## Solutions to the Number Theory Problems

1: Show that $\left\lfloor(2+\sqrt{3})^{n}\right\rfloor$ is odd for every positive integer $n$.
Solution: Notice that $(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} \sqrt{3}^{i}+\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} 2^{n-i} \sqrt{3}^{i}=2 \sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n}{2 j} 2^{n-2 j} 3^{j}$, which is an even number, and we have $0<(2-\sqrt{3})^{n}<1$, so $\left\lfloor(2+\sqrt{3})^{n}\right\rfloor$ is odd.

2: Show that there is no non-constant polynomial $f(x)$ with integral coefficients such that $f(n)$ is prime for every positive integer $n$.
Solution: Suppose, for a contradiction, that $f$ is such a polynomial. Let $p=f(1)$, which is prime. Note that when $n=1 \bmod p$, we have $f(n)=f(1)=0 \bmod p$, so $p$ divides $f(n)$. Since $f(n)$ is prime and $p$ divides $f(n)$, we must have $f(n)=p$. Thus there are infinitely many values of $n$ such that $f(n)=p$, and so the polynomial $g(x)=f(x)-p$ has infinitely many roots. But then $g(x)=0$ for all $x$ and so $f(x)=p$ for all $x$.

3: Find all prime powers $p^{k}$ with $k>1$ such that $p^{k}=2^{n} \pm 1$ for some integer $n$.
Solution: Suppose first that $p^{k}=2^{n}+1$. Then $2^{n}=p^{k}-1=(p-1)\left(p^{k-1}+p^{k-2}+\cdots+p+1\right)$, so $(p-1)$ and ( $p^{k-1}+\cdots+p+1$ ) are both powers of 2 . Since $p$ is odd and $\left(p^{k-1}+\cdots+p+1\right)$ is even, $k$ must be even, say $k=2 m$. Then we have $2^{n}=p^{2 m}-1=\left(p^{m}-1\right)\left(p^{m}+1\right)$, so $\left(p^{m}-1\right)$ and $\left(p^{m}+1\right)$ are powers of 2 that differ by 2 , hence we must have $p^{m}-1=2$ and $p^{m}+1=4$, and so $p=3$ and $m=1$. Thus there is only one prime power $p^{k}$ of the form $2^{k}+1$, namely $3^{2}=9$.

Next we suppose that $p^{k}=2^{n}-1$. If $n$ is even, say $n=2 m$, then we have $p^{k}=2^{2 m}-1=\left(2^{m}+1\right)\left(2^{m}-1\right)$, but then $p \mid\left(2^{m}+1\right)$ and $p \mid\left(2^{m}-1\right)$ so $p=1$, which is not possible. Thus $n$ must be odd, say $n=2 m+1$. If $k$ is even, say $k=2 l$, then $p^{2 l}=2^{2 m+1}-1$, but then since $p$ is odd, $p^{2}=1 \bmod 4$ so $p^{2 l}=1 \bmod 4$, so we would have $2^{2 m+1}=p^{2 l}+1=2 \bmod 4$, so that $m=0$, which is not possible. Thus $k$ is odd, so we have $p^{k}=2^{n}-1$ with $k$ and $n$ both odd. We have $2^{n}=p^{k}+1=(p+1)\left(p^{k-1}-p^{k-2}+\cdots \pm 1\right)$, so $(p+1)$ is a power of 2 , say $p+1=2^{l}$. Then $2^{n}=p^{k}+1=\left(2^{l}-1\right)^{k}+1=\left(\left(2^{l}\right)^{k}-\left(2^{l}\right)^{k-1}+\cdots+\left(2^{l}\right)-1\right)+1=\left(2^{l}\right)^{k}-\left(2^{l}\right)^{k-1}+\cdots+\left(2^{l}\right)$, and this is an odd multiple of $2^{l}$. Since $2^{n}$ is an odd multiple of $2^{l}$ we must have $2^{n}=2^{l}$. So we have $2^{n}=p^{k}+1=\left(2^{n}-1\right)^{k}+1$. This only happens when $n=1$ or when $k=1$, neither of which is allowed. Thus there are no prime powers $p^{k}$ of the form $2^{k}-1$.

