Solutions to the Problems on Derivatives and Integrals

1: Let $0<k<1$, and let $f(x)$ be differentiable with $f^{\prime}(x) \leq k$ for all $x \in \mathbf{R}$. Show that $f(x)$ has a fixed point.
Solution: If $f(0)=0$ then 0 is a fixed point of f. Suppose that $f(0)=b>0$. For any $x>0$, by the Mean Value Theorem, we can find $c \in(0, x)$ so that $f^{\prime}(c)=\frac{f(x)-f(0)}{x-0}=\frac{f(x)-b}{x}$ so $f(x)=b+f^{\prime}(c) x \leq b+k x$. Notice that the line $y=b+k x$ intersects the line $y=x$ when $x=\frac{b}{1-k}$. Let $g(x)=f(x)-x$. Then $g(0)=b>0$ and $g\left(\frac{b}{1-k}\right)=f\left(\frac{b}{1-k}\right)-\frac{b}{1-k} \leq b+k\left(\frac{b}{1-k}\right)-\frac{b}{1-k}=0$ so, by the Intermediate Value Theorem, there is a point $x \in\left[0, \frac{b}{1-k}\right]$ such that $g(x)=0$, and this point x is a fixed point of f. Similarly, if $f(0)=b<0$ then we have $f(x) \geq b+k x$ for all $x<0$, and $f(x)$ has a fixed point $x \in\left[\frac{b}{1-k}, 0\right]$.
2: Suppose that $f(x)$ is differentiable for all $0 \neq x \in \mathbf{R}$, continuous at $x=0$, and $\lim _{x \rightarrow 0} f^{\prime}(x)$ exists and is finite. Does it follow that $f(x)$ is differentiable at $x=0$?
Solution: It does. Let $a=\lim _{x \rightarrow 0} f^{\prime}(x)$. Given $\epsilon>0$, choose $\delta>0$ so that $0<|x|<\delta \Longrightarrow\left|f^{\prime}(x)-a\right|<\epsilon$. Let $0<u<\delta$. Since $f(x)$ is differentiable in $(0, u)$ and continuous on $[0, u]$, by the Mean Value Theorem we can find $x \in(0, u)$ so that $f^{\prime}(x)=\frac{f(u)-f(0)}{u-0}$, and so we have $\left|\frac{f(u)-f(0)}{u-0}-a\right|=\left|f^{\prime}(x)-a\right|<\epsilon$. Similarly, when $-\delta<u<0$ we also have $\left|\frac{f(u)-f(0)}{u-0}-a\right|<\epsilon$. Thus $f^{\prime}(0)=a$.
3: A person walks 6 kilometers in one hour, at varying speed. Show that at some point along the way, the person walks 1 kilometer in exactly 10 minutes.

