
Solutions to the Number Theory Problems

1: Show that
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which is an even number, and we have 0 < (2−
√

3)n < 1, so
⌊
(2 +

√
3)n
⌋

is odd.

2: Show that there is no non-constant polynomial f(x) with integral coefficients such that f(n) is prime for
every positive integer n.

Solution: Suppose, for a contradiction, that f is such a polynomial. Let p = f(1), which is prime. Note that
when n = 1 mod p, we have f(n) = f(1) = 0 mod p, so p divides f(n). Since f(n) is prime and p divides
f(n), we must have f(n) = p. Thus there are infinitely many values of n such that f(n) = p, and so the
polynomial g(x) = f(x)− p has infinitely many roots. But then g(x) = 0 for all x and so f(x) = p for all x.

3: Find all prime powers pk with k > 1 such that pk = 2n ± 1 for some integer n.

Solution: Suppose first that pk = 2n + 1. Then 2n = pk − 1 = (p− 1)(pk−1 + pk−2 + · · ·+ p+ 1), so (p− 1)
and (pk−1 + · · · + p + 1) are both powers of 2. Since p is odd and (pk−1 + · · · + p + 1) is even, k must be
even, say k = 2m. Then we have 2n = p2m − 1 = (pm − 1)(pm + 1), so (pm − 1) and (pm + 1) are powers of
2 that differ by 2, hence we must have pm − 1 = 2 and pm + 1 = 4, and so p = 3 and m = 1. Thus there is
only one prime power pk of the form 2k + 1, namely 32 = 9.

Next we suppose that pk = 2n−1. If n is even, say n = 2m, then we have pk = 22m−1 = (2m+1)(2m−1),
but then p

∣∣(2m+1) and p
∣∣(2m−1) so p = 1, which is not possible. Thus n must be odd, say n = 2m+1. If k

is even, say k = 2l, then p2l = 22m+1−1, but then since p is odd, p2 = 1 mod 4 so p2l = 1 mod 4, so we would
have 22m+1 = p2l+1 = 2 mod 4, so that m = 0, which is not possible. Thus k is odd, so we have pk = 2n−1
with k and n both odd. We have 2n = pk + 1 = (p+ 1)(pk−1− pk−2 + · · · ± 1), so (p+ 1) is a power of 2, say
p+1 = 2l. Then 2n = pk+1 = (2l−1)k+1 =

(
(2l)k−(2l)k−1+ · · ·+(2l)−1

)
+1 = (2l)k−(2l)k−1+ · · ·+(2l),

and this is an odd multiple of 2l. Since 2n is an odd multiple of 2l we must have 2n = 2l. So we have
2n = pk + 1 = (2n − 1)k + 1. This only happens when n = 1 or when k = 1, neither of which is allowed.
Thus there are no prime powers pk of the form 2k − 1.

We remark that we never made use of the fact that p is prime.

4: Find all positive integers n such that n4 + 4n is prime.

Solution: When n = 1, n4 + 4n = 5, which is prime. We claim that when n > 1, n4 + 4n is not prime. When
n is even, n4 + 4n is even and more that 2, so it is not prime. When n is odd, say n = 2k + 1, we make use
of the factorization (x4 + 4y4) = (x2 + 2xy + 2y2)(x2 − 2xy + 2y2) to get n4 + 4n = (2k + 1)4 + 42k+1 =
(2k + 1)4 + 4(2k)4 =

(
(2k + 1)2 + 2(2k + 1)(2k) + 2(2k)2

)(
(2k + 1)2 − 2(2k + 1)(2k) + 2(2k)2

)
. Note that

when k > 0, both factors are greater than 1.



5: Find all integral solutions to x2 + y2 + z2 = x2y2.

