Solutions to the Linear Algebra Problems

: (a) Determine whether the set { \/§1_a ‘a € Q} C R is linearly independent over Q.

Solution: The given set is not linearly independent. Indeed \/51_1 — \/51“ =22 = \/54_0.

(b) Determine whether the set { 1

r—a

a € Q} C Q(x) is linearly independent over Q.

Solution: This set is linearly independent. Indeed, by the Partial Fractions Decomposition Theorem, the set
{a*|k e N} U {ﬁ keZt ac€ C} is a basis for C(z) over C.

: (a) Find dim U where U = Span { cos(z — a)‘a € R} CC'(R).

Solution: Note that U = Span { cosz,sinz} because cosz € U and sinz = cos (z — §) € U, and for every
a € R we have cos(z — a) = cosz cosa +sinxsina € Span {cosz,sinz}. Also note that {cosx,sinx} is linearly
independent because if a cosz +bsinz = 0 for all  then taking x = 0 gives a = 0 and taking z = § gives b = 0.
Thus dimU = 2.

(b) Find dim U where U = Span { sin? z, cos? z, tan? x, sec? ac} cco (O, g)
Solution: Note that Span { sin? z, cos? z, tan? z, sec? m} = Span { sin? z, cos? x, tan? x} because we have

sec’z =1+ tan’z = sin? 2 + cos® z + tan’ .

Also note that {sin2 x,cos? x, tan? x} is linearly independent because if asin®z + bcos?z + ctan®?z = 0 for

all x then taking x = ¢, 7 and x = % gives the three equations %a + %b + %c =0, %a + %b + ic =0 and

%a 4+ b+ 3¢ = 0, and the coefficient matrix is invertible since

1 1 3
12 1
3 1 1 _ 3 1 9 1 9 3 _ _ 6 2 8 _ _ 3 1 1 _ 1
det{ 3 5 7 |=§Ftmt6 T 8§ 24— 8§ uti6e— 1 1313~ 3
1
Thus dim U = 3.
Oifi=3j
: (a) Find A~! where A € M,,(R) with 4; ; = L j
1if i # 4.

Solution: Let B € M, (R) be the matrix whose entries are all equal to 1. Note that A = B — I and B? = nB.
For x € R with « sufficiently near zero, we have

(@B-I)"'=-I-2B)'=—(I+2B+2?B*+2*°B3+---) = —(I+2B+2>nB+2°n’B+--)
=-(I+{%:-B)=-“2-B-1I

l1—xn zn—1

By replacing = by 1, we guess that A™! = (B —I)~! = —L-B — I, and indeed we have
AGHB-1)=(B-1)(z5B-1) =58~ (1- ;5)B+ 1= B- B+ 1=1

Thus A=t = ﬁB —1I.

i
(b) Let a € R. Find det A where A € M, (R) with A;; =4 . '~
’ 1if i #j.
Solution: Let A,, and B,, denote the n x n matrices
a 1 1 1 1 1
1 a 1 1 a 1
A=111 4 v Bu=111 a

By first performing the row operation Ry — R;— Rs on the matrix By, and then expanding the determinant along
the first row, we find that det(B,,) = (a — 1) det B,,_1. Since det(B;) = 1, it follows that det(B,,) = (a — 1)"~!
for all n > 1. By performing the same row operation on the matrix A, and then expanding the determinant
along the first row, we find that det(A,) = (a — 1)(det(An—1) + det(B,—1)). Since det(A;) = a, an easy
induction argument shows that det(A4,) = (a — 1)""(a +n — 1) for all n > 1.



4: Let A, B € M,(R).
(a) Show that if trace (ATA + BTB) = trace (AB + ATBT) then A = BT.
Solution: Suppose that trace (ATA + BTB) = trace (AB + ATBT). Then using the inner product on M, (R)
given by (A, B) = trace (BT A) we have
|A — BT|? = trace (A — BT)(A — BT)) = trace (AT — B)(A — BT))
= trace (ATA ATBT — BA + BBT)
= trace (ATA) + trace (BB”) — trace (BA) — trace (ATBT)
= trace (ATA) + trace (B'B) — trace (AB) — trace (A”BT)
= trace (ATA 4+ BTB) — trace (AB + ATBT) = 0.

(b) Show that if AB € Span{A, B} but AB ¢ Span {A} USpan{B} then AB = BA.

