Derivatives and Integrals

- 1: (1987 A3) Let y = f(x) be a real-valued function such that $y'' 2y' + y = 2e^x$ for all $x \in \mathbf{R}$. (a) If f(x) > 0 for all $x \in \mathbf{R}$ then must we also have f'(x) > 0 for all $x \in \mathbf{R}$?
 - (b) If f'(x) > 0 for all $x \in \mathbf{R}$ then must we also have f(x) > 0 for all $x \in \mathbf{R}$?

2: (1987 B1) Find
$$\int_{2}^{4} \frac{\sqrt{\ln(9-x)} \, dx}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}}$$
.

3: (1989 A2) Let a, b > 0. Evaluate $\int_{x=0}^{a} \int_{y=0}^{b} e^{\max\{b^2 x^2, a^2 y^2\}} dy dx$.

- 4: (1990 B1) Find every real-valued continuously differentiable function f(x) such that we have $f(x)^2 = 1990 + \int_0^x f(t)^2 + f'(t)^2 dt$ for all $x \in \mathbf{R}$.
- 5: (1991 A5) Find the maximum possible value of $\int_0^y \sqrt{x^4 + (y y^2)^2} dx$ where $0 \le y \le 1$.
- 6: (1992 A2) For $a \in \mathbf{R}$, let c(a) be the coefficient of x^{1992} in the binomial series for $(1+x)^a$. Evaluate $\int_0^1 c(-y-1)\left(\frac{1}{y+1} + \frac{1}{y+2} + \frac{1}{y+3} + \dots + \frac{1}{y+1992}\right) dy$.
- 7: (1994 B3) Find the set of all real numbers k with the property that for every differentiable function f(x) with f'(x) > f(x) > 0 for all $x \in \mathbf{R}$, there exists a number N such that $f(x) > e^{kx}$ for all x > N.
- 8: (1995 B2) An ellipse which is congruent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ rolls without slipping along the curve $y = c \sin\left(\frac{x}{a}\right)$. Find the relationship between a, b and c which ensures that the ellipse completes exactly one revolution as it traverses one period of the curve.
- **9:** (1997 A3) Find $\int_0^\infty \left(x \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} \frac{x^7}{2 \cdot 4 \cdot 6} + \cdots \right) \left(1 + \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} + \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \cdots \right) dx$
- **10:** (1998 A3) Let f(x) be a real-valued function such that f'''(x) is continuous for all $x \in \mathbf{R}$. Show that there exists a point $a \in \mathbf{R}$ such that $f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \ge 0$.