Solution: For $t \in[0,60]$, let $x(t)$ be the distance walked, in kilometers, up until time t, in minutes. We suppose that this person does not know how to teleport, so $x(t)$ is continuous. For $x \in[0,50]$, let $f(t)=x(t+10)-x(t)$. Consider the six values $f(k)$ with $k \in\{0,10,20,30,40,50\}$. We have $f(0)+f(10)+f(20)+f(30)+f(40)+f(50)=$ $(x(10)-x(0))+(f(20)-f(10))+\cdots+(x(60)-x(50))=x(60)-x(0)=60-0=6$, so it is not possible that every $f(k)>1$ and it is not possible that every $f(k)<1$. Thus we have $f(k) \leq 1$ and $f(l) \geq 1$ for some $k, l \in\{0,10,20,30,40,50\}$. By the Intermediate Value Theorem, there is a number c between k and l such that $f(c)=1$, that is $x(c+10)-x(c)=1$. In the interval $[c, c+10]$ the person walks 1 kilometer.
4: Let $f(x)$ be \mathcal{C}^{∞} on \mathbf{R} with $f\left(\frac{1}{n}\right)=0$ for all positive integers n. Show that $f^{(k)}(0)=0$ for all positive integers k.
Solution: By the Mean Value Theorem, we can find points $c_{n}^{1} \in\left(\frac{1}{n+1}, \frac{1}{n}\right)$ with $f^{\prime}\left(c_{n}^{1}\right)=\frac{f\left(\frac{1}{n}\right)-f\left(\frac{1}{n+1}\right)}{\frac{1}{n}-\frac{1}{n+1}}=0$. Since the sequence $\left\{c_{n}^{1}\right\}$ decreases to 0 , and $f^{\prime}(x)$ is continuous, we have $f^{\prime}(0)=0$. Again by the Mean Value Theorem, we can find points $c_{n}^{2} \in\left(c_{n+1}^{1}, c_{n}^{1}\right)$ with $f^{\prime \prime}\left(c_{n}^{2}\right)=\frac{f^{\prime}\left(c_{n+1}^{1}\right)-f^{\prime}\left(c_{n}^{1}\right)}{c_{n+1}^{1}-c_{n}^{1}}=0$. Note that this second sequence $\left\{c_{n}^{2}\right\}$ also decreases to 0 , so since $f^{\prime \prime}(x)$ is continuous, we have $f^{\prime \prime}(0)=0$. This argument can be repeated.
5: A car with tires of radius r drives at constant velocity v. Find the maximum height which can be reached by a particle which is thrown from the tire.
Solution: Note that when an object is thrown vertically from an initial height of h with an initial velocity of v, its height is given by $y(t)=-\frac{g}{2} t^{2}+v t+h=-\frac{g}{2}\left(t-\frac{v}{g}\right)^{2}+\left(h+\frac{v^{2}}{2 g}\right)$, so it rises to a maximum height $h+\frac{v^{2}}{2 g}$. A particle on the tire follows the cycloid $(x, y)=r(\theta-\sin \theta, 1-\cos \theta)$ where $r \theta=v t$. Its velocity is $\left(x^{\prime}, y^{\prime}\right)=r \theta^{\prime}(1-\cos \theta, \sin \theta)=v(1-\cos \theta, \sin \theta)$. If the particle is thrown from the tire when the angle is θ, then its height is $h=r(1-\cos \theta)$ and the vertical component of its velocity is $v=v \sin \theta$, so it rises to a maximum height of $H(\theta)=r(1-\cos \theta)+\frac{(v \sin \theta)^{2}}{2 g}$. We have $H^{\prime}(\theta)=r \sin \theta+\frac{v^{2}}{g} \sin \theta \cos \theta=\sin \theta\left(r+\frac{v^{2}}{g} \cos \theta\right)$. For $\theta \in[0, \pi], H^{\prime}(\theta)=0$ when $\theta=0$ or $\theta=\pi$ and when $\cos \theta=-\frac{r g}{v^{2}}$. Note that $H(0)=0$ and $H(\pi)=2 r$. If $\frac{r g}{v^{2}}>1$ then $\cos \theta \neq-\frac{r g}{v^{2}}$ so the maximum value of H is $H(\pi)=2 r$. If $\frac{r g}{v^{2}}<1$ then when $\cos \theta=-\frac{r g}{v^{2}}$ we have $H(\theta)=r(1-\cos \theta)+\frac{v^{2}}{2 g} \sin ^{2} \theta=r-r \cos \theta+\frac{v^{2}}{2 g}-\frac{v^{2}}{2 g} \cos ^{2} \theta=r+\frac{r^{2} g}{v^{2}}+\frac{v^{2}}{2 g}-\frac{v^{2}}{2 g} \frac{r^{2} g^{2}}{v^{4}}=r+\frac{r^{2} g}{2 v^{2}}+\frac{v^{2}}{2 g}>2 r$, so the maximum value of H is $r+\frac{r^{2} g}{2 v^{2}}+\frac{v^{2}}{2 g}$.