We remark that we never made use of the fact that $p$ is prime.
4: Find all positive integers $n$ such that $n^{4}+4^{n}$ is prime.
Solution: When $n=1, n^{4}+4^{n}=5$, which is prime. We claim that when $n>1, n^{4}+4^{n}$ is not prime. When $n$ is even, $n^{4}+4^{n}$ is even and more that 2 , so it is not prime. When $n$ is odd, say $n=2 k+1$, we make use of the factorization $\left(x^{4}+4 y^{4}\right)=\left(x^{2}+2 x y+2 y^{2}\right)\left(x^{2}-2 x y+2 y^{2}\right)$ to get $n^{4}+4^{n}=(2 k+1)^{4}+4^{2 k+1}=$ $(2 k+1)^{4}+4\left(2^{k}\right)^{4}=\left((2 k+1)^{2}+2(2 k+1)\left(2^{k}\right)+2\left(2^{k}\right)^{2}\right)\left((2 k+1)^{2}-2(2 k+1)\left(2^{k}\right)+2\left(2^{k}\right)^{2}\right)$. Note that when $k>0$, both factors are greater than 1 .

5: Find all integral solutions to $x^{2}+y^{2}+z^{2}=x^{2} y^{2}$.
Solution: Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a solution. Working modulo 4 we have the following: if all three of the numbers $x_{0}, y_{0}$ and $z_{0}$ are odd, then $x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=3 \bmod 4$ but $x_{0}^{2} y_{0}^{2}=1 \bmod 4$; if two of the three numbers are odd then $x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=2 \bmod 4$ but $x_{0}^{2} y_{0}^{2}=1$ or $0 \bmod 4$; if one of the three numbers is odd then $x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=1 \bmod 4$ while $x_{0}{ }^{2} y_{0}{ }^{2}=0 \bmod 4$. Thus all three of the numbers $x_{0}, y_{0}$ and $z_{0}$ must be even, say $x_{0}=2 x_{1}, y_{0}=2 y_{1}$ and $z_{0}=2 z_{1}$. Note that we have $x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=4 x_{1}^{2} y_{1}^{2}$. Working modulo 4 we find that all three of the numbers $x_{1}, y_{1}$ and $z_{1}$ are even, say $x_{1}=2 x_{2}, y_{1}=2 y_{2}$ and $z_{1}=2 z_{2}$. Continuing in this way, we obtain a sequence of triples $\left(x_{k}, y_{k}, z_{k}\right)$ with $x_{k}^{2}+y_{k}{ }^{2}+z_{k}{ }^{2}=4^{k} x_{k}{ }^{2} y_{k}{ }^{2}$ and with $x_{k}=2 x_{k+1}, y_{k}=2 y_{k+1}$ and $z_{k}=2 z_{k+1}$. Since $x_{0}=2 x_{1}=2^{2} x_{2}=\cdots=2^{k} x_{k}=\cdots$ so that $x_{0}$ is a multiple of $2^{k}$ for every $k$, we must have $x_{0}=0$. Similarly, $y_{0}=z_{0}=0$. Thus the only solution to the given equation is the zero solution.

6: (a) Prove Wilson's Theorem: for an integer $n>1, n$ is prime $\Longleftrightarrow(n-1)!=-1 \bmod n$.
Solution: If $n=4$ then we have $(n-1)!=3!=6=2 \bmod 4$. If $n=k l$ where $1<k<l<n$ then $(n-1)!=1 \cdot 2 \cdots k \cdots l \cdots(n-1)$ so $n=k l \mid(n-1)!$ and we have $(n-1)!=0 \bmod n$. If $n=k^{2}$ with $k>2$ then we have $1<k<2 k<n$ so $(n-1)!=1 \cdot 2 \cdots k \cdots(2 k) \cdots n$ and so $n=k^{2} \mid(n-1)!$ and hence $(n-1)!=0$ $\bmod n$. Thus when $n$ is composite, if $n=4$ then $(n-1)!=2 \bmod n$, and if $n>4$ then $(n-1)!=0 \bmod n$.

