Solutions to the Number Theory Problems

1: Show that $|(2+\sqrt{3})^n|$ is odd for every positive integer n.

Solution: Notice that $(2+\sqrt{3})^n + (2-\sqrt{3})^n = \sum_{i=0}^n \binom{n}{i} 2^{n-i} \sqrt{3}^i + \sum_{i=0}^n (-1)^i \binom{n}{i} 2^{n-i} \sqrt{3}^i = 2 \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} 2^{n-2j} 3^j$, which is an even number, and we have $0 < (2-\sqrt{3})^n < 1$, so $\lfloor (2+\sqrt{3})^n \rfloor$ is odd.

2: Show that there is no non-constant polynomial f(x) with integral coefficients such that f(n) is prime for every positive integer n.

Solution: Suppose, for a contradiction, that f is such a polynomial. Let p = f(1), which is prime. Note that when $n = 1 \mod p$, we have $f(n) = f(1) = 0 \mod p$, so p divides f(n). Since f(n) is prime and p divides f(n), we must have f(n) = p. Thus there are infinitely many values of n such that f(n) = p, and so the polynomial g(x) = f(x) - p has infinitely many roots. But then g(x) = 0 for all x and so f(x) = p for all x.

3: Find all prime powers p^k with k > 1 such that $p^k = 2^n \pm 1$ for some integer n.

Solution: Suppose first that $p^k = 2^n + 1$. Then $2^n = p^k - 1 = (p-1)(p^{k-1} + p^{k-2} + \dots + p + 1)$, so (p-1) and $(p^{k-1} + \dots + p + 1)$ are both powers of 2. Since p is odd and $(p^{k-1} + \dots + p + 1)$ is even, k must be even, say k = 2m. Then we have $2^n = p^{2m} - 1 = (p^m - 1)(p^m + 1)$, so $(p^m - 1)$ and $(p^m + 1)$ are powers of 2 that differ by 2, hence we must have $p^m - 1 = 2$ and $p^m + 1 = 4$, and so p = 3 and m = 1. Thus there is only one prime power p^k of the form $2^k + 1$, namely $3^2 = 9$.

Next we suppose that $p^k=2^n-1$. If n is even, say n=2m, then we have $p^k=2^{2m}-1=(2^m+1)(2^m-1)$, but then $p \mid (2^m+1)$ and $p \mid (2^m-1)$ so p=1, which is not possible. Thus n must be odd, say n=2m+1. If k is even, say k=2l, then $p^{2l}=2^{2m+1}-1$, but then since p is odd, $p^2=1$ mod 4 so $p^{2l}=1$ mod 4, so we would have $2^{2m+1}=p^{2l}+1=2$ mod 4, so that m=0, which is not possible. Thus k is odd, so we have $p^k=2^n-1$ with k and n both odd. We have $2^n=p^k+1=(p+1)(p^{k-1}-p^{k-2}+\cdots\pm 1)$, so (p+1) is a power of 2, say $2^n+1=2^n$. Then $2^n=p^n+1=(2^n-1)^n+1=(2^n$

We remark that we never made use of the fact that p is prime.

4: Find all positive integers n such that $n^4 + 4^n$ is prime.

Solution: When n = 1, $n^4 + 4^n = 5$, which is prime. We claim that when n > 1, $n^4 + 4^n$ is not prime. When n is even, $n^4 + 4^n$ is even and more that 2, so it is not prime. When n is odd, say n = 2k + 1, we make use of the factorization $(x^4 + 4y^4) = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2)$ to get $n^4 + 4^n = (2k + 1)^4 + 4^{2k+1} = (2k + 1)^4 + 4(2^k)^4 = ((2k + 1)^2 + 2(2k + 1)(2^k) + 2(2^k)^2)((2k + 1)^2 - 2(2k + 1)(2^k) + 2(2^k)^2)$. Note that when k > 0, both factors are greater than 1.

