Solutions to the Number Theory Problems

: Show that {(2 + \/§)”J is odd for every positive integer n.

Solution: Notice that (2-+v3)"+(2-v3)" = Y- (1) 2" V8 + L (-1) (1) 2 V3 =2 % (3) 273,
i=0 i=0 j=0

which is an even number, and we have 0 < (2 — V3)" < 1, so L(Q + \/3)"J is odd.

: Show that there is no non-constant polynomial f(x) with integral coefficients such that f(n) is prime for
every positive integer n.

Solution: Suppose, for a contradiction, that f is such a polynomial. Let p = f(1), which is prime. Note that
when n = 1 mod p, we have f(n) = f(1) = 0 mod p, so p divides f(n). Since f(n) is prime and p divides
f(n), we must have f(n) = p. Thus there are infinitely many values of n such that f(n) = p, and so the
polynomial g(z) = f(x) — p has infinitely many roots. But then g(z) = 0 for all z and so f(x) = p for all x.

: Find all prime powers p* with k > 1 such that p* = 2" £ 1 for some integer n.

Solution: Suppose first that p* =27 + 1. Then 2" =pF — 1= (p—)(P* 1 +p* 2+ +p+1),50 (p—1)
and (p*~' 4 ... 4+ p + 1) are both powers of 2. Since p is odd and (p*~! +--- + p+ 1) is even, k must be
even, say k = 2m. Then we have 2" = p*™ — 1 = (p™ — 1)(p™ + 1), so (p™ — 1) and (p™ + 1) are powers of
2 that differ by 2, hence we must have p”™ — 1 =2 and p™ + 1 =4, and so p = 3 and m = 1. Thus there is
only one prime power p* of the form 2* + 1, namely 32 = 9.

Next we suppose that p¥ = 2" —1. If n is even, say n = 2m, then we have p¥ = 22" -1 = (2™ +1)(2™ 1),
but then p|(2™+1) and pL(?m —1) so p = 1, which is not possible. Thus n must be odd, say n = 2m+1. If k
is even, say k = 21, then p? = 22™*1 —1, but then since p is odd, p?> = 1 mod 4 so p* = 1 mod 4, so we would
have 22m+1 = p2l + 1 = 2 mod 4, so that m = 0, which is not possible. Thus & is odd, so we have p* = 2" —1
with & and n both odd. We have 2" = p* +1 = (p+1)(pF~* —pF¥=2+4..-+1), 50 (p+1) is a power of 2, say
p+1=2" Then2" =pF+1=(2'=1)F+1 = (2)"—2)* 1+ -+ (2)-1)+1 = (2)F - (21 +... (21,
and this is an odd multiple of 2'. Since 2" is an odd multiple of 2! we must have 2" = 2. So we have
2" = p¥ 41 = (2" — 1)¥ + 1. This only happens when n = 1 or when k = 1, neither of which is allowed.
Thus there are no prime powers p* of the form 2% — 1.

We remark that we never made use of the fact that p is prime.

: Find all positive integers n such that n* + 4" is prime.

Solution: When n = 1, n* +4" = 5, which is prime. We claim that when n > 1, n* +4" is not prime. When
n is even, n* 4+ 4" is even and more that 2, so it is not prime. When n is odd, say n = 2k + 1, we make use
of the factorization (z* + 4y*) = (22 + 2wy + 2y2)(2? — 2zy + 2y?) to get n* + 47 = (2k + 1)* + 42++1 =
(2k + 1)* +4(28) = ((2k + 1) + 2(2k + 1)(2%) + 2(2%)2) ((2k + 1)? — 2(2k + 1)(2%) + 2(2¥)?). Note that
when k£ > 0, both factors are greater than 1.



5: Find all integral solutions to 2 + y2 + 22 = 22y2.

Solution: Let (zo, Yo, 20) be a solution. Working modulo 4 we have the following: if all three of the numbers
z0, yo and zp are odd, then z¢% + yo? + 202 = 3 mod 4 but z¢2yo? = 1 mod 4; if two of the three numbers
are odd then z¢? + yo? + 202 = 2 mod 4 but z¢2yo2 = 1 or 0 mod 4; if one of the three numbers is odd
then 02 + y02 + 202 = 1 mod 4 while z%y9? = 0 mod 4. Thus all three of the numbers zg, yo and zy must
be even, say zg = 2x1, yo = 2y, and zp = 2z;. Note that we have 212 4+ 1,2 + 212 = 42,%y;2. Working
modulo 4 we find that all three of the numbers z1, y; and z; are even, say 1 = 2x9, y1 = 2y2 and z; = 225.
Continuing in this way, we obtain a sequence of triples (zx, yr, zx) With 32 +yp? + 22 = 4F24 %y, and with
Tk = 22k11, Yk = 2Yk+1 and 2z = 22;41. Since xg = 227 = 22x9 = = 2%z, = ... so that ¢ is a multiple
of 2F for every k, we must have 2o = 0. Similarly, 5o = 2o = 0. Thus the only solution to the given equation
is the zero solution.