Suppose that $n=p$ is prime. When $p=2$ we have $(p-1)!=1=-1 \bmod p$, so suppose $p$ is odd. Let $f(x)=x^{p-1}-1$. By Fermat's Little Theorem, $f(x)=0$ in $\mathbf{Z}_{p}$ for every $x \in \mathbf{Z}_{p}$, and so $f(x)$ factors in $\mathbf{Z}_{p}[x]$ as $f(x)=(x-1)(x-2) \cdots(x-(p-1))$. Put in $x=0$ to get $-1=(-1)^{p-1}(p-1)!\in \mathbf{Z}_{p}$. Since $p$ is odd this gives $(p-1)!=-1 \in \mathbf{Z}_{p}$.
(b) Show that for a positive integer $n>1,\left\lfloor\frac{(n-1)!+1}{n}-\left\lfloor\frac{(n-1)!}{n}\right\rfloor\right\rfloor=\left\{\begin{array}{l}1 \text { if } n \text { is prime } \\ 0 \text { if } n \text { is composite }\end{array}\right.$

Solution: Suppose that $n$ is prime. Then we have $(n-1)$ ! $=-1 \bmod n$, say $(n-1)$ ! $=-1+k n$. Then $\left\lfloor\frac{(n-1)!+1}{n}-\left\lfloor\frac{(n-1)!}{n}\right\rfloor\right\rfloor=\left\lfloor k-\left\lfloor k-\frac{1}{n}\right\rfloor\right\rfloor=\lfloor k-(k-1)\rfloor=1$. Now suppose that $n=4$. Then $\left\lfloor\frac{(n-1)!+1}{n}-\left\lfloor\frac{(n-1)!}{n}\right\rfloor\right\rfloor=\left\lfloor\frac{7}{4}-\left\lfloor\frac{3}{2}\right\rfloor\right\rfloor=\left\lfloor\frac{7}{4}-1\right\rfloor=0$. Finally, suppose that $n$ is composite with $n>4$. Then $(n-1)!=0 \bmod n$, say $(n-1)!=k n$. Then $\left\lfloor\frac{(n-1)!+1}{n}-\left\lfloor\frac{(n-1)!}{n}\right\rfloor\right\rfloor=\left\lfloor k+\frac{1}{n}-\lfloor k\rfloor\right\rfloor=\left\lfloor k+\frac{1}{n}-k\right\rfloor=\left\lfloor\frac{1}{n}\right\rfloor=0$.

7: (a) Show that there are infinitely many primes of the form $4 n+3$ where $n$ is an integer.
Solution: Let $p_{1}, p_{2}, \cdots, p_{k}$ be any list of primes of the form $4 n+3$. Consider the number $m=4 p_{1} p_{2} \cdots p_{n}-1$. Since $m$ is odd, its prime factors are odd, and every odd number is equal to 1 or $3 \bmod 4$. It is not possible that every prime factor of $m$ is equal to $1 \bmod 4$, since $m=3 \bmod 4$. Thus $m$ must have some prime factor, say $p$, which is equal to $3 \bmod 4$. Note that $p$ is not equal to any of the primes $p_{1}, p_{2}, \cdots, p_{k}$ since they are not factors of $m$. Thus given any $k$ primes of the form $4 n+3$, there exists another such prime.
(b) Show that there are infinitely many primes of the form $4 n+1$ where $n$ is an integer.

Solution: We claim that for any integer $a$, the number $a^{2}+1$ has no prime factors of the form $4 n+3$. To prove this, let $p$ be any odd prime factor of $a^{2}+1$. Then $a^{2}=-1 \bmod p$. Raise both sides to the power of $(p-1) / 2$ to get $a^{p-1}=(-1)^{(p-1) / 2}$. Since $a^{2}=-1 \bmod p, p$ is not a factor of $a$, so by Fermat's Little Theorem $a^{p-1}=1 \bmod p$, and so we have $1=(-1)^{(p-1) / 2} \bmod p$. Thus $(p-1) / 2 \operatorname{must}$ be even and so $p$ must be of the form $4 n+1$. This proves the claim.

