Lesson 9: Linear Algebra

1: (a) Determine whether the set $\left\{\left.\frac{1}{\sqrt{2}-a} \right\rvert\, a \in \mathbf{Q}\right\} \subseteq \mathbf{R}$ is linearly independent over \mathbf{Q}.
(b) Determine whether the set $\left\{\left.\frac{1}{x-a} \right\rvert\, a \in \mathbf{Q}\right\} \subseteq \mathbf{Q}(x)$ is linearly independent over \mathbf{Q}.

2: (a) Find $\operatorname{dim} U$ where $U=\operatorname{Span}\{\cos (x-a) \mid a \in \mathbf{R}\} \subseteq \mathcal{C}^{0}(\mathbf{R})$.
(b) Find $\operatorname{dim} U$ where $U=\operatorname{Span}\left\{\sin ^{2} x, \cos ^{2} x, \tan ^{2} x, \sec ^{2} x\right\} \subseteq \mathcal{C}^{0}\left(0, \frac{\pi}{2}\right)$.

3: (a) Find A^{-1} where $A \in M_{n}(\mathbf{R})$ with $A_{i, j}=\left\{\begin{array}{l}0 \text { if } i=j \\ 1 \text { if } i \neq j .\end{array}\right.$
(b) Find $\operatorname{det} A$ where $A \in M_{n}(\mathbf{R})$ with $A_{i, j}=\left\{\begin{array}{l}2 \text { if } i=j \\ 1 \text { if } i \neq j .\end{array}\right.$

4: Let F be a field and let $A, B \in M_{n}(F)$.
(a) Show that if trace $\left(A^{T} A+B^{T} B\right)=\operatorname{trace}\left(A B+A^{T} B^{T}\right)$ then $A=B^{T}$.
(b) Show that if $A B \in \operatorname{Span}\{A, B\}$ but $A B \notin \operatorname{Span}\{A\} \cup \operatorname{Span}\{B\}$ then $A B=B A$.

5: Let F be a field and let $A \in M_{k \times l}(F), B \in M_{l \times n}(F)$ and $C \in M_{n \times m}(F)$.
(a) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(b) Show that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq l+\operatorname{rank}(A B)$.
(c) Show that $\operatorname{rank}(A B)+\operatorname{rank}(B C) \leq \operatorname{rank}(B)+\operatorname{rank}(A B C)$.

6: Let V be a vector space over \mathbf{R}. Show that V is finite-dimensional if and only if V is not equal to the union of any countable set of proper subspaces.

7: Let S be a non-empty set and let F be a field. Let U be an n-dimensional subspace of the vector space F^{S} of all functions $f: S \rightarrow F$. Show that there exist elements $a_{1}, a_{2}, \cdots, a_{n} \in S$ and functions $f_{1}, f_{2}, \cdots, f_{n} \in U$ such that $f_{j}\left(a_{i}\right)=\delta_{i, j}$ for all indices i, j.
8: Let $A, B \in M_{n}(\mathbf{R})$ with $A B=B A$ and $\operatorname{det}(A+B) \geq 0$. Show that $\operatorname{det}\left(A^{n}+B^{n}\right) \geq 0$ for all $n \in \mathbf{Z}^{+}$.

9: Let $A, B \in M_{n}(\mathbf{C})$. Suppose that the eigenvalues of A are distinct from the eigenvalues of B. Show that the linear map $L: M_{n}(\mathbf{C}) \rightarrow M_{n}(\mathbf{C})$ given by $L(X)=A X-X B$ is bijective.

10: Show that the identity map $I: \mathbf{R} \rightarrow \mathbf{R}$ given by $I(x)=x$ is equal to the sum of two periodic maps.

Putnam Problems on Linear Algebra

1: (1985 B6) Let G be a finite subgroup of $M_{n}(\mathbf{R})$ under matrix multiplication. Let A be the sum of the matrices in G. Show that if trace $(A)=0$ then $A=0$.

2: (1986 B6) Let F be a field and let $A, B, C, D \in M_{n}(F)$. Suppose that $A B^{T}$ and $C D^{T}$ are symmetric and that $A D^{T}-B C^{T}=I$. Show that $A^{T} D-C^{T} B=I$.

3: (1987 B5) Let $A \in M_{2 n \times n}(\mathbf{C})$. Suppose that $x^{T} A \neq 0$ for all $0 \neq x \in \mathbf{R}^{2 n}$. Show that for all $x \in \mathbf{R}^{2 n}$ there exists $z \in \mathbf{C}^{n}$ such that $\operatorname{Re}(A z)=x$.

4: (1988 A6) Let U be an n-dimensional vector space over a field F, and let $L: U \rightarrow U$ be a linear map. Suppose that L has a set of $n+1$ eigenvectors any n of which are linearly independent. Show that L is a scalar multiple of the identity map.

5: (1990 A5) Determine whether there exist $A, B \in M_{n}(\mathbf{R})$ with $A B A B=0$ but $B A B A \neq 0$.
6: (1990 B3) Let M be the set of 2×2 matrices with entries in $\left\{0^{2}, 1^{2}, 2^{2}, \cdots, 14^{2}\right\}$. Let $S \subseteq M$. Show that if $|S|>15^{4}-15^{2}-15+2$ then there exist $A, B \in S$ with $A B=B A$.
7: (1991 A2) Determine whether there exist $A \neq B \in M_{n}(\mathbf{R})$ with $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$ such that $A^{2}+B^{2}$ is invertible.
8: (1992 B5) Determine whether the sequence $\left\{\frac{\operatorname{det}\left(A_{n}\right)}{n!}\right\}_{n \geq 2}$ is bounded, where $A_{n} \in M_{n-1}(\mathbf{R})$ is the matrix with entries

$$
A_{i, j}=\left\{\begin{array}{c}
i+2 \text { if } i=j, \\
1 \quad \text { if } i \neq j
\end{array}\right.
$$

9: (1992 B6) Let $S \subseteq M_{n}(\mathbf{R})$ be a subset with the following properties.
(1) $I \in S$,
(2) if $A \in S$ and $B \in S$ then either $A B \in S$ or $-A B \in S$ but not both,
(3) if $A \in S$ and $B \in S$ then $A B= \pm B A$,
(4) if $I \neq A \in S$ then there exists $B \in S$ such that $A B=-B A$.

Show that $|S| \leq n^{2}$.
10: (1994 B4) Let $A=\left(\begin{array}{ll}3 & 2 \\ 4 & 3\end{array}\right)$. For $n \geq 1$, let d_{n} be the greatest common divisor of the entries of the matrix $A^{n}-I$. Show that $\lim _{n \rightarrow \infty} d_{n}=\infty$.

11: (1997 B4) Determine whether there exists $A \in M_{2}(\mathbf{R})$ such that $\sin A=\left(\begin{array}{cc}1 & 1996 \\ 0 & 1\end{array}\right)$.
12: (1999 B5) Let $n \geq 3$ and let $\theta=\frac{2 \pi}{n}$. Find $\operatorname{det}(I+A)$ where $A \in M_{n}(\mathbf{R})$ is the matrix with entries $A_{k, l}=\cos ((k+l) \theta)$.