6: Let $y=f(x)$ be the solution to the differential equation $y^{2} y^{\prime \prime}+1=0$ with $y(0)=2$ and $y^{\prime}(0)=0$. Find the value of $x>0$ such that $f(x)=1$.
Solution: Write $y^{\prime}=u$ and $y^{\prime \prime}=u u^{\prime}$, where $u^{\prime}=\frac{d u}{d y}$. The the differential equation becomes $y^{2} u u^{\prime}+1=0$. This is separable, so we write it as $u d u=-\frac{1}{y^{2}} d y$ and integrate both sides to get $\frac{1}{2} u^{2}=\frac{1}{y}+a$. Put in $y=2$ and $u=y^{\prime}=0$ to get $0=\frac{1}{2}+a$, so $a=-\frac{1}{2}$ and we have $\frac{1}{2} u^{2}=\frac{1}{y}-\frac{1}{2}$, that is $u= \pm \sqrt{\frac{2}{y}-1}$. Notice that for $x>0$ we should use the negative sign since $u=y^{\prime}$ is initially 0 and $y^{\prime \prime}=-\frac{1}{y^{2}}<0$. Rewrite $u=-\sqrt{\frac{2}{y}-1}$ as $y^{\prime}=-\sqrt{\frac{2}{y}-1}$. This is again separable, so we write it as $\frac{d y}{\sqrt{\frac{2}{y}-1}}=-d x$ and integrate both sides. To find $\int \frac{d y}{\sqrt{\frac{2}{y}-1}}$, first let $u=\sqrt{y}$ and then let $\sqrt{2} \sin \theta=u$ to get $\int \frac{d y}{\sqrt{\frac{2}{y}-1}}=\int \frac{\sqrt{y} d y}{\sqrt{2-y}}=$ $\int \frac{2 u^{2} d u}{\sqrt{2-u^{2}}}=\int 4 \sin ^{2} \theta d \theta=\int 2-2 \cos 2 \theta d \theta=2 \theta-\sin 2 \theta=2 \theta-2 \sin \theta \cos \theta=2 \sin ^{-1} \frac{u}{\sqrt{2}}-u \sqrt{2-u^{2}}=$ $2 \sin ^{-1} \sqrt{\frac{y}{2}}-\sqrt{y} \sqrt{2-y}$. Thus we obtain $2 \sin ^{-1} \sqrt{\frac{y}{2}}-\sqrt{y} \sqrt{2-y}=-x+b$. Put in $x=0$ and $y=2$ to get $b=\pi$, so we have $2 \sin ^{-1} \sqrt{\frac{y}{2}}-\sqrt{y} \sqrt{2-y}=\pi-x$. Finally, put in $y=1$ to get $2 \frac{\pi}{4}-1=\pi-x$ so $x=1+\frac{\pi}{2}$.