Now let $p_{1}, p_{2}, \cdots, p_{k}$ be any primes of the form $4 n+1$. Consider the number $m=\left(2 p_{1} p_{2} \cdots p_{k}\right)^{2}+1$. Since $m$ is odd it has an odd prime factor, say $p$, and since $m$ is of the form $a^{2}+1$, the prime $p$ must be of the form $4 n+1$. Note that $p$ is not equal to any of the primes $p_{1}, p_{2}, \cdots, p_{k}$ since they are not factors of $m$.

8: For a positive integer $n$, let $\tau(n)$ denote the number of positive divisors of $n$ and let $\sigma(n)$ denote the sum of the positive divisors of $n$.
(a) Show that if $n=p_{1}{ }_{1}^{k_{1}} p_{2}{ }^{k_{2}} \cdots p_{m}{ }^{k_{m}}$ is the prime factorization of $n$ then $\tau(n)=\prod_{i=1}^{m}\left(k_{i}+1\right)$ and $\sigma(n)=\prod_{i=1}^{m} \frac{p_{i}^{k_{i}+1}-1}{p_{i}-1}$

Solution: The positive factors of $n=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdots p_{m}{ }^{k_{m}}$ are of the form $p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{m}{ }^{j_{m}}$ with $0 \leq j_{i} \leq k_{i}$ for all $i$. Since there are $k_{i}+1$ choices for the exponent $j_{i}$, the total number of factors is $\tau(n)=\prod_{i=1}^{m}\left(k_{i}+1\right)$.

The factors of $p^{k}$ are $1, p, p^{2}, \cdots, p^{k}$, so we have $\sigma\left(p^{k}\right)=1+p+p^{2}+\cdots+p^{k}=\frac{p^{k+1}-1}{p-1}$. Thus to show that the given formula for $\sigma(n)$ is correct, it suffices to show that $\sigma(r s)=\sigma(r) \sigma(s)$ whenever $\operatorname{gcd}(r, s)=1$. When $\operatorname{gcd}(r, s)=1$, the divisors $d \mid r s$ are of the form $d=a b$ where $a \mid r$ and $b \mid s$, so we have $\sigma(r s)=\sum_{d \mid r s} d=\sum_{a \mid r} \sum_{b \mid s} a b=\left(\sum_{a \mid r} a\right)\left(\sum_{b \mid s} b\right)=\sigma(r) \sigma(s)$, as desired.
(b) For which positive integers $n$ is $\tau(n)$ odd?

Solution: $\tau(n)$ is odd when all primes have an even exponent in the prime factorization of $n$, that is when $n$ is a square.
(c) For which positive integers $n$ is $\sigma(n)$ odd?

Solution: Note that $\sigma\left(2^{k}\right)=\left(1+2+4+\cdots+2^{k}\right)$ is odd for all values of $k \geq 1$, and note that for an odd prime $p, \sigma\left(p^{k}\right)=\left(1+p+p^{2}+\cdots+p^{k}\right)$ is odd when $k$ is even, so $\sigma(n)$ is odd when all odd primes have an even exponent in the prime factorization of $n$, that is when $n$ is either a square or twice a square.
(d) For which positive integers $n$ do we have $\phi(n)+\sigma(n)=2 n$ ?