Solution: Let (x0, y0, z0) be a solution. Working modulo 4 we have the following: if all three of the numbers
x0, y0 and z0 are odd, then x0

2 + y0
2 + z0

2 = 3 mod 4 but x0
2y0

2 = 1 mod 4; if two of the three numbers
are odd then x0

2 + y0
2 + z0

2 = 2 mod 4 but x0
2y0

2 = 1 or 0 mod 4; if one of the three numbers is odd
then x0

2 + y0
2 + z0

2 = 1 mod 4 while x0
2y0

2 = 0 mod 4. Thus all three of the numbers x0, y0 and z0 must
be even, say x0 = 2x1, y0 = 2y1 and z0 = 2z1. Note that we have x1

2 + y1
2 + z1

2 = 4x1
2y1

2. Working
modulo 4 we find that all three of the numbers x1, y1 and z1 are even, say x1 = 2x2, y1 = 2y2 and z1 = 2z2.
Continuing in this way, we obtain a sequence of triples (xk, yk, zk) with xk

2 +yk
2 + zk

2 = 4kxk
2yk

2 and with
xk = 2xk+1, yk = 2yk+1 and zk = 2zk+1. Since x0 = 2x1 = 22x2 = · · · = 2kxk = · · · so that x0 is a multiple
of 2k for every k, we must have x0 = 0. Similarly, y0 = z0 = 0. Thus the only solution to the given equation
is the zero solution.

6: (a) Prove Wilson’s Theorem: for an integer n > 1, n is prime ⇐⇒ (n− 1)! = −1 mod n.

Solution: If n = 4 then we have (n − 1)! = 3! = 6 = 2 mod 4. If n = kl where 1 < k < l < n then
(n− 1)! = 1 · 2 · · · k · · · l · · · (n− 1) so n = kl

∣∣(n− 1)! and we have (n− 1)! = 0 mod n. If n = k2 with k > 2

then we have 1 < k < 2k < n so (n−1)! = 1 ·2 · · · k · · · (2k) · · ·n and so n = k2
∣∣(n−1)! and hence (n−1)! = 0

mod n. Thus when n is composite, if n = 4 then (n− 1)! = 2 mod n, and if n > 4 then (n− 1)! = 0 mod n.
Suppose that n = p is prime. When p = 2 we have (p− 1)! = 1 = −1 mod p, so suppose p is odd. Let

f(x) = xp−1− 1. By Fermat’s Little Theorem, f(x) = 0 in Zp for every x ∈ Zp, and so f(x) factors in Zp[x]
as f(x) = (x− 1)(x− 2) · · · (x− (p− 1)). Put in x = 0 to get −1 = (−1)p−1(p− 1)! ∈ Zp. Since p is odd this
gives (p− 1)! = −1 ∈ Zp.

(b) Show that for a positive integer n > 1,
⌊
(n−1)!+1

n −
⌊
(n−1)!
n

⌋⌋
=

{
1 if n is prime

0 if n is composite

Solution: Suppose that n is prime. Then we have (n − 1)! = −1 mod n, say (n − 1)! = −1 + kn.

Then
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⌋
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⌊
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=
⌊
7
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⌋
= 0. Finally, suppose that n is composite with n > 4. Then

(n−1)! = 0 mod n, say (n−1)! = kn. Then
⌊
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⌊
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⌊
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7: (a) Show that there are infinitely many primes of the form 4n+ 3 where n is an integer.

Solution: Let p1, p2, · · · , pk be any list of primes of the form 4n+3. Consider the number m = 4 p1p2 · · · pn−1.
Since m is odd, its prime factors are odd, and every odd number is equal to 1 or 3 mod 4. It is not possible
that every prime factor of m is equal to 1 mod 4, since m = 3 mod 4. Thus m must have some prime factor,
say p, which is equal to 3 mod 4. Note that p is not equal to any of the primes p1, p2, · · · , pk since they are
not factors of m. Thus given any k primes of the form 4n+ 3, there exists another such prime.

(b) Show that there are infinitely many primes of the form 4n+ 1 where n is an integer.