6: (a) Prove Wilson’s Theorem: for an integer n > 1, n is prime <= (n —1)! = —1 mod n.

Solution: If n = 4 then we have (n —1)! = 3! = 6 = 2 mod 4. If n = kl where 1 < k <! < n then
n-=1-2---k---l---(n=1) son:kl’(n—l)! and we have (n — 1)! = 0 mod n. If n = k? with k > 2
then we have 1 <k <2k <nso(n—1)!=1-2---k---(2k)---n and so n = k?|(n—1)! and hence (n—1)! = 0
mod n. Thus when n is composite, if n = 4 then (n — 1)! = 2 mod n, and if n > 4 then (n — 1)! = 0 mod n.

Suppose that n = p is prime. When p = 2 we have (p — 1)! =1 = —1 mod p, so suppose p is odd. Let
f(z) = zP~! — 1. By Fermat’s Little Theorem, f(z) = 0 in Z, for every x € Z,, and so f(z) factors in Z,[z]
as f(z) = (x—1)(z—2)--- (x—(p—1)). Putinz =0 to get —1 = (—1)?"1(p—1)! € Z,,. Since p is odd this
gives (p— 1)l = -1 € Z,,.

1 if n is prime

n n

(b) Show that for a positive integer n > 1, [("_1)!“ — [("_1)!H = o )
0 if n is composite

Solution: Suppose that n is prime. Then we have (n — 1) = —1 mod n, say (n — 1)! = —1 4 kn.
Then [&=DHL | 02D |k~ k= 4]] = |k = (k= 1)] = 1. Now suppose that n = 4. Then

n n

L(”_l)!ﬂ - L(”_l)!H =[2—1[2]] = | -1 = 0. Finally, suppose that n is composite with n > 4. Then

n n 2

(n—1)! = 0 mod n, say (n—1)! = kn. Then V"_:l)!ﬂ - V"_l)!H =|k+1—|k]]=|k+i-Kk]=|L]=0.

n n

7: (a) Show that there are infinitely many primes of the form 4n + 3 where n is an integer.

Solution: Let p1,po, - - -, px be any list of primes of the form 4n+3. Consider the number m = 4pyps - - - p, — 1.
Since m is odd, its prime factors are odd, and every odd number is equal to 1 or 3 mod 4. It is not possible
that every prime factor of m is equal to 1 mod 4, since m = 3 mod 4. Thus m must have some prime factor,
say p, which is equal to 3 mod 4. Note that p is not equal to any of the primes p1,ps, - -, px since they are
not factors of m. Thus given any k primes of the form 4n + 3, there exists another such prime.

(b) Show that there are infinitely many primes of the form 4n + 1 where n is an integer.

Solution: We claim that for any integer a, the number a? + 1 has no prime factors of the form 4n + 3. To
prove this, let p be any odd prime factor of a? + 1. Then a?> = —1 mod p. Raise both sides to the power
of (p—1)/2 to get a?~' = (=1)P=1/2, Since a®> = —1 mod p, p is not a factor of a, so by Fermat’s Little
Theorem a?~! = 1 mod p, and so we have 1 = (—1)?=1/2 mod p. Thus (p — 1)/2 must be even and so p
must be of the form 4n + 1. This proves the claim.

Now let p1,pa, -+, px be any primes of the form 4n + 1. Consider the number m = (2p1ps -+ - pi)? + 1.
Since m is odd it has an odd prime factor, say p, and since m is of the form a? + 1, the prime p must be of
the form 4n + 1. Note that p is not equal to any of the primes p1,po, - - -, pr. since they are not factors of m.



8: For a positive integer n, let 7(n) denote the number of positive divisors of n and let o(n) denote the sum of

the positive divisors of n. .