Solution: We claim that for $n>1, \phi(n)+\sigma(n)=2 n$ when $n$ is prime and $\phi(n)+\sigma(n)>2 n$ when $n$ is composite. When $p$ is prime we have $\phi(p)+\sigma(p)=(p-1)+(1+p)=2 p$ When $p$ is prime and $k \geq 2$ we have $\phi\left(p^{k}\right)+\sigma\left(p^{k}\right)=\left(p^{k}-p^{k-1}\right)+\left(1+p+\cdots+p^{k-1}+p^{k}\right)=2 p^{k}+\left(1+p+\cdots+p^{k-2}\right)>2 p^{k}$. Finally, suppose that $r>1$ and $s>1$ are coprime with $\phi(r)+\sigma(r) \geq 2 r$ and $\phi(s)+\sigma(s) \geq 2 s$. We need to show that $\phi(r s)+\sigma(r s)>2 r s$. Let $\epsilon(r)=r-\phi(r)$ and $\epsilon(s)=s-\phi(s)$. Note that $\epsilon(r)>0$ and $\epsilon(s)>0$. Also, since $\phi(r)+\sigma(r) \geq 2 r$ we have $r-\epsilon(r)+\sigma(r) \geq 2 r$ so $\sigma(r) \geq r+\epsilon(r)$. Similarly $\sigma(s) \geq s+\epsilon(s)$, and so $\phi(r s)+\sigma(r s)=\phi(r) \phi(s)+\sigma(r) \sigma(s) \geq(r-\epsilon(r))(s-\epsilon(s))+(r+\epsilon(r))(s+\epsilon(s))=2 r s+2 \epsilon(r) \epsilon(s)>2 r s$.

9: (a) Show that if $2^{k}+1$ is prime then $k$ must be a power of 2 .
Solution: We remark that when $r$ is odd, $x=-1$ is a root of $x^{r}+1$, so $x+1$ is a factor of $x^{r}+1$. Suppose that $k$ is not a power of 2 . Then we can write $k=2^{n} r$ for some $n \geq 0$ and some odd number $r>1$, and then we have $2^{k}+1=2^{2^{n} r}+1$. By the above remark, $2^{2^{n}}+1$ is a factor of $2^{2^{n} r}+1=2^{k}+1$, so $2^{k}+1$ is not prime.
(b) Let $F_{k}=2^{2^{k}}+1$. Show that if $k \neq l$ then $F_{k}$ and $F_{l}$ are coprime.

Solution: We remark that $x=-1$ is a root of $x^{2^{n}}-1$ and so $x+1$ is a factor of $x^{2^{n}}{ }^{-1} 1$. Let $k<l$. We claim that $F_{k} \mid\left(F_{l}-2\right)$. Write $n=l-k$. Then $F_{l}-2=2^{2^{l}}-1=2^{2^{k+n}}-1=\left(2^{2^{k}}\right)^{2^{n}}-1$. By the above remark, $2^{2^{k}}+1$ is a factor of $\left(2^{2^{k}}\right)^{2^{n}}-1$, that is $F_{k} \mid\left(F_{l}-2\right)$, as claimed. Since $F_{k} \mid\left(F_{l}-2\right)$ and $F_{k}$ and $F_{l}$ are odd, it follows that $F_{k}$ and $F_{l}$ are coprime.

10: (a) Let $a>1$ and $k>1$ be integers. Show that if $a^{k}-1$ is prime then $a=2$ and $k$ is prime.
Solution: Suppose that $a>2$. Then $a^{k}-1=(a-1)\left(a^{k-1}+a^{k-2}+\cdots+a+1\right)$, and $(a-1)>1$ and $\left(a^{k-2}+a^{k-1}+\cdots+a+1\right)>1$, so $a^{k}-1$ is not be prime. Thus if $a^{k}-1$ is prime then we must have $a=2$. Now suppose that $a=2$ and that $k=l m$ with $1<l$ and $1<m$. Then $a^{k}-1=2^{l m}-1=\left(2^{l}\right)^{m}-1=$ $\left(2^{m}-1\right)\left(\left(2^{m}\right)^{l-1}+\cdots+\left(2^{m}\right)+1\right)$, so $2^{m}-1$ is a factor of $2^{l m}-1$. Since $1<2^{m}-1<2^{l m}-1$ it follows that $2^{l m}-1$ is not prime.
(b) Let $M_{k}=2^{k}-1$. Show that if $k$ and $l$ are coprime then so are $M_{k}$ and $M_{l}$.

