
Solutions to the Problems on Derivatives and Integrals

1: Let 0 < k < 1, and let f(x) be differentiable with f ′(x) ≤ k for all x ∈ R. Show that f(x) has a fixed point.

Solution: If f(0) = 0 then 0 is a fixed point of f . Suppose that f(0) = b > 0. For any x > 0, by the Mean

Value Theorem, we can find c ∈ (0, x) so that f ′(c) = f(x)−f(0)
x−0 = f(x)−b

x so f(x) = b+ f ′(c)x ≤ b+ k x. Notice

that the line y = b+ k x intersects the line y = x when x = b
1−k . Let g(x) = f(x)− x. Then g(0) = b > 0 and

g
(

b
1−k

)
= f

(
b

1−k

)
− b

1−k ≤ b + k
(

b
1−k

)
− b

1−k = 0 so, by the Intermediate Value Theorem, there is a point

x ∈
[
0, b

1−k

]
such that g(x) = 0, and this point x is a fixed point of f . Similarly, if f(0) = b < 0 then we have

f(x) ≥ b+ k x for all x < 0, and f(x) has a fixed point x ∈
[

b
1−k , 0

]
.

2: Suppose that f(x) is differentiable for all 0 6= x ∈ R, continuous at x = 0, and lim
x→0

f ′(x) exists and is finite.

Does it follow that f(x) is differentiable at x = 0?

Solution: It does. Let a = lim
x→0

f ′(x). Given ε > 0, choose δ > 0 so that 0 < |x| < δ =⇒ |f ′(x) − a| < ε. Let

0 < u < δ. Since f(x) is differentiable in (0, u) and continuous on [0, u], by the Mean Value Theorem we can

find x ∈ (0, u) so that f ′(x) = f(u)−f(0)
u−0 , and so we have

∣∣∣ f(u)−f(0)u−0 − a
∣∣∣ = |f ′(x) − a| < ε. Similarly, when

−δ < u < 0 we also have
∣∣∣ f(u)−f(0)u−0 − a

∣∣∣ < ε. Thus f ′(0) = a.

3: A person walks 6 kilometers in one hour, at varying speed. Show that at some point along the way, the person
walks 1 kilometer in exactly 10 minutes.

Solution: For t ∈ [0, 60], let x(t) be the distance walked, in kilometers, up until time t, in minutes. We suppose
that this person does not know how to teleport, so x(t) is continuous. For x ∈ [0, 50], let f(t) = x(t+ 10)−x(t).
Consider the six values f(k) with k ∈ {0, 10, 20, 30, 40, 50}. We have f(0)+f(10)+f(20)+f(30)+f(40)+f(50) =(
x(10) − x(0)

)
+
(
f(20) − f(10)

)
+ · · · +

(
x(60) − x(50)

)
= x(60) − x(0) = 60 − 0 = 6, so it is not possible

that every f(k) > 1 and it is not possible that every f(k) < 1. Thus we have f(k) ≤ 1 and f(l) ≥ 1 for some
k, l ∈ {0, 10, 20, 30, 40, 50}. By the Intermediate Value Theorem, there is a number c between k and l such that
f(c) = 1, that is x(c+ 10)− x(c) = 1. In the interval [c, c+ 10] the person walks 1 kilometer.

4: Let f(x) be C∞ on R with f
(
1
n

)
= 0 for all positive integers n. Show that f (k)(0) = 0 for all positive integers

k.

Solution: By the Mean Value Theorem, we can find points c1n ∈
(

1
n+1 ,

1
n

)
with f ′

(
c1n
)

=
f( 1

n )−f( 1
n+1 )

1
n−

1
n+1

= 0.

Since the sequence {c1n} decreases to 0, and f ′(x) is continuous, we have f ′(0) = 0. Again by the Mean Value

Theorem, we can find points c2n ∈ (c1n+1, c
1
n) with f ′′(c2n) =

f ′(c1n+1)−f
′(c1n)

c1
n+1
−c1n

= 0. Note that this second sequence

{c2n} also decreases to 0, so since f ′′(x) is continuous, we have f ′′(0) = 0. This argument can be repeated.

5: A car with tires of radius r drives at constant velocity v. Find the maximum height which can be reached by a
particle which is thrown from the tire.