(a) Show that if n = py*1po*2 - - - p,,*= is the prime factorization of n then 7(n) = H(kZ +1)
mop kil g i=1

and o(n) = H (O

i Pl
Solution: The positive factors of n = p¥1pa*2 - - p,, Fm are of the form p17py?2 - - - p,,Im with 0 < j; < k; for
m
all 4. Since there are k; + 1 choices for the exponent j;, the total number of factors is 7(n) = H(kl +1).
=1
ka -1

p

The factors of p* are 1,p,p?, ---,p*, so we have o(p¥) = 1 +p+p? +--- +pF = Thus

to show that the given formula for o(n) is correct, it suffices to show that o(rs) = o(r)o(s) whenever
ged(r, s) = 1. When ged(r, s) = 1, the divisors d|rs are of the form d = ab where a|r and b|s, so we have

o(rs) = Z d= Z Z ab = (Z a) (Z b) =o(r)o(s), as desired.
drs alr bls alr bls

(b) For Wlhich pOSIitiV(‘% integers nl is 7(n) ‘odd?

Solution: 7(n) is odd when all primes have an even exponent in the prime factorization of n, that is when

n is a square.

(¢c) For which positive integers n is o(n) odd?

Solution: Note that o(2¥) = (1 +2+4 + --- + 2¥) is odd for all values of k > 1, and note that for an odd

prime p, o(p*) = (1 +p +p? +--- + p¥) is odd when k is even, so o(n) is odd when all odd primes have an
even exponent in the prime factorization of n, that is when n is either a square or twice a square.

(d) For which positive integers n do we have ¢(n) + o(n) = 2n?

Solution: We claim that for n > 1, ¢(n) + o(n) = 2n when n is prime and ¢(n) + o(n) > 2n when n is
composite. When p is prime we have ¢(p) + o(p) = (p — 1) + (1 + p) = 2p When p is prime and k > 2 we
have ¢(p*) +o(p*) = (" —p* )+ A +p+ -+ +p") = 20" + 1+ p+--- +p"2) > 2pF. Finally,
suppose that 7 > 1 and s > 1 are coprime with ¢(r) + o(r) > 2r and ¢(s) + o(s) > 2s. We need to show
that ¢(rs) + o(rs) > 2rs. Let e(r) = r — ¢(r) and €(s) = s — ¢(s). Note that e(r) > 0 and e(s) > 0. Also,
since ¢(r) + o(r) > 2r we have r — e(r) + o(r) > 2r so o(r) > r + €(r). Similarly o(s) > s + €(s), and so
o(rs) +o(rs) = o(r)p(s) + a(r)o(s) > (r —e(r))(s —e(s)) + (r + €(r)) (s + €(s)) = 2rs + 2¢(r)e(s) > 2rs.

9: (a) Show that if 2¥ + 1 is prime then k must be a power of 2.

Solution: We remark that when 7 is odd, x = —1 is a root of " + 1, so = + 1 is a factor of " + 1. Suppose
that k is not a power of 2. Then we can write k = 2"r for some n > 0 and some odd number 7 > 1, and
then we have 2F + 1 = 22"" + 1. By the above remark, 22" + 1 is a factor of 22"" +1=2F + 1, s0 28 + 1 is
not prime.

(b) Let Fy, = 22" + 1. Show that if k # [ then F, and F} are coprime.
Solution: We remark that z = —1 is a root of 22" — 1 and so = + 1 is a factor of 22" — 1. Let k < [. We

2’71
claim that Fk’(Fl —2). Write n =1 —k. Then F; —2 = 92 1 =292 1= (22k) — 1. By the above

gn
remark, 92" 1 1 is a factor of <22k) — 1, that is Fk‘(Fl — 2), as claimed. Since Fk‘(Fl —2) and Fy, and F;

are odd, it follows that Fj and F; are coprime.



10: (a) Let a > 1 and k > 1 be integers. Show that if a¥ — 1 is prime then a = 2 and k is prime.

11:

Solution: Suppose that a > 2. Then a* —1 = (a — 1)(a* ' 4+ a* 2 +---+a+1), and (a —1) > 1 and
(@*2+ak1+..-+a+1) > 1,50 a* —1is not be prime. Thus if a* — 1 is prime then we must have a = 2.
Now suppose that @ = 2 and that k = Im with 1 </ and 1 < m. Then a* —1 =2 — 1 = (Ql)m —-1=

2™ —1) ((2M)l‘1 Fob (2 + 1), 50 27 — 1 s a factor of 2 — 1. Since 1 < 2 — 1 < 2™ — 1 it follows

that 2/ — 1 is not prime.
(b) Let Mj, = 2% — 1. Show that if k£ and [ are coprime then so are M}, and M;.

Solution: Suppose that My and M; are not coprime. Let d = ged(My, M;). Note that d is odd (since My
and M; are odd), so 2 is an invertible element in Z;. Let n be the order of 2 in Zy (so n is the smallest
positive integer such that 2" = 1 in Zg4). Since d}Mk = 2F — 1 we have 2" = 1 € Z, and so n|k Similarly
n|l and so ged(k,1) >n > 1.

