Lesson 8: Number Theory

- 1: Show that $\lfloor (2+\sqrt{3})^n \rfloor$ is odd for every positive integer n.
- **2:** Show that there is no non-constant polynomial f(x) with integral coefficients such that f(n) is prime for every positive integer n.
- **3:** Find all prime powers p^k with k > 1 such that $p^k = 2^n \pm 1$ for some integer n.
- 4: Find all positive integers n such that $n^4 + 4^n$ is prime.
- 5: Find all integral solutions to $x^2 + y^2 + z^2 = x^2y^2$.
- **6:** (a) Prove Wilson's Theorem: for an integer n > 1, n is prime $\iff (n-1)! = -1 \mod n$.

(b) Show that for a positive integer n > 1, $\left\lfloor \frac{(n-1)!+1}{n} - \left\lfloor \frac{(n-1)!}{n} \right\rfloor \right\rfloor = \begin{cases} 1 \text{ if } n \text{ is prime} \\ 0 \text{ if } n \text{ is composite} \end{cases}$

- 7: (a) Show that there are infinitely many primes of the form 4n + 3 where n is an integer. (b) Show that there are infinitely many primes of the form 4n + 1 where n is an integer.
- 8: For a positive integer n, let $\tau(n)$ denote the number of positive divisors of n and let $\sigma(n)$ denote the sum of the positive divisors of n.
 - (a) Show that if $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ is the prime factorization of n then $\tau(n) = \prod_{i=1}^{m} (k_i + 1)$ and $\sigma(n) = \prod_{i=1}^{m} \frac{p_i^{k_i+1} - 1}{p_i - 1}$
 - (b) For which positive integers n is $\tau(n)$ odd?
 - (c) For which positive integers n is $\sigma(n)$ odd?
 - (d) For which positive integers n do we have $\phi(n) + \sigma(n) = 2n$?
- 9: (a) Show that if $2^k + 1$ is prime then k must be a power of 2. (b) Let $F_k = 2^{2^k} + 1$. Show that if $k \neq l$ then F_k and F_l are coprime.
- 10: (a) Let a > 1 and k > 1 be integers. Show that if $a^k 1$ is prime then a = 2 and k is prime. (b) Let $M_k = 2^k - 1$. Show that if k and l are coprime then so are M_k and M_l .
 - (c) Show that if p is prime and q is a prime divisor of $M_p = 2^p 1$, then $q = 1 \mod 2p$
 - (d) List the 6 smallest prime numbers of the form $M_p = 2^p 1$ with p prime.
- 11: Show that every rational number p/q, where p and q are integers with 0 , can be represented as a sum of distinct fractions of the form <math>1/n, where n is a positive integer.
- 12: Let α and β be positive irrational numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. For $n \ge 1$ let $a_n = \lfloor n\alpha \rfloor$ and let $b_n = \lfloor n\beta \rfloor$. Show that the two sequences $\{a_n\}$ and $\{b_n\}$ are disjoint and that every positive integer occurs as a term in one of the two sequences.

Putnam Problems in Number Theory

- 1: (1985 B3) Let $\{a_{i,j}\}$ with $1 \leq i, j$ be an infinite array of positive integers. Suppose that every positive integer appears exactly eight times in the array. Show that there exists a pair of positive integers (m, n) such that $a_{m,n} > mn$.
- **2:** (1986 A2) Determine the units digit of $\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor$.
- **3:** (1987 A2) The positive integers are written out in order to produce the sequence of digits 123456789101112.... For a positive integer n we define f(n) = m when the 10^n th digit in this sequence occurs in the part of the sequence in which the *m*-digit numbers are placed. For example, f(2) = 2 because the 100th digit in the sequence occurs as the first digit of the 2 digit number 55. Find f(1987).
- **4:** (1988 B3) For every integer $n \ge 1$, let r_n be the minimum value of $|c d\sqrt{3}|$ over all integers $c, d \ge 0$ with c + d = n. Find the smallest real number g > 0 with $r_n \le g$ for all $n \ge 1$.
- 5: (1991 B4) Let p be an odd prime. Show that $\sum_{j=0}^{p} {p \choose j} {p+j \choose j} \equiv 2^{p} + 1 \pmod{p^{2}}$.
- 6: (1991 B5) Let p be an odd prime and let \mathbf{Z}_p be the field of integers modulo p. Determine the number of elements in the set $\{x^2 | x \in \mathbf{Z}_p\} \cup \{y^2 + 1 | y \in \mathbf{Z}_p\}$.
- **7:** (1993 A6) Let $\{a_n\}, n \ge 1$ be the following sequence of 2s and 3s
 - 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, ...

which has the property that if we let b_n be the number of 3s between the n^{th} and the $(n+1)^{\text{st}}$ copies of 2 in the sequence $\{a_n\}$, then we have $b_n = a_n$ for all $n \ge 1$. Show that there exists a real number r with the property that for all $n \ge 1$, we have $a_n = 2$ if and only if $n = 1 + \lfloor rm \rfloor$ for some nonnegative integer m.

- 8: (1997 B5) Define f(1) = 2, and for $n \ge 1$ define $f(n+1) = 2^{f(n)}$. Show that for all $n \ge 2$, we have $f(n) \equiv f(n-1) \pmod{n}$.
- 9: (1998 B5) Let $n = 111 \cdots 1$, where there are 1998 digits all equal to 1. Find the 1000th digit after the decimal point in \sqrt{n} .
- 10: (2000 A2) Prove that there exist infinitely many integers n such that n, n+1 and n+2 are each equal to the sum of two squares of positive integers.