Solution: Suppose that $M_{k}$ and $M_{l}$ are not coprime. Let $d=\operatorname{gcd}\left(M_{k}, M_{l}\right)$. Note that $d$ is odd (since $M_{k}$ and $M_{l}$ are odd), so 2 is an invertible element in $\mathbf{Z}_{d}$. Let $n$ be the order of 2 in $\mathbf{Z}_{d}$ (so $n$ is the smallest positive integer such that $2^{n}=1$ in $\mathbf{Z}_{d}$ ). Since $d \mid M_{k}=2^{k}-1$ we have $2^{k}=1 \in \mathbf{Z}_{d}$ and so $n \mid k$. Similarly $n \mid l$ and so $\operatorname{gcd}(k, l) \geq n>1$.
(c) Show that if $p$ is prime and $q$ is a prime divisor of $M_{p}=2^{p}-1$, then $q=1 \bmod 2 p$

Solution: Let $q$ be a prime divisor of $M_{p}$. By Fermat's Little Theorem we have $2^{q-1}=1 \bmod q$ and so $q \mid\left(2^{q-1}-1\right)=M_{q-1}$. Since $q \mid M_{q-1}$ and $q \mid M_{p}$, we have $\operatorname{gcd}\left(M_{q-1}, M_{p}\right) \neq 1$, so by part $(\mathrm{b}) \operatorname{gcd}(q-1, p) \neq 1$. Since $p$ is prime, this implies that $p \mid(q-1)$ so $q=1 \bmod p$. Since $q$ and $p$ are both odd, $q=1 \bmod 2 p$.
(d) List the 6 smallest prime numbers of the form $M_{p}=2^{p}-1$ with $p$ prime.

Solution: We have $M_{2}=3, M_{3}=7, M_{5}=31, M_{7}=127, M_{11}=2047, M_{13}=8191$ and $M_{17}=131071$. The first 4 of these, $3,7,31$ and 127 are easily seen to be prime. If $q$ is a prime factor of $M_{11}$ then by part (c) we have $q=1 \bmod 22$, that is $q=1,23,45, \cdots$. We try $q=23$ and find that $M_{11}=23 \cdot 89$, so $M_{11}$ is not prime. If $q$ is a prime factor of $M_{13}$ then $q=1 \bmod 26$. The only such primes with $q \leq \sqrt{M_{13}}$ are $q=53$ and 79 . We test 53 and 79 and find they are not factors of $M_{13}$, so $M_{13}$ is prime. Finally, if $q$ is a prime factor of $M_{17}$ then by part (c) we have $q=1 \bmod 34$, and the only primes $q$ with $q=1 \bmod 34$ and $q \leq \sqrt{M_{17}}$ are $q=103,137,239$ and 307 . We try each of these and find they are not factors of $M_{17}$

11: Show that every rational number $p / q$, where $p$ and $q$ are integers with $0<p<q$, can be represented as a sum of distinct fractions of the form $1 / n$, where $n$ is a positive integer.
Solution: Given the rational number $\frac{p}{q}$ with $0<p<q$, we choose that smallest positive integer $n_{1}$ with $\frac{1}{n_{1}} \leq \frac{p}{q}$, then if $\frac{1}{n_{1}} \neq \frac{p}{q}$ we choose the smallest positive integer $n_{2}$ such that $\frac{1}{n_{1}}+\frac{1}{n_{2}} \leq \frac{p}{q}$, then if $\frac{1}{n_{1}}+\frac{1}{n_{2}} \neq \frac{p}{q}$ we choose the smallest positive integer $n_{3}$ such that $\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}} \leq \frac{p}{q}$, and so on. Note that we have $1<n_{1}<n_{2}<n_{3}<\cdots$ since if we had $n_{k+1} \leq n_{k}$ then we would have $\frac{p}{q} \geq \frac{1}{n_{1}}+\cdots+\frac{1}{n_{k-1}}+\frac{1}{n_{k}}+\frac{1}{n_{k+1}} \geq$ $\frac{1}{n_{1}}+\cdots+\frac{1}{n_{k-1}}+\frac{2}{n_{k}} \geq \frac{1}{n_{1}}+\cdots+\frac{1}{n_{k-1}}+\frac{1}{n_{k}-1}$ contradicting our choice of $n_{k}$. Also note that by our choice of $n_{1}$ we have $\frac{1}{n_{1}} \leq \frac{p}{q}<\frac{1}{n_{1}-1}$ so $n_{1}-1<\frac{q}{p}$ and so $p n_{1}-p<q$ and hence $p n_{1}-q<p$, and so the numerator of $\frac{p}{q}-\frac{1}{n_{1}}=\frac{p n_{1}-q}{q n_{1}}$ is smaller than the numerator of $\frac{p}{q}$. Similarly, we see that the numerators of the fractions $\frac{p}{q}-\frac{1}{n_{1}}-\cdots-\frac{1}{n_{k}}$ decrease with each value of $k$. Eventually, the numerator becomes zero, and we obtain $\frac{p}{q}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\cdots+\frac{1}{n_{k}}$.