Solution: Note that when an object is thrown vertically from an initial height of h with an initial velocity of

v, its height is given by y(t) = − g2 t
2 + v t + h = − g2

(
t− v

g

)2
+
(
h+ v2

2g

)
, so it rises to a maximum height

h + v2

2g . A particle on the tire follows the cycloid (x, y) = r (θ − sin θ, 1− cos θ) where rθ = vt. Its velocity is

(x′, y′) = rθ′(1−cos θ, sin θ) = v(1−cos θ, sin θ). If the particle is thrown from the tire when the angle is θ, then
its height is h = r(1− cos θ) and the vertical component of its velocity is v = v sin θ, so it rises to a maximum

height of H(θ) = r(1 − cos θ) +
(v sin θ)2

2g
. We have H ′(θ) = r sin θ + v2

g sin θ cos θ = sin θ
(
r + v2

g cos θ
)

. For

θ ∈ [0, π], H ′(θ) = 0 when θ = 0 or θ = π and when cos θ = − rgv2 . Note that H(0) = 0 and H(π) = 2r. If
rg
v2 > 1 then cos θ 6= − rgv2 so the maximum value of H is H(π) = 2r. If rg

v2 < 1 then when cos θ = − rgv2 we have

H(θ) = r(1 − cos θ) + v2

2g sin2 θ = r − r cos θ + v2

2g −
v2

2g cos2 θ = r + r2g
v2 + v2

2g −
v2

2g
r2g2

v4 = r + r2g
2v2 + v2

2g > 2r, so

the maximum value of H is r + r2g
2v2 + v2

2g .



6: Let y = f(x) be the solution to the differential equation y2y′′ + 1 = 0 with y(0) = 2 and y′(0) = 0. Find the
value of x > 0 such that f(x) = 1.

Solution: Write y′ = u and y′′ = uu′, where u′ = du
dy . The the differential equation becomes y2uu′ + 1 = 0.

This is separable, so we write it as u du = − 1
y2 dy and integrate both sides to get 1

2 u
2 = 1

y + a. Put in

y = 2 and u = y′ = 0 to get 0 = 1
2 + a, so a = − 1

2 and we have 1
2 u

2 = 1
y −

1
2 , that is u = ±

√
2
y − 1.

Notice that for x > 0 we should use the negative sign since u = y′ is initially 0 and y′′ = − 1
y2 < 0. Rewrite

u = −
√

2
y − 1 as y′ = −

√
2
y − 1. This is again separable, so we write it as

dy√
2
y − 1

= −dx and integrate

both sides. To find

∫
dy√
2
y − 1

, first let u =
√
y and then let

√
2 sin θ = u to get

∫
dy√
2
y − 1

=

∫ √
y dy

√
2− y

=

∫
2u2 du√
2− u2

=

∫
4 sin2 θ dθ =

∫
2 − 2 cos 2θ dθ = 2θ − sin 2θ = 2θ − 2 sin θ cos θ = 2 sin−1 u√

2
− u
√

2− u2 =

2 sin−1
√

y
2 −
√
y
√

2− y. Thus we obtain 2 sin−1
√

y
2 −
√
y
√

2− y = −x + b. Put in x = 0 and y = 2 to get

b = π, so we have 2 sin−1
√

y
2 −
√
y
√

2− y = π − x. Finally, put in y = 1 to get 2 π
4 − 1 = π − x so x = 1 + π

2 .

7: Let f(x) be differentiable with f(0) = 0 and 0 ≤ f ′(x) ≤
∣∣f(x)

∣∣ for all x ∈ R. Show that f(x) = 0 for all x ∈ R.

Solution: Since f ′(x) ≥ 0 for all x, f(x) is non-decreasing, and since f(0) = 0 we have f(x) ≥ 0 for all x ≥ 0 and
we have f(x) ≤ 0 for all x ≤ 0. For x ≥ 0 we have f ′(x) ≤ f(x) =⇒ f ′(x)− f(x) ≤ 0 =⇒ e−xf ′(x)− e−xf(x) ≤
0 =⇒ d

dx e
−xf(x) ≤ 0 =⇒ e−xf(x) is non-increasing. Since e0f(0) = 0, we have e−xf(x) ≤ 0, and hence

f(x) ≤ 0, for all x ≥ 0. But earlier we saw that f(x) ≥ 0 for all x ≥ 0, and so f(x) = 0 for all x ≥ 0. A similar
argument shows that f(x) = 0 for all x ≤ 0.

8: Let f(x) be integrable on [0, 1] with

∫ 1

0

f(x) dx = 1 and

∫ 1

0

x f(x) dx = 1. Show that

∫ 1

0

(
f(x)

)2
dx ≥ 4.

Solution: Notice first that

∫ 1

0

(6x − 2) dx =
[
3x2 − 2x

]1
0

= 1 and

∫ 1

0

x (6x − 2) dx =
[
2x3 − x2

]1
0

= 1 and∫ 1

0

(6x − 2)2 dx =
[

1
18 (6x − 2)3

]1
0

= 64
18 + 8

18 = 4. Thus 0 ≤
∫ 1

0

(
f(x) − (6x − 2)

)2
dx =

∫ 1

0

f(x)2 dx −

12

∫ 1

0

x f(x) dx+ 4

∫ 1

0

f(x) dx+

∫ 1

0

(6x− 2)2 dx =

∫ 1

0

f(x)2 dx− 12 + 4 + 4, and so

∫ 1

0

f(x)2 dx ≥ 4.

9: Let f(x) be continuous on [0, 1]. Show that

∫
x=0

1∫
y=x

1∫
z=x

y

f(x)f(y)f(z) dx dy dz =
1

3!