Solution: We claim that for any integer a, the number a2 + 1 has no prime factors of the form 4n + 3. To
prove this, let p be any odd prime factor of a2 + 1. Then a2 = −1 mod p. Raise both sides to the power
of (p − 1)/2 to get ap−1 = (−1)(p−1)/2. Since a2 = −1 mod p, p is not a factor of a, so by Fermat’s Little
Theorem ap−1 = 1 mod p, and so we have 1 = (−1)(p−1)/2 mod p. Thus (p − 1)/2 must be even and so p
must be of the form 4n+ 1. This proves the claim.

Now let p1, p2, · · · , pk be any primes of the form 4n+ 1. Consider the number m = (2p1p2 · · · pk)2 + 1.
Since m is odd it has an odd prime factor, say p, and since m is of the form a2 + 1, the prime p must be of
the form 4n+ 1. Note that p is not equal to any of the primes p1, p2, · · · , pk since they are not factors of m.



8: For a positive integer n, let τ(n) denote the number of positive divisors of n and let σ(n) denote the sum of
the positive divisors of n.

(a) Show that if n = p1
k1p2

k2 · · · pmkm is the prime factorization of n then τ(n) =

m∏
i=1

(ki + 1)

and σ(n) =

m∏
i=1

pi
ki+1 − 1

pi − 1

Solution: The positive factors of n = p1
k1p2

k2 · · · pmkm are of the form p1
j1p2

j2 · · · pmjm with 0 ≤ ji ≤ ki for

all i. Since there are ki + 1 choices for the exponent ji, the total number of factors is τ(n) =

m∏
i=1

(ki + 1).

The factors of pk are 1, p, p2, · · · , pk, so we have σ(pk) = 1 + p + p2 + · · · + pk =
pk+1 − 1

p− 1
. Thus

to show that the given formula for σ(n) is correct, it suffices to show that σ(rs) = σ(r)σ(s) whenever
gcd(r, s) = 1. When gcd(r, s) = 1, the divisors d|rs are of the form d = ab where a|r and b|s, so we have

σ(rs) =
∑
d|rs

d =
∑
a|r

∑
b|s

ab =

(∑
a|r

a

)(∑
b|s

b

)
= σ(r)σ(s), as desired.

(b) For which positive integers n is τ(n) odd?

Solution: τ(n) is odd when all primes have an even exponent in the prime factorization of n, that is when
n is a square.

(c) For which positive integers n is σ(n) odd?

Solution: Note that σ(2k) = (1 + 2 + 4 + · · · + 2k) is odd for all values of k ≥ 1, and note that for an odd
prime p, σ(pk) = (1 + p+ p2 + · · ·+ pk) is odd when k is even, so σ(n) is odd when all odd primes have an
even exponent in the prime factorization of n, that is when n is either a square or twice a square.

(d) For which positive integers n do we have φ(n) + σ(n) = 2n?

Solution: We claim that for n > 1, φ(n) + σ(n) = 2n when n is prime and φ(n) + σ(n) > 2n when n is
composite. When p is prime we have φ(p) + σ(p) = (p − 1) + (1 + p) = 2p When p is prime and k ≥ 2 we
have φ(pk) + σ(pk) = (pk − pk−1) + (1 + p + · · · + pk−1 + pk) = 2pk + (1 + p + · · · + pk−2) > 2pk. Finally,
suppose that r > 1 and s > 1 are coprime with φ(r) + σ(r) ≥ 2r and φ(s) + σ(s) ≥ 2s. We need to show
that φ(rs) + σ(rs) > 2rs. Let ε(r) = r − φ(r) and ε(s) = s − φ(s). Note that ε(r) > 0 and ε(s) > 0. Also,
since φ(r) + σ(r) ≥ 2r we have r − ε(r) + σ(r) ≥ 2r so σ(r) ≥ r + ε(r). Similarly σ(s) ≥ s + ε(s), and so
φ(rs) + σ(rs) = φ(r)φ(s) + σ(r)σ(s) ≥ (r − ε(r))(s− ε(s)) + (r + ε(r))(s+ ε(s)) = 2rs+ 2ε(r)ε(s) > 2rs.