12: Let $\alpha$ and $\beta$ be positive irrational numbers such that $\frac{1}{\alpha}+\frac{1}{\beta}=1$. For $n \geq 1$ let $a_{n}=\lfloor n \alpha\rfloor$ and let $b_{n}=\lfloor n \beta\rfloor$. Show that the two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are disjoint and that every positive integer occurs as a term in one of the two sequences.
Solution: Suppose, for a contradiction, that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are not disjoint, say $\lfloor n \alpha\rfloor=\lfloor m b\rfloor=k$. Since $\alpha$ and $\beta$ are irrational, we have $k<n \alpha<k+1$ and $k<m \beta<k+1$. Since $(k<n \alpha$ and $k<m \beta)$ we have $\left(\frac{n}{k}>\frac{1}{\alpha}\right.$ and $\left.\frac{m}{k}>\frac{1}{\beta}\right)$ and so $\frac{n+m}{k}>\frac{1}{\alpha}+\frac{1}{\beta}=1$, and hence $n+m>k$. Similarly, since $(n \alpha<k+1$ and $n \beta<k+1$ ), we have $n+m<k+1$. This gives the desired contradiction, since we cannot have $k<n+m<k+1$, so the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are disjoint.

Note that since $\frac{1}{\alpha}+\frac{1}{\beta}=1$ we have $\frac{1}{\alpha}<1$ so $\alpha>1$, and so $\lfloor n \alpha\rfloor<\lfloor(n+1) \alpha\rfloor$. Thus the elements of $\left\{a_{n}\right\}$ are distinct. Also note that since $\left\lfloor\frac{k}{\alpha}\right\rfloor<\frac{k}{\alpha}$, we have $\left\lfloor\frac{k}{\alpha}\right\rfloor \alpha<k$, and since $\left\lfloor\frac{k}{\alpha}\right\rfloor>\frac{k}{\alpha}-1$ we have $\left\lfloor\frac{k}{\alpha}\right\rfloor \alpha>k-\alpha$ so $\left(\left\lfloor\frac{k}{\alpha}\right\rfloor+1\right) \alpha>k$, and so the number of elements in the sequence $\left\{a_{n}\right\}$ which are less than $k$ is equal to $\left\lfloor\frac{k}{\alpha}\right\rfloor$. Similarly, the number of elements in the sequence $\left\{b_{n}\right\}$ which are less than $k$ is equal to $\left\lfloor\frac{k}{\beta}\right\rfloor$. Thus in order to show that every positive integer occurs as a term in one of the two sequences, it suffices to show that $\left\lfloor\frac{k}{\alpha}\right\rfloor+\left\lfloor\frac{k}{\beta}\right\rfloor=k-1$ for every positive integer $k$.

Since $\frac{k}{\alpha}-1<\left\lfloor\frac{k}{\alpha}\right\rfloor<\frac{k}{\alpha}$ and $\frac{k}{\beta}-1<\left\lfloor\frac{k}{\beta}\right\rfloor<\frac{k}{\beta}$, we have $k-2=\frac{k}{\alpha}+\frac{k}{\beta}-2<\left\lfloor\frac{k}{\alpha}\right\rfloor+\left\lfloor\frac{k}{\beta}\right\rfloor<\frac{k}{\alpha}+\frac{k}{\beta}=k$, and so $\left\lfloor\frac{k}{\alpha}\right\rfloor+\left\lfloor\frac{k}{\beta}\right\rfloor=k-1$, as required.

