Lesson 9: Linear Algebra

- 1: (a) Determine whether the set $\left\{\frac{1}{\sqrt{2}-a} \middle| a \in \mathbf{Q}\right\} \subseteq \mathbf{R}$ is linearly independent over \mathbf{Q} . (b) Determine whether the set $\left\{\frac{1}{x-a} \middle| a \in \mathbf{Q}\right\} \subseteq \mathbf{Q}(x)$ is linearly independent over \mathbf{Q} .
- **2:** (a) Find dim U where $U = \text{Span} \left\{ \cos(x-a) \middle| a \in \mathbf{R} \right\} \subseteq \mathcal{C}^0(\mathbf{R}).$ (b) Find dim U where $U = \text{Span} \left\{ \sin^2 x, \cos^2 x, \tan^2 x, \sec^2 x \right\} \subseteq \mathcal{C}^0\left(0, \frac{\pi}{2}\right).$
- **3:** (a) Find A^{-1} where $A \in M_n(\mathbf{R})$ with $A_{i,j} = \begin{cases} 0 \text{ if } i = j \\ 1 \text{ if } i \neq j. \end{cases}$ (b) Find det A where $A \in M_n(\mathbf{R})$ with $A_{i,j} = \begin{cases} 2 \text{ if } i = j \\ 1 \text{ if } i \neq j. \end{cases}$
- **4:** Let F be a field and let $A, B \in M_n(F)$.
 - (a) Show that if trace $(A^T A + B^T B) = \text{trace} (AB + A^T B^T)$ then $A = B^T$.
 - (b) Show that if $AB \in \text{Span}\{A, B\}$ but $AB \notin \text{Span}\{A\} \cup \text{Span}\{B\}$ then AB = BA.
- **5:** Let F be a field and let $A \in M_{k \times l}(F)$, $B \in M_{l \times n}(F)$ and $C \in M_{n \times m}(F)$.
 - (a) Show that $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.
 - (b) Show that $\operatorname{rank}(A) + \operatorname{rank}(B) \le l + \operatorname{rank}(AB)$.
 - (c) Show that $\operatorname{rank}(AB) + \operatorname{rank}(BC) \le \operatorname{rank}(B) + \operatorname{rank}(ABC)$.
- 6: Let V be a vector space over \mathbf{R} . Show that V is finite-dimensional if and only if V is not equal to the union of any countable set of proper subspaces.
- 7: Let S be a non-empty set and let F be a field. Let U be an n-dimensional subspace of the vector space F^S of all functions $f: S \to F$. Show that there exist elements $a_1, a_2, \dots, a_n \in S$ and functions $f_1, f_2, \dots, f_n \in U$ such that $f_j(a_i) = \delta_{i,j}$ for all indices i, j.
- 8: Let $A, B \in M_n(\mathbf{R})$ with AB = BA and $\det(A + B) \ge 0$. Show that $\det(A^n + B^n) \ge 0$ for all $n \in \mathbf{Z}^+$.
- **9:** Let $A, B \in M_n(\mathbf{C})$. Suppose that the eigenvalues of A are distinct from the eigenvalues of B. Show that the linear map $L: M_n(\mathbf{C}) \to M_n(\mathbf{C})$ given by L(X) = AX - XB is bijective.
- 10: Show that the identity map $I : \mathbf{R} \to \mathbf{R}$ given by I(x) = x is equal to the sum of two periodic maps.

Putnam Problems on Linear Algebra

- 1: (1985 B6) Let G be a finite subgroup of $M_n(\mathbf{R})$ under matrix multiplication. Let A be the sum of the matrices in G. Show that if trace (A) = 0 then A = 0.
- **2:** (1986 B6) Let F be a field and let $A, B, C, D \in M_n(F)$. Suppose that AB^T and CD^T are symmetric and that $AD^T BC^T = I$. Show that $A^TD C^TB = I$.
- **3:** (1987 B5) Let $A \in M_{2n \times n}(\mathbf{C})$. Suppose that $x^T A \neq 0$ for all $0 \neq x \in \mathbf{R}^{2n}$. Show that for all $x \in \mathbf{R}^{2n}$ there exists $z \in \mathbf{C}^n$ such that $\operatorname{Re}(Az) = x$.
- 4: (1988 A6) Let U be an n-dimensional vector space over a field F, and let $L: U \to U$ be a linear map. Suppose that L has a set of n + 1 eigenvectors any n of which are linearly independent. Show that L is a scalar multiple of the identity map.
- **5:** (1990 A5) Determine whether there exist $A, B \in M_n(\mathbf{R})$ with ABAB = 0 but $BABA \neq 0$.
- 6: (1990 B3) Let M be the set of 2×2 matrices with entries in $\{0^2, 1^2, 2^2, \dots, 14^2\}$. Let $S \subseteq M$. Show that if $|S| > 15^4 - 15^2 - 15 + 2$ then there exist $A, B \in S$ with AB = BA.
- 7: (1991 A2) Determine whether there exist $A \neq B \in M_n(\mathbf{R})$ with $A^3 = B^3$ and $A^2B = B^2A$ such that $A^2 + B^2$ is invertible.
- 8: (1992 B5) Determine whether the sequence $\left\{\frac{\det(A_n)}{n!}\right\}_{n\geq 2}$ is bounded, where $A_n \in M_{n-1}(\mathbf{R})$ is the matrix with entries

$$A_{i,j} = \begin{cases} i+2 \text{ if } i=j, \\ 1 \quad \text{if } i \neq j. \end{cases}$$

9: (1992 B6) Let S ⊆ M_n(**R**) be a subset with the following properties.
(1) I ∈ S,
(2) if A ∈ S and B ∈ S then either AB ∈ S or −AB ∈ S but not both,
(3) if A ∈ S and B ∈ S then AB = ±BA,
(4) if I ≠ A ∈ S then there exists B ∈ S such that AB = −BA.
Show that |S| ≤ n².

- **10:** (1994 B4) Let $A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$. For $n \ge 1$, let d_n be the greatest common divisor of the entries of the matrix $A^n I$. Show that $\lim_{n \to \infty} d_n = \infty$.
- 11: (1997 B4) Determine whether there exists $A \in M_2(\mathbf{R})$ such that $\sin A = \begin{pmatrix} 1 & 1996 \\ 0 & 1 \end{pmatrix}$.
- 12: (1999 B5) Let $n \ge 3$ and let $\theta = \frac{2\pi}{n}$. Find det(I + A) where $A \in M_n(\mathbf{R})$ is the matrix with entries $A_{k,l} = \cos((k+l)\theta)$.