Solution: Suppose that AB € Span{A, B} but AB ¢ Span{A} U Span{B}. Then we have AB = sA + tB for
some non-zero real numbers 0 # s,t € R. Note that

(A—tI)(B—sI)=AB —sA—tB+ stl = AB — AB + stI = stI
and so we see that (A — tI) is invertible with (A — tI)~! = L (B — sI). It follows that
I=2L(B—sI)(A—tl)=L(BA—tB—sA+stl) = -(BA— AB + stl)
so that stI = BA — AB + stl, and hence BA — AB = 0.

5: Let F be a field and let A € My« (F), B € Mjxm(F) and C € M, xn(F).
(a) Show that rank (AB) < rank (B).

Solution: Note that Range (BTAT) C Range (BT), indeed if * € Range (BTAT) then x = BTATy for some
y € R* and then we have z = BTz for z = ATy so that = € Range (BT). Thus rank (BTAT) < rank (BT), so

rank (AB) = rank (BTAT) < rank (BT) = rank (B).

(b) Show that rank (A) + rank (B) <[+ rank (AB).
Solution: Note that
Range (A) = A(R!) = A(Range (B) @ Range (B)L>
= A(Range B) + A((Range B)*)
= Range (AB) + A((Range B)J‘)

so we have
rank (A) = dim (Range A) < dim (Range (AB)) + dim A((Range B)J‘)

= rank AB + dim A(Range B)J‘) < rank AB + dim(Range B)*
=rank AB + [ —rank B.

(c) Show that rank (AB) 4 rank (BC') < rank (B) + rank (ABC).
Solution: Applying Part (b) to the matrices A € Myx;(F) and BC' € M« (F) gives
rank (A) + rank (BC) <1+ rank (ABC).
In the case that B is onto, we have rank (A) = rank (AB) and [ = rank (B) and so
rank (AB) + rank (BC) < rank (B) + rank (ABC)

as required. When B is not onto, replace the matrices C, B and A by the linear maps C' : R® — R™ given by
C'(x) = Cx, and B’ : R™ — Range (B) given by B’(y) = By, and A’ : Range (B) — RF given by A’(z) = Az.
The linear map B’ is onto, and applying the above inequality to the linear maps A’, B’ and C’ gives

rank (A’'B’) 4 rank (B'C") < rank (B’) + rank (A'B'C").

Finally, notice that Range (A’B’) = Range (AB), Range (B’'C’) = Range (BC), Range (B’) = Range (B) and
Range (A'B’C") = Range (ABC).



6: Let V be a vector space over R. Show that V is finite-dimensional if and only if V' is not equal to the union of
any countable set of proper subspaces.

Solution: Suppose first that V is infinite dimensional. Choose a countable linearly independent subset of V', say
U = {u1,uz,ug, -} CV. Extend U (if necessary) to a basis i/ UV for V, where Y NV = {0}. For each k € Z*,
let Vi = VU {uj,ug, -, ur}. Then we have Vlg%%vg% ~-and V = Ure Vi
Conversely, suppose that V' is finite dimensional. We shall show that no affine space P C V is equal to the
union of a countable set of proper affine subspaces. We prove this by induction on the dimension of P. When
dim P = 1, the only proper affine subspaces of P are the one-point sets in P, and since P is uncountable it
cannot be equal to the union of a countable set of proper affine subspaces. Let n > 1, and suppose, inductively,
that no affine space @ C V with dim@ = n — 1 is equal to the union of any countable set of proper affine
subspaces. Let P C V be an affine space with dim P = n. Let Rj, Ry, Rs3,--- be proper affine subspaces of P.
Since P has uncountably many affine subspaces of dimension n — 1, we can choose an affine subspace @ C P
with dim@Q =n — 1 and Q # R; for any 4. Since each set R; N Q is either empty or is a proper affine subspace
of @, it follows from the induction hypothesis that @ # U (R;NQ). Thus Q ,@ U R; and hence P # U R;.
i=1 i=1

7: Let S be a non-empty set and let F be a field. Let U be an n-dimensional subspace of the vector space F*¥ of
all functions f : S — F. Show that there exist elements a1, as, -+, a, € S and functions f1, fo,---, f, € U such
that f;(a;) = d; ; for all indices 1, j.