5: Find all integral solutions to $x^2 + y^2 + z^2 = x^2y^2$.

gives $(p-1)! = -1 \in \mathbf{Z}_p$.

Solution: Let (x_0, y_0, z_0) be a solution. Working modulo 4 we have the following: if all three of the numbers x_0 , y_0 and z_0 are odd, then $x_0^2 + y_0^2 + z_0^2 = 3 \mod 4$ but $x_0^2 y_0^2 = 1 \mod 4$; if two of the three numbers are odd then $x_0^2 + y_0^2 + z_0^2 = 2 \mod 4$ but $x_0^2 y_0^2 = 1$ or 0 mod 4; if one of the three numbers is odd then $x_0^2 + y_0^2 + z_0^2 = 1 \mod 4$ while $x_0^2 y_0^2 = 0 \mod 4$. Thus all three of the numbers x_0 , y_0 and z_0 must be even, say $x_0 = 2x_1$, $y_0 = 2y_1$ and $z_0 = 2z_1$. Note that we have $x_1^2 + y_1^2 + z_1^2 = 4x_1^2y_1^2$. Working modulo 4 we find that all three of the numbers x_1 , y_1 and z_1 are even, say $x_1 = 2x_2$, $y_1 = 2y_2$ and $z_1 = 2z_2$. Continuing in this way, we obtain a sequence of triples (x_k, y_k, z_k) with $x_k^2 + y_k^2 + z_k^2 = 4^k x_k^2 y_k^2$ and with $x_k = 2x_{k+1}$, $y_k = 2y_{k+1}$ and $z_k = 2z_{k+1}$. Since $x_0 = 2x_1 = 2^2x_2 = \cdots = 2^k x_k = \cdots$ so that x_0 is a multiple of 2^k for every k, we must have $x_0 = 0$. Similarly, $y_0 = z_0 = 0$. Thus the only solution to the given equation is the zero solution.

6: (a) Prove Wilson's Theorem: for an integer n > 1, n is prime $\iff (n-1)! = -1 \mod n$.

Solution: If n=4 then we have $(n-1)!=3!=6=2 \mod 4$. If n=kl where 1< k< l< n then $(n-1)!=1\cdot 2\cdots k\cdots l\cdots (n-1)$ so $n=kl\big|(n-1)!$ and we have $(n-1)!=0 \mod n$. If $n=k^2$ with k>2 then we have 1< k< 2k< n so $(n-1)!=1\cdot 2\cdots k\cdots (2k)\cdots n$ and so $n=k^2\big|(n-1)!$ and hence $(n-1)!=0 \mod n$. Thus when n is composite, if n=4 then $(n-1)!=2 \mod n$, and if n>4 then $(n-1)!=0 \mod n$. Suppose that n=p is prime. When p=2 we have $(p-1)!=1=-1 \mod p$, so suppose p is odd. Let $f(x)=x^{p-1}-1$. By Fermat's Little Theorem, f(x)=0 in \mathbf{Z}_p for every $x\in \mathbf{Z}_p$, and so f(x) factors in $\mathbf{Z}_p[x]$ as $f(x)=(x-1)(x-2)\cdots (x-(p-1))$. Put in x=0 to get $-1=(-1)^{p-1}(p-1)!\in \mathbf{Z}_p$. Since p is odd this

(b) Show that for a positive integer n > 1, $\left\lfloor \frac{(n-1)!+1}{n} - \left\lfloor \frac{(n-1)!}{n} \right\rfloor \right\rfloor = \begin{cases} 1 \text{ if } n \text{ is prime} \\ 0 \text{ if } n \text{ is composite} \end{cases}$