7: Let $f(x)$ be differentiable with $f(0)=0$ and $0 \leq f^{\prime}(x) \leq|f(x)|$ for all $x \in \mathbf{R}$. Show that $f(x)=0$ for all $x \in \mathbf{R}$. Solution: Since $f^{\prime}(x) \geq 0$ for all $x, f(x)$ is non-decreasing, and since $f(0)=0$ we have $f(x) \geq 0$ for all $x \geq 0$ and we have $f(x) \leq 0$ for all $x \leq 0$. For $x \geq 0$ we have $f^{\prime}(x) \leq f(x) \Longrightarrow f^{\prime}(x)-f(x) \leq 0 \Longrightarrow e^{-x} f^{\prime}(x)-e^{-x} f(x) \leq$ $0 \Longrightarrow \frac{d}{d x} e^{-x} f(x) \leq 0 \Longrightarrow e^{-x} f(x)$ is non-increasing. Since $e^{0} f(0)=0$, we have $e^{-x} f(x) \leq 0$, and hence $f(x) \leq 0$, for all $x \geq 0$. But earlier we saw that $f(x) \geq 0$ for all $x \geq 0$, and so $f(x)=0$ for all $x \geq 0$. A similar argument shows that $f(x)=0$ for all $x \leq 0$.
8: Let $f(x)$ be integrable on $[0,1]$ with $\int_{0}^{1} f(x) d x=1$ and $\int_{0}^{1} x f(x) d x=1$. Show that $\int_{0}^{1}(f(x))^{2} d x \geq 4$. Solution: Notice first that $\int_{0}^{1}(6 x-2) d x=\left[3 x^{2}-2 x\right]_{0}^{1}=1$ and $\int_{0}^{1} x(6 x-2) d x=\left[2 x^{3}-x^{2}\right]_{0}^{1}=1$ and $\int_{0}^{1}(6 x-2)^{2} d x=\left[\frac{1}{18}(6 x-2)^{3}\right]_{0}^{1}=\frac{64}{18}+\frac{8}{18}=4$. Thus $0 \leq \int_{0}^{1}(f(x)-(6 x-2))^{2} d x=\int_{0}^{1} f(x)^{2} d x-$ $12 \int_{0}^{1} x f(x) d x+4 \int_{0}^{1} f(x) d x+\int_{0}^{1}(6 x-2)^{2} d x=\int_{0}^{1} f(x)^{2} d x-12+4+4$, and so $\int_{0}^{1} f(x)^{2} d x \geq 4$.
9: Let $f(x)$ be continuous on $[0,1]$. Show that $\int_{x=0}^{1} \int_{y=x}^{1} \int_{z=x}^{y} f(x) f(y) f(z) d x d y d z=\frac{1}{3!}\left(\int_{t=0}^{1} f(t) d t\right)^{3}$. Solution: Let $g(x, y, z)=f(x) f(y) f(z)$ and let $I=\int_{x=0}^{1} \int_{y=x}^{1} \int_{z=x}^{y} g(x, y, z) d x d y d z=\int_{0 \leq x \leq z \leq y \leq 1} g(x, y, z) d x d y d z$. Notice that the value of $g(x, y, z)$ is invariant under permutation of the variables x, y and z, and so we have $I=$ $\int_{0 \leq x \leq z \leq y \leq 1} g(x, y, z) d z=\int_{0 \leq x \leq y \leq z \leq 1} g(x, y, z) d z=\int_{0 \leq y \leq x \leq z \leq 1} g(x, y, z) d z=\int_{0 \leq y \leq z \leq x \leq 1} g(x, y, z) d z=\int_{0 \leq z \leq x \leq y \leq 1} g(x, y, z) d z=\int_{0 \leq z \leq y \leq x \leq 1} g(x, y, z) d z$. Adding these 6 integrals gives $6 I=\int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1} g(x, y, z) d x d y d z=\int_{x=0}^{1} f(x) d x \int_{x=0}^{1} f(y) d y \int_{x=0}^{1} f(z) d z=\left(\int_{0}^{1} f(t) d t\right)^{3}$, and so we have $I=\frac{1}{6}\left(\int_{0}^{1} f(t) d t\right)^{3}$, as required.

10: Evaluate each of the following integrals.
(a) $\int_{0}^{\pi / 2} \frac{d x}{1+\sqrt{\tan x}}$
(b) $\int_{0}^{\pi / 2} \frac{d x}{1+(\tan x)^{\sqrt{2}}}$

Solution: We can solve parts (a) and (b) together. More generally, we let $I=\int_{x=0}^{\pi / 2} \frac{d x}{1+(\tan x)^{a}}$. Make the substitution $u=\frac{\pi}{2}-x$. Then $I=-\int_{u=\pi / 2}^{0} \frac{d u}{1+(\cot u)^{a}}=\int_{u=0}^{\pi / 2} \frac{(\tan u)^{a} d u}{1+(\tan u)^{a}}=\int_{x=0}^{\pi / 2} \frac{(\tan x)^{a} d x}{1+(\tan x)^{a}}$ and so $2 I=\int_{x=0}^{\pi / 2} \frac{1}{1+(\tan x)^{a}}+\frac{(\tan x)^{a}}{1+(\tan x)^{a}} d x=\int_{x=0}^{\pi / 2} 1 d x=\frac{\pi}{2}$. Thus $I=\frac{\pi}{4}$.
(c) $\int_{0}^{\pi} \ln (\sin x) d x$