(∫ 1

t=0

f(t) dt

)3

.

Solution: Let g(x, y, z) = f(x)f(y)f(z) and let I =

∫
x=0

1∫
y=x

1∫
z=x

y

g(x, y, z) dx dy dz =

∫
0≤x≤z≤y≤1

g(x, y, z) dx dy dz.

Notice that the value of g(x, y, z) is invariant under permutation of the variables x, y and z, and so we have I =∫
0≤x≤z≤y≤1

g(x, y, z) dz =

∫
0≤x≤y≤z≤1

g(x, y, z) dz =

∫
0≤y≤x≤z≤1

g(x, y, z) dz =

∫
0≤y≤z≤x≤1

g(x, y, z) dz =

∫
0≤z≤x≤y≤1

g(x, y, z) dz =

∫
0≤z≤y≤x≤1

g(x, y, z) dz. Adding

these 6 integrals gives 6I =

∫
x=0

1∫
y=0

1∫
z=0

1

g(x, y, z) dx dy dz =

∫
x=0

1

f(x) dx

∫
x=0

1

f(y) dy

∫
x=0

1

f(z) dz =

(∫ 1

0

f(t) dt

)3

,

and so we have I = 1
6

(∫ 1

0

f(t) dt

)3

, as required.



10: Evaluate each of the following integrals.

(a)

∫ π/2

0

dx

1 +
√

tanx
(b)

∫ π/2

0

dx

1 + (tanx)
√
2

Solution: We can solve parts (a) and (b) together. More generally, we let I =

∫ π/2

x=0

dx

1 + (tanx)a
. Make the

substitution u = π
2 − x. Then I = −

∫ 0

u=π/2

du

1 + (cotu)a
=

∫ π/2

u=0

(tanu)a du

1 + (tanu)a
=

∫ π/2

x=0

(tanx)a dx

1 + (tanx)a
and so

2I =

∫ π/2

x=0

1

1 + (tanx)a
+

(tanx)a

1 + (tanx)a
dx =

∫ π/2

x=0

1 dx = π
2 . Thus I = π

4 .

(c)

∫ π

0

ln(sinx) dx

Solution: Let I =

∫ π

0

ln(sinx) dx. By symmetry we have I = 2

∫ π/2

0

ln(sinx) dx = 2

∫ π/2

0

ln(cosx) dx. Let

u = 1
2 x. Then I =

∫ π/2

u=0

2 ln(sin 2u) du = 2

∫ π/2

u=0

ln(2 sinu cosu) du = 2

∫ π/2

0

ln 2 + ln(sinu) + ln(cosu) du =

π ln 2 + 2I. Thus I = −π ln 2.

(d)

∫ ∞
0

lnx

1 + x2
dx

Solution: Let I =

∫ ∞
x=0

lnx

1 + x2
dx. Let u = 1

x . Then I =

∫ 0

u=∞

ln
(
1
u

)
1 + 1

u2

(
− 1
u2

)
du =

∫ ∞
u=0

− lnu

u2 + 1
du = −I. Thus

I = 0.

(e)

∫ ∞
0

tan−1(πx)− tan−1(x)

x
dx

Solution: More generally, let I =

∫ ∞
x=0

tan−1(ax)− tan−1(x)

x
dx. Then I =

∫ ∞
0

[
tan−1(ux)

x

]a
u=1

dx =∫ ∞
x=0

∫ a

u=1

1

1 + (ux)2
du dx =

∫ a

u=1

∫ ∞
x=0

1

1 + (ux)2
dx du =

∫ a

u=1

[
tan−1(ux)

u

]∞
x=0

du =

∫ a

u=1

π

2u
du =

[
π
2 lnu

]a
u=1

= π
2 ln a, where we used Fubini’s Theorem to interchange the order of integration.

(f)

∫ 1

0

∫ 1

0

dx dy

1− xy

Solution: For 0 < b < 1,

∫ b

y=0

∫ 1

x=0

1

1− xy
dx dy =

∫ b

y=0

∫ 1

x=0

∞∑
n=0

(xy)n dx dy =

∫ b

y=0

∞∑
n=0

∫ 1

x=0

(xy)n dx dy =∫ b

y=0

∞∑
n=0

yn

n+ 1
dy =

∞∑
n=0

∫ b

y=0

yn

n+ 1
dy =

∞∑
n=0

bn+1

(n+ 1)2
=

∞∑
n=1

bn

n2
, where we were able to interchange integration

and summation twice by uniform convergence. Thus

∫ 1

y=0

∫ 1

x=0

1

1− xy
dx dy = lim

b→1−

∞∑
n=1

bn

n2
=

∞∑
n=0

1

n2
by Abel’s

Theorem. It is well-known that

∞∑
n=0

1

n2
= ζ(2) = π2

6 , so

∫ 1

y=0

∫ 1

x=0

1

1− xy
dx dy = π2

6 .