(c) Show that if p is prime and ¢ is a prime divisor of M, = 2P — 1, then ¢ = 1 mod 2p

Solution: Let ¢ be a prime divisor of M,. By Fermat’s Little Theorem we have 29! = 1 mod ¢ and so
q’(2‘1_1 —1) = M,_;. Since q’Mq_l and q’Mp, we have ged(My_1, M,) # 1, so by part (b) ged(¢—1,p) # 1.
Since p is prime, this implies that p’(q —1) so ¢ =1 mod p. Since ¢ and p are both odd, ¢ = 1 mod 2p.

(d) List the 6 smallest prime numbers of the form M, = 2P — 1 with p prime.

Solution: We have My = 3, M3 =7, M5 = 31, My = 127, M1; = 2047, M3 = 8191 and M;; = 131071. The
first 4 of these, 3, 7, 31 and 127 are easily seen to be prime. If ¢ is a prime factor of M7; then by part (c) we
have ¢ = 1 mod 22, that is ¢ = 1,23,45,---. We try ¢ = 23 and find that M;; = 2389, so M;; is not prime.
If ¢ is a prime factor of Mi3 then ¢ = 1 mod 26. The only such primes with ¢ < /M3 are ¢ = 53 and 79.
We test 53 and 79 and find they are not factors of Mi3, so M3 is prime. Finally, if ¢ is a prime factor of
M7 then by part (c) we have ¢ = 1 mod 34, and the only primes ¢ with ¢ = 1 mod 34 and ¢ < /M7 are
q = 103,137,239 and 307. We try each of these and find they are not factors of M7

Show that every rational number p/q, where p and ¢ are integers with 0 < p < ¢, can be represented as a
sum of distinct fractions of the form 1/n, where n is a positive integer.

Solution: Given the rational number g

1 P : P 3 . ; it 3 . 1 1 P e 1 1 P
- < o then if - #+ g we choose the smallest positive integer ns such that T < o then if rolaatee #* E

1

ny 77,7

we choose the smallest positive integer ng such that n% + n% + n%, < %,
a < oS i [ S S 1 1 1

1<ng <no<ng< since if we had ngy1 < ny then we would have 7 > ot +tao o ta Tt v >

i 4 ﬁ + % > i 4+t nkl—l + nkl—l contradicting our choice of ng. Also note that by our choice

with 0 < p < ¢, we choose that smallest positive integer n; with

and so on. Note that we have

of nq we have n% < g < nlil son;—1< % and so pn; —p < ¢ and hence pn; — ¢ < p, and so the numerator
of f]l — n% = pv(;%q is smaller than the numerator of %. Similarly, we see that the numerators of the fractions
1

PR nik decrease with each value of k. Eventually, the numerator becomes zero, and we obtain
%:LJ’_L_F..._Fi_



12: Let o and S be positive irrational numbers such that é—i—% =1. For n > 1let a,, = |na] and let b, = [n3].

Show that the two sequences {a,,} and {b,} are disjoint and that every positive integer occurs as a term in
one of the two sequences.

Solution: Suppose, for a contradiction, that {a,} and {b,} are not disjoint, say |na| = [mb| = k. Since
o and f are irrational, we have k < nov < k+ 1 and k < mB < k+ 1. Since (k < no and k < mj3) we
have (# > 1 and 3¢ > %) and so %41 > i+% =1, and hence n+ m > k. Similarly, since (na < k+ 1
and nfg < k+ 1), we have n +m < k + 1. This gives the desired contradiction, since we cannot have
kE<n+m<k+1, so the sequences {a,} and {b,} are disjoint.

Note that since & + 4 = 1 we have & < 150 a > 1, and so |na] < |(n + 1)a). Thus the clements

of {a,} are distinct. Also note that since LgJ < g, we have ng o < k, and since {gJ > g — 1 we have

ng a>k—aso (LEJ + 1) a >k, and so the number of elements in the sequence {a, } which are less than
k is equal to ng Similarly, the number of elements in the sequence {b,} which are less than k is equal
to L%J Thus in order to show that every positive integer occurs as a term in one of the two sequences, it
suffices to show that LgJ + L%J =k — 1 for every positive integer k.

Since§—1< Lﬂ <§and%—1< LEJ <%7wehavek—2:§+%—2< LH—FL%J <§+

= k
B o )
and so LEJ + L%J =k — 1, as required.

k
B