Solution: Suppose that n is prime. Then we have $(n-1)!=-1 \mod n$, say (n-1)!=-1+kn. Then $\left\lfloor \frac{(n-1)!+1}{n} - \left\lfloor \frac{(n-1)!}{n} \right\rfloor \right\rfloor = \left\lfloor k - \left\lfloor k - \frac{1}{n} \right\rfloor \right\rfloor = \left\lfloor k - (k-1) \right\rfloor = 1$. Now suppose that n=4. Then $\left\lfloor \frac{(n-1)!+1}{n} - \left\lfloor \frac{(n-1)!}{n} \right\rfloor \right\rfloor = \left\lfloor \frac{7}{4} - \left\lfloor \frac{3}{2} \right\rfloor \right\rfloor = \left\lfloor \frac{7}{4} - 1 \right\rfloor = 0$. Finally, suppose that n is composite with n>4. Then $(n-1)!=0 \mod n$, say (n-1)!=kn. Then $\left\lfloor \frac{(n-1)!+1}{n} - \left\lfloor \frac{(n-1)!}{n} \right\rfloor \right\rfloor = \left\lfloor k + \frac{1}{n} - \left\lfloor k \right\rfloor \right\rfloor = \left\lfloor k + \frac{1}{n} - k \right\rfloor = \left\lfloor \frac{1}{n} \right\rfloor = 0$.

7: (a) Show that there are infinitely many primes of the form 4n+3 where n is an integer.

Solution: Let p_1, p_2, \dots, p_k be any list of primes of the form 4n+3. Consider the number m=4 $p_1p_2\cdots p_n-1$. Since m is odd, its prime factors are odd, and every odd number is equal to 1 or 3 mod 4. It is not possible that every prime factor of m is equal to 1 mod 4, since m=3 mod 4. Thus m must have some prime factor, say p, which is equal to 3 mod 4. Note that p is not equal to any of the primes p_1, p_2, \dots, p_k since they are not factors of m. Thus given any k primes of the form 4n+3, there exists another such prime.

(b) Show that there are infinitely many primes of the form 4n+1 where n is an integer.

Solution: We claim that for any integer a, the number a^2+1 has no prime factors of the form 4n+3. To prove this, let p be any odd prime factor of a^2+1 . Then $a^2=-1 \mod p$. Raise both sides to the power of (p-1)/2 to get $a^{p-1}=(-1)^{(p-1)/2}$. Since $a^2=-1 \mod p$, p is not a factor of a, so by Fermat's Little Theorem $a^{p-1}=1 \mod p$, and so we have $1=(-1)^{(p-1)/2} \mod p$. Thus (p-1)/2 must be even and so p must be of the form 4n+1. This proves the claim.

Now let p_1, p_2, \dots, p_k be any primes of the form 4n + 1. Consider the number $m = (2p_1p_2 \cdots p_k)^2 + 1$. Since m is odd it has an odd prime factor, say p, and since m is of the form $a^2 + 1$, the prime p must be of the form 4n + 1. Note that p is not equal to any of the primes p_1, p_2, \dots, p_k since they are not factors of m. 8: For a positive integer n, let $\tau(n)$ denote the number of positive divisors of n and let $\sigma(n)$ denote the sum of the positive divisors of n.

(a) Show that if
$$n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$$
 is the prime factorization of n then $\tau(n) = \prod_{i=1}^m (k_i + 1)$ and $\sigma(n) = \prod_{i=1}^m \frac{p_i^{k_i+1} - 1}{p_i - 1}$

Solution: The positive factors of $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ are of the form $p_1^{j_1} p_2^{j_2} \cdots p_m^{j_m}$ with $0 \le j_i \le k_i$ for all i. Since there are $k_i + 1$ choices for the exponent j_i , the total number of factors is $\tau(n) = \prod_{m} (k_i + 1)$.

The factors of p^k are $1, p, p^2, \cdots, p^k$, so we have $\sigma(p^k) = 1 + p + p^2 + \cdots + p^k = \frac{p^{k+1} - 1}{p-1}$. Thus to show that the given formula for $\sigma(n)$ is correct, it suffices to show that $\sigma(rs) = \sigma(r)\sigma(s)$ whenever $\gcd(r,s) = 1$. When $\gcd(r,s) = 1$, the divisors d|rs are of the form d = ab where a|r and b|s, so we have $\sigma(rs) = \sum_{d|r} d = \sum_{a|r} \sum_{b|s} ab = \left(\sum_{a|r} a\right) \left(\sum_{b|s} b\right) = \sigma(r)\sigma(s)$, as desired.

