
Lesson 8: Number Theory

1: Show that b(2 +
√

3)nc is odd for every positive integer n.

2: Show that there is no non-constant polynomial f(x) with integral coefficients such that f(n)
is prime for every positive integer n.

3: Find all prime powers pk with k > 1 such that pk = 2n ± 1 for some integer n.

4: Find all positive integers n such that n4 + 4n is prime.

5: Find all integral solutions to x2 + y2 + z2 = x2y2.

6: (a) Prove Wilson’s Theorem: for an integer n > 1, n is prime ⇐⇒ (n− 1)! = −1 mod n.

(b) Show that for a positive integer n > 1,
⌊
(n−1)!+1

n −
⌊
(n−1)!
n

⌋⌋
=

{
1 if n is prime

0 if n is composite

7: (a) Show that there are infinitely many primes of the form 4n+ 3 where n is an integer.

(b) Show that there are infinitely many primes of the form 4n+ 1 where n is an integer.

8: For a positive integer n, let τ(n) denote the number of positive divisors of n and let σ(n)
denote the sum of the positive divisors of n.

(a) Show that if n = p1
k1p2

k2 · · · pmkm is the prime factorization of n then τ(n) =
m∏
i=1

(ki + 1)

and σ(n) =

m∏
i=1

pi
ki+1 − 1

pi − 1

(b) For which positive integers n is τ(n) odd?

(c) For which positive integers n is σ(n) odd?

(d) For which positive integers n do we have φ(n) + σ(n) = 2n?

9: (a) Show that if 2k + 1 is prime then k must be a power of 2.

(b) Let Fk = 22
k

+ 1. Show that if k 6= l then Fk and Fl are coprime.

10: (a) Let a > 1 and k > 1 be integers. Show that if ak − 1 is prime then a = 2 and k is prime.

(b) Let Mk = 2k − 1. Show that if k and l are coprime then so are Mk and Ml.

(c) Show that if p is prime and q is a prime divisor of Mp = 2p − 1, then q = 1 mod 2p

(d) List the 6 smallest prime numbers of the form Mp = 2p − 1 with p prime.

11: Show that every rational number p/q, where p and q are integers with 0 < p < q, can be
represented as a sum of distinct fractions of the form 1/n, where n is a positive integer.

12: Let α and β be positive irrational numbers such that 1
α + 1

β = 1. For n ≥ 1 let an = bnαc
and let bn = bnβc. Show that the two sequences {an} and {bn} are disjoint and that every
positive integer occurs as a term in one of the two sequences.



Putnam Problems in Number Theory

1: (1985 B3) Let {ai,j} with 1 ≤ i, j be an infinite array of positive integers. Suppose that every
positive integer appears exactly eight times in the array. Show that there exists a pair of
positive integers (m,n) such that am,n > mn.

2: (1986 A2) Determine the units digit of
⌊

1020000

10100+3

⌋
.

3: (1987 A2) The positive integers are written out in order to produce the sequence of digits
123456789101112 · · ·. For a positive integer n we define f(n) = m when the 10nth digit in
this sequence occurs in the part of the sequence in which the m-digit numbers are placed.
For example, f(2) = 2 because the 100th digit in the sequence occurs as the first digit of the
2 digit number 55. Find f(1987).

4: (1988 B3) For every integer n ≥ 1, let rn be the minimum value of |c− d
√

3| over all integers
c, d ≥ 0 with c+ d = n. Find the smallest real number g > 0 with rn ≤ g for all n ≥ 1.

5: (1991 B4) Let p be an odd prime. Show that

p∑
j=0

(
p

j

)(
p+ j

j

)
≡ 2p + 1 (mod p2).

6: (1991 B5) Let p be an odd prime and let Zp be the field of integers modulo p. Determine the
number of elements in the set {x2|x ∈ Zp} ∪ {y2 + 1|y ∈ Zp}.

7: (1993 A6) Let {an}, n ≥ 1 be the following sequence of 2s and 3s

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, · · ·

which has the property that if we let bn be the number of 3s between the nth and the (n+1)st

copies of 2 in the sequence {an}, then we have bn = an for all n ≥ 1. Show that there exists a
real number r with the property that for all n ≥ 1, we have an = 2 if and only if n = 1+brmc
for some nonnegative integer m.

8: (1997 B5) Define f(1) = 2, and for n ≥ 1 define f(n + 1) = 2f(n). Show that for all n ≥ 2,
we have f(n) ≡ f(n− 1) (mod n).

9: (1998 B5) Let n = 111 · · · 1, where there are 1998 digits all equal to 1. Find the 1000th digit
after the decimal point in

√
n.

10: (2000 A2) Prove that there exist infinitely many integers n such that n, n+ 1 and n+ 2 are
each equal to the sum of two squares of positive integers.