Solution: Let $I=\int_{0}^{\pi} \ln (\sin x) d x$. By symmetry we have $I=2 \int_{0}^{\pi / 2} \ln (\sin x) d x=2 \int_{0}^{\pi / 2} \ln (\cos x) d x$. Let $u=\frac{1}{2} x$. Then $I=\int_{u=0}^{\pi / 2} 2 \ln (\sin 2 u) d u=2 \int_{u=0}^{\pi / 2} \ln (2 \sin u \cos u) d u=2 \int_{0}^{\pi / 2} \ln 2+\ln (\sin u)+\ln (\cos u) d u=$ $\pi \ln 2+2 I$. Thus $I=-\pi \ln 2$.
(d) $\int_{0}^{\infty} \frac{\ln x}{1+x^{2}} d x$

Solution: Let $I=\int_{x=0}^{\infty} \frac{\ln x}{1+x^{2}} d x$. Let $u=\frac{1}{x}$. Then $I=\int_{u=\infty}^{0} \frac{\ln \left(\frac{1}{u}\right)}{1+\frac{1}{u^{2}}}\left(-\frac{1}{u^{2}}\right) d u=\int_{u=0}^{\infty} \frac{-\ln u}{u^{2}+1} d u=-I$. Thus $I=0$.
(e) $\int_{0}^{\infty} \frac{\tan ^{-1}(\pi x)-\tan ^{-1}(x)}{x} d x$

Solution: More generally, let $I=\int_{x=0}^{\infty} \frac{\tan ^{-1}(a x)-\tan ^{-1}(x)}{x} d x$. Then $I=\int_{0}^{\infty}\left[\frac{\tan ^{-1}(u x)}{x}\right]_{u=1}^{a} d x=$ $\int_{x=0}^{\infty} \int_{u=1}^{a} \frac{1}{1+(u x)^{2}} d u d x=\int_{u=1}^{a} \int_{x=0}^{\infty} \frac{1}{1+(u x)^{2}} d x d u=\int_{u=1}^{a}\left[\frac{\tan ^{-1}(u x)}{u}\right]_{x=0}^{\infty} d u=\int_{u=1}^{a} \frac{\pi}{2 u} d u=\left[\frac{\pi}{2} \ln u\right]_{u=1}^{a}$ $=\frac{\pi}{2} \ln a$, where we used Fubini's Theorem to interchange the order of integration.
(f) $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x y}$

Solution: For $0<b<1, \int_{y=0}^{b} \int_{x=0}^{1} \frac{1}{1-x y} d x d y=\int_{y=0}^{b} \int_{x=0}^{1} \sum_{n=0}^{\infty}(x y)^{n} d x d y=\int_{y=0}^{b} \sum_{n=0}^{\infty} \int_{x=0}^{1}(x y)^{n} d x d y=$ $\int_{y=0}^{b} \sum_{n=0}^{\infty} \frac{y^{n}}{n+1} d y=\sum_{n=0}^{\infty} \int_{y=0}^{b} \frac{y^{n}}{n+1} d y=\sum_{n=0}^{\infty} \frac{b^{n+1}}{(n+1)^{2}}=\sum_{n=1}^{\infty} \frac{b^{n}}{n^{2}}$, where we were able to interchange integration and summation twice by uniform convergence. Thus $\int_{y=0}^{1} \int_{x=0}^{1} \frac{1}{1-x y} d x d y=\lim _{b \rightarrow 1^{-}} \sum_{n=1}^{\infty} \frac{b^{n}}{n^{2}}=\sum_{n=0}^{\infty} \frac{1}{n^{2}}$ by Abel's Theorem. It is well-known that $\sum_{n=0}^{\infty} \frac{1}{n^{2}}=\zeta(2)=\frac{\pi^{2}}{6}$, so $\int_{y=0}^{1} \int_{x=0}^{1} \frac{1}{1-x y} d x d y=\frac{\pi^{2}}{6}$.