(b) For which positive integers n is $\tau(n)$ odd?

Solution: $\tau(n)$ is odd when all primes have an even exponent in the prime factorization of n, that is when n is a square.

(c) For which positive integers n is $\sigma(n)$ odd?

Solution: Note that $\sigma(2^k) = (1 + 2 + 4 + \dots + 2^k)$ is odd for all values of $k \ge 1$, and note that for an odd prime p, $\sigma(p^k) = (1 + p + p^2 + \dots + p^k)$ is odd when k is even, so $\sigma(n)$ is odd when all odd primes have an even exponent in the prime factorization of n, that is when n is either a square or twice a square.

(d) For which positive integers n do we have $\phi(n) + \sigma(n) = 2n$?

Solution: We claim that for n>1, $\phi(n)+\sigma(n)=2n$ when n is prime and $\phi(n)+\sigma(n)>2n$ when n is composite. When p is prime we have $\phi(p)+\sigma(p)=(p-1)+(1+p)=2p$ When p is prime and $k\geq 2$ we have $\phi(p^k)+\sigma(p^k)=(p^k-p^{k-1})+(1+p+\cdots+p^{k-1}+p^k)=2p^k+(1+p+\cdots+p^{k-2})>2p^k$. Finally, suppose that r>1 and s>1 are coprime with $\phi(r)+\sigma(r)\geq 2r$ and $\phi(s)+\sigma(s)\geq 2s$. We need to show that $\phi(rs)+\sigma(rs)>2rs$. Let $\epsilon(r)=r-\phi(r)$ and $\epsilon(s)=s-\phi(s)$. Note that $\epsilon(r)>0$ and $\epsilon(s)>0$. Also, since $\phi(r)+\sigma(r)\geq 2r$ we have $r-\epsilon(r)+\sigma(r)\geq 2r$ so $\sigma(r)\geq r+\epsilon(r)$. Similarly $\sigma(s)\geq s+\epsilon(s)$, and so $\phi(rs)+\sigma(rs)=\phi(r)\phi(s)+\sigma(r)\sigma(s)\geq (r-\epsilon(r))(s-\epsilon(s))+(r+\epsilon(r))(s+\epsilon(s))=2rs+2\epsilon(r)\epsilon(s)>2rs$.

9: (a) Show that if $2^k + 1$ is prime then k must be a power of 2.

Solution: We remark that when r is odd, x = -1 is a root of $x^r + 1$, so x + 1 is a factor of $x^r + 1$. Suppose that k is not a power of 2. Then we can write $k = 2^n r$ for some $n \ge 0$ and some odd number r > 1, and then we have $2^k + 1 = 2^{2^n r} + 1$. By the above remark, $2^{2^n} + 1$ is a factor of $2^{2^n r} + 1 = 2^k + 1$, so $2^k + 1$ is not prime.

(b) Let $F_k = 2^{2^k} + 1$. Show that if $k \neq l$ then F_k and F_l are coprime.

Solution: We remark that x = -1 is a root of $x^{2^n} - 1$ and so x + 1 is a factor of $x^{2^n} - 1$. Let k < l. We claim that $F_k | (F_l - 2)$. Write n = l - k. Then $F_l - 2 = 2^{2^l} - 1 = 2^{2^{k+n}} - 1 = \left(2^{2^k}\right)^{2^n} - 1$. By the above remark, $2^{2^k} + 1$ is a factor of $\left(2^{2^k}\right)^{2^n} - 1$, that is $F_k | (F_l - 2)$, as claimed. Since $F_k | (F_l - 2)$ and F_k and F_l are odd, it follows that F_k and F_l are coprime.