9: (a) Show that if 2k + 1 is prime then k must be a power of 2.

Solution: We remark that when r is odd, x = −1 is a root of xr + 1, so x+ 1 is a factor of xr + 1. Suppose
that k is not a power of 2. Then we can write k = 2nr for some n ≥ 0 and some odd number r > 1, and
then we have 2k + 1 = 22

nr + 1. By the above remark, 22
n

+ 1 is a factor of 22
nr + 1 = 2k + 1, so 2k + 1 is

not prime.

(b) Let Fk = 22
k

+ 1. Show that if k 6= l then Fk and Fl are coprime.

Solution: We remark that x = −1 is a root of x2
n − 1 and so x + 1 is a factor of x2

n − 1. Let k < l. We

claim that Fk
∣∣(Fl − 2). Write n = l − k. Then Fl − 2 = 22

l − 1 = 22
k+n − 1 =

(
22

k
)2n
− 1. By the above

remark, 22
k

+ 1 is a factor of
(

22
k
)2n
− 1, that is Fk

∣∣(Fl − 2), as claimed. Since Fk
∣∣(Fl − 2) and Fk and Fl

are odd, it follows that Fk and Fl are coprime.



10: (a) Let a > 1 and k > 1 be integers. Show that if ak − 1 is prime then a = 2 and k is prime.

Solution: Suppose that a > 2. Then ak − 1 = (a − 1)(ak−1 + ak−2 + · · · + a + 1), and (a − 1) > 1 and
(ak−2 + ak−1 + · · ·+ a+ 1) > 1, so ak − 1 is not be prime. Thus if ak − 1 is prime then we must have a = 2.
Now suppose that a = 2 and that k = lm with 1 < l and 1 < m. Then ak − 1 = 2lm − 1 =

(
2l
)m − 1 =

(2m − 1)
(

(2m)
l−1

+ · · ·+ (2m) + 1
)

, so 2m − 1 is a factor of 2lm − 1. Since 1 < 2m − 1 < 2lm − 1 it follows

that 2lm − 1 is not prime.

(b) Let Mk = 2k − 1. Show that if k and l are coprime then so are Mk and Ml.

Solution: Suppose that Mk and Ml are not coprime. Let d = gcd(Mk,Ml). Note that d is odd (since Mk

and Ml are odd), so 2 is an invertible element in Zd. Let n be the order of 2 in Zd (so n is the smallest
positive integer such that 2n = 1 in Zd). Since d

∣∣Mk = 2k − 1 we have 2k = 1 ∈ Zd and so n
∣∣k. Similarly

n
∣∣l and so gcd(k, l) ≥ n > 1.

(c) Show that if p is prime and q is a prime divisor of Mp = 2p − 1, then q = 1 mod 2p

Solution: Let q be a prime divisor of Mp. By Fermat’s Little Theorem we have 2q−1 = 1 mod q and so
q
∣∣(2q−1− 1) = Mq−1. Since q

∣∣Mq−1 and q
∣∣Mp, we have gcd(Mq−1,Mp) 6= 1, so by part (b) gcd(q− 1, p) 6= 1.

Since p is prime, this implies that p
∣∣(q − 1) so q = 1 mod p. Since q and p are both odd, q = 1 mod 2p.

(d) List the 6 smallest prime numbers of the form Mp = 2p − 1 with p prime.

Solution: We have M2 = 3, M3 = 7, M5 = 31, M7 = 127, M11 = 2047, M13 = 8191 and M17 = 131071. The
first 4 of these, 3, 7, 31 and 127 are easily seen to be prime. If q is a prime factor of M11 then by part (c) we
have q = 1 mod 22, that is q = 1, 23, 45, · · ·. We try q = 23 and find that M11 = 23 · 89, so M11 is not prime.
If q is a prime factor of M13 then q = 1 mod 26. The only such primes with q ≤

√
M13 are q = 53 and 79.