Solution: Let {g1,92, -, g} be a basis for U. For each a € S, write g(a) = (gl(a)7gg(a), e ,gl(a))T € F'. Let
V= {g(a)la € S} and let V = SpanV C F'. For all t € F' we have
teVt < t.gla)=0forallac s
<~ t1g1(a) +t2g2(a) + -+ tigi(a) =0 for all a € S
= t1g1 +laga+ -+t =0eW
<= t =0, since V is linearly independent,

and so we have V+ = {0} and hence V = F'. Since V spans F!, we can select a basis from amongst the elements
of V, and so we can choose a1, a2, --,a; € S so that {g(a1)7g(a2), e ,g(al)} is a basis for F*'. Let

gi(ar)  gi(az) g1(ar)
g92(a1) g2(az) -+ g2(a)
A= (9((11)79(%),'“79(@1)) = .
gi(ar) gi(az) - gi(a)
and note that A is invertible since {g(al),g(ag) g(ar) } is a basis for F!. Let B = A~!, say B has entries

b, ; = B; j, and define fi, fa,---, fi € U by f; = Z b;:g;. Then for k=1,2,---,1 we have
filar) = (X bjigi) (ar) = 2 bjigi(ar) = (BA)jx = j-

8: Let A, B € M,,(R) with AB = BA and det(A + B) > 0. Show that det (A" + B™) >0 for all n € Z*.

Solution: First we suppose that n is even, say n = 2k. Since the characteristic polynomial f(z) = det(A — aI)
has finitely many roots, we can choose § > 0 so that for all € (0,6) we have fa(z) # 0 so that the matrix
A, = A — zl is invertible. Then for all z € (0,J) we have

det(A," + B™) = det(A2Z" + B?*) = det (A2*(I + A, ?*B?F))
— det (A,")* det (I +i A, *B") det (I —i A, *BF)
— det (A,%)°|det (I +i A, *B¥)|* > 0.

Taking the limit as # — 07 we obtain det(A™ + B™) > 0.

Next we suppose that n is odd, say n = 2k+1. Let v = ¢ ™/™ so that o™ + 1 = 0 and so that 2" 4 1 factors

k ) ) k . :
asz"+1=(z+1) [[(z—a?)(x —a7). Since AB = BA we have (A" +B")=(A+B) [[(A—a/B)(A-a’B)
j=1 j=1
and so
k , , b N2
det(A™ + B") = det(A + B) [ ] (det(A — o/ B) det(A — @’ B)) = det(A + B) [ |det(4 — o’ B)|” > 0.
j=1 j=1



9:

10:

Let A, B € M, (C). Suppose that the eigenvalues of A are distinct from the eigenvalues of B. Show that the
linear map L : M,,(C) — M, (C) given by L(X) = AX — X B is bijective.

Solution: Let X € Ker (L). Then we have
AX = XB
A’X = AXB = XB?
A3X = A2XB = AXB? = XB3
A*X = AXB = A’XB%* = AXB? = XB*

and so on so that A¥X = X B* for all k > 0. It follows that f(A)X = X f(B) for every polynomial f(z). In
particular, we have fp(A4)X = X fg(B) = 0 where fp(x) is the characteristic polynomial of B. Let Ay, -+, A,
be the eigenvalues of A (repeated according to multiplicity) and let pq,-- -, p, be the eigenvalues of B. Then

fe(x) = (—1)" [] (= — p;) and the eigenvalues of the matrix fg(A) are the values fr(A;) = (—1)" [T (A — ).
i=1 i=1

Note that fg(A;) # 0 since A\; # p; for any 4, j. Since the eigenvalues of fp(A) are non-zero, it follows that the

matrix fg(A) is invertible. Since fp(A)X = 0 and fp(A) is invertible, we have X = 0. Thus Ker (L) = {0}

and so L is invertible.

Show that the identity map I : R — R given by I(x) = x is equal to the sum of two periodic maps.

Solution: Let S be a basis for R over Q. Each € R can be expressed uniquely as a linear combination

x = Y. x -t where each z; € Q with z; = 0 for all but finitely many ¢ € S. For each a € S define a map
tesS
¢a : R = R by ¢4(x) = 2, - a. Note that for every b € S with b # a, the function ¢, is periodic with period b

because for x e R, if x = Y ap-t=a4-a+xp-b+ >, zp-tthenax+b=x,-a+ (xp+1)-b+ > x:-tand
tesS t#a,b t#a,b

so we have ¢, (x +b) = x4 - a = ¢ ().

To express the identity map I(z) as a sum of two periodic functions, partition