10: (a) Let a > 1 and k > 1 be integers. Show that if $a^k - 1$ is prime then a = 2 and k is prime.

Solution: Suppose that a>2. Then $a^k-1=(a-1)(a^{k-1}+a^{k-2}+\cdots+a+1)$, and (a-1)>1 and $(a^{k-2}+a^{k-1}+\cdots+a+1)>1$, so a^k-1 is not be prime. Thus if a^k-1 is prime then we must have a=2. Now suppose that a=2 and that k=lm with 1< l and 1< m. Then $a^k-1=2^{lm}-1=\left(2^l\right)^m-1=\left(2^m-1\right)\left(\left(2^m\right)^{l-1}+\cdots+\left(2^m\right)+1\right)$, so 2^m-1 is a factor of $2^{lm}-1$. Since $1<2^m-1<1$ it follows that $2^{lm}-1$ is not prime.

(b) Let $M_k = 2^k - 1$. Show that if k and l are coprime then so are M_k and M_l .

Solution: Suppose that M_k and M_l are not coprime. Let $d = \gcd(M_k, M_l)$. Note that d is odd (since M_k and M_l are odd), so 2 is an invertible element in \mathbf{Z}_d . Let n be the order of 2 in \mathbf{Z}_d (so n is the smallest positive integer such that $2^n = 1$ in \mathbf{Z}_d). Since $d \mid M_k = 2^k - 1$ we have $2^k = 1 \in \mathbf{Z}_d$ and so $n \mid k$. Similarly $n \mid l$ and so $\gcd(k, l) \ge n > 1$.

(c) Show that if p is prime and q is a prime divisor of $M_p = 2^p - 1$, then $q = 1 \mod 2p$

Solution: Let q be a prime divisor of M_p . By Fermat's Little Theorem we have $2^{q-1} = 1 \mod q$ and so $q \mid (2^{q-1}-1) = M_{q-1}$. Since $q \mid M_{q-1}$ and $q \mid M_p$, we have $\gcd(M_{q-1}, M_p) \neq 1$, so by part (b) $\gcd(q-1, p) \neq 1$. Since p is prime, this implies that $p \mid (q-1)$ so $q=1 \mod p$. Since q and p are both odd, $q=1 \mod 2p$.

(d) List the 6 smallest prime numbers of the form $M_p = 2^p - 1$ with p prime.

Solution: We have $M_2=3$, $M_3=7$, $M_5=31$, $M_7=127$, $M_{11}=2047$, $M_{13}=8191$ and $M_{17}=131071$. The first 4 of these, 3, 7, 31 and 127 are easily seen to be prime. If q is a prime factor of M_{11} then by part (c) we have $q=1 \mod 22$, that is $q=1,23,45,\cdots$. We try q=23 and find that $M_{11}=23\cdot 89$, so M_{11} is not prime. If q is a prime factor of M_{13} then $q=1 \mod 26$. The only such primes with $q \leq \sqrt{M_{13}}$ are q=53 and 79. We test 53 and 79 and find they are not factors of M_{13} , so M_{13} is prime. Finally, if q is a prime factor of M_{17} then by part (c) we have $q=1 \mod 34$, and the only primes q with $q=1 \mod 34$ and $q \leq \sqrt{M_{17}}$ are q=103,137,239 and 307. We try each of these and find they are not factors of M_{17}

11: Show that every rational number p/q, where p and q are integers with 0 , can be represented as a sum of distinct fractions of the form <math>1/n, where n is a positive integer.