We test 53 and 79 and find they are not factors of M13, so M13 is prime. Finally, if q is a prime factor of
M17 then by part (c) we have q = 1 mod 34, and the only primes q with q = 1 mod 34 and q ≤

√
M17 are

q = 103, 137, 239 and 307. We try each of these and find they are not factors of M17

11: Show that every rational number p/q, where p and q are integers with 0 < p < q, can be represented as a
sum of distinct fractions of the form 1/n, where n is a positive integer.

Solution: Given the rational number p
q with 0 < p < q, we choose that smallest positive integer n1 with

1
n1
≤ p

q , then if 1
n1
6= p

q we choose the smallest positive integer n2 such that 1
n1

+ 1
n2
≤ p

q , then if 1
n1

+ 1
n2
6= p

q

we choose the smallest positive integer n3 such that 1
n1

+ 1
n2

+ 1
n3
≤ p

q , and so on. Note that we have

1 < n1 < n2 < n3 < · · · since if we had nk+1 ≤ nk then we would have p
q ≥

1
n1

+ · · ·+ 1
nk−1

+ 1
nk

+ 1
nk+1

≥
1
n1

+ · · ·+ 1
nk−1

+ 2
nk
≥ 1

n1
+ · · ·+ 1

nk−1
+ 1

nk−1 contradicting our choice of nk. Also note that by our choice

of n1 we have 1
n1
≤ p

q <
1

n1−1 so n1−1 < q
p and so pn1−p < q and hence pn1− q < p, and so the numerator

of pq −
1
n1

= pn1−q
qn1

is smaller than the numerator of pq . Similarly, we see that the numerators of the fractions
p
q −

1
n1
− · · · − 1

nk
decrease with each value of k. Eventually, the numerator becomes zero, and we obtain

p
q = 1

n1
+ 1

n2
+ · · ·+ 1

nk
.



12: Let α and β be positive irrational numbers such that 1
α + 1

β = 1. For n ≥ 1 let an = bnαc and let bn = bnβc.
Show that the two sequences {an} and {bn} are disjoint and that every positive integer occurs as a term in
one of the two sequences.

Solution: Suppose, for a contradiction, that {an} and {bn} are not disjoint, say
⌊
nα
⌋

=
⌊
mb
⌋

= k. Since

α and β are irrational, we have k < nα < k + 1 and k < mβ < k + 1. Since
(
k < nα and k < mβ

)
we

have
(
n
k >

1
α and m

k > 1
β

)
and so n+m

k > 1
α + 1

β = 1, and hence n + m > k. Similarly, since
(
nα < k + 1

and nβ < k + 1
)
, we have n + m < k + 1. This gives the desired contradiction, since we cannot have

k < n+m < k + 1, so the sequences {an} and {bn} are disjoint.
Note that since 1

α + 1
β = 1 we have 1

α < 1 so α > 1, and so
⌊
nα
⌋
<
⌊
(n + 1)α

⌋
. Thus the elements

of {an} are distinct. Also note that since
⌊
k
α

⌋
< k

α , we have
⌊
k
α

⌋
α < k, and since

⌊
k
α

⌋
> k

α − 1 we have⌊
k
α

⌋
α > k − α so

(⌊
k
α

⌋
+ 1
)
α > k, and so the number of elements in the sequence {an} which are less than

k is equal to
⌊
k
α

⌋
. Similarly, the number of elements in the sequence {bn} which are less than k is equal

to
⌊
k
β

⌋
. Thus in order to show that every positive integer occurs as a term in one of the two sequences, it

suffices to show that
⌊
k
α

⌋
+
⌊
k
β

⌋
= k − 1 for every positive integer k.

Since k
α − 1 <

⌊
k
α

⌋
< k

α and k
β − 1 <

⌊
k
β

⌋
< k

β , we have k − 2 = k
α + k

β − 2 <
⌊
k
α

⌋
+
⌊
k
β

⌋
< k

α + k
β = k,

and so
⌊
k
α

⌋
+
⌊
k
β

⌋
= k − 1, as required.