Solution: Given the rational number $\frac{p}{q}$ with $0 , we choose that smallest positive integer <math>n_1$ with $\frac{1}{n_1} \le \frac{p}{q}$, then if $\frac{1}{n_1} \ne \frac{p}{q}$ we choose the smallest positive integer n_2 such that $\frac{1}{n_1} + \frac{1}{n_2} \le \frac{p}{q}$, then if $\frac{1}{n_1} + \frac{1}{n_2} \ne \frac{p}{q}$ we choose the smallest positive integer n_3 such that $\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \le \frac{p}{q}$, and so on. Note that we have $1 < n_1 < n_2 < n_3 < \cdots$ since if we had $n_{k+1} \le n_k$ then we would have $\frac{p}{q} \ge \frac{1}{n_1} + \cdots + \frac{1}{n_{k-1}} + \frac{1}{n_k} + \frac{1}{n_{k+1}} \ge \frac{1}{n_1} + \cdots + \frac{1}{n_{k-1}} + \frac{1}{n_k} + \frac{1}{n_{k+1}} + \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_1} + \cdots + \frac{1}{n_{k-1}} + \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} + \frac{1}{n_k} = \frac{1}{n_k} + \frac{1$

12: Let α and β be positive irrational numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. For $n \ge 1$ let $a_n = \lfloor n\alpha \rfloor$ and let $b_n = \lfloor n\beta \rfloor$. Show that the two sequences $\{a_n\}$ and $\{b_n\}$ are disjoint and that every positive integer occurs as a term in one of the two sequences.

Solution: Suppose, for a contradiction, that $\{a_n\}$ and $\{b_n\}$ are not disjoint, say $\lfloor n\alpha \rfloor = \lfloor mb \rfloor = k$. Since α and β are irrational, we have $k < n\alpha < k+1$ and $k < m\beta < k+1$. Since $(k < n\alpha \text{ and } k < m\beta)$ we have $(\frac{n}{k} > \frac{1}{\alpha} \text{ and } \frac{m}{k} > \frac{1}{\beta})$ and so $\frac{n+m}{k} > \frac{1}{\alpha} + \frac{1}{\beta} = 1$, and hence n+m > k. Similarly, since $(n\alpha < k+1)$ and $n\beta < k+1$, we have n+m < k+1. This gives the desired contradiction, since we cannot have k < n+m < k+1, so the sequences $\{a_n\}$ and $\{b_n\}$ are disjoint.

Note that since $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ we have $\frac{1}{\alpha} < 1$ so $\alpha > 1$, and so $\lfloor n\alpha \rfloor < \lfloor (n+1)\alpha \rfloor$. Thus the elements of $\{a_n\}$ are distinct. Also note that since $\lfloor \frac{k}{\alpha} \rfloor < \frac{k}{\alpha}$, we have $\lfloor \frac{k}{\alpha} \rfloor \alpha < k$, and since $\lfloor \frac{k}{\alpha} \rfloor > \frac{k}{\alpha} - 1$ we have $\lfloor \frac{k}{\alpha} \rfloor \alpha > k - \alpha$ so $(\lfloor \frac{k}{\alpha} \rfloor + 1) \alpha > k$, and so the number of elements in the sequence $\{a_n\}$ which are less than k is equal to $\lfloor \frac{k}{\alpha} \rfloor$. Similarly, the number of elements in the sequence $\{b_n\}$ which are less than k is equal to $\lfloor \frac{k}{\beta} \rfloor$. Thus in order to show that every positive integer occurs as a term in one of the two sequences, it suffices to show that $\lfloor \frac{k}{\alpha} \rfloor + \lfloor \frac{k}{\beta} \rfloor = k - 1$ for every positive integer k.

Since $\frac{k}{\alpha} - 1 < \lfloor \frac{k}{\alpha} \rfloor < \frac{k}{\alpha}$ and $\frac{k}{\beta} - 1 < \lfloor \frac{k}{\beta} \rfloor < \frac{k}{\beta}$, we have $k - 2 = \frac{k}{\alpha} + \frac{k}{\beta} - 2 < \lfloor \frac{k}{\alpha} \rfloor + \lfloor \frac{k}{\beta} \rfloor < \frac{k}{\alpha} + \frac{k}{\beta} = k$, and so $\lfloor \frac{k}{\alpha} \rfloor + \lfloor \frac{k}{\beta} \rfloor = k - 1$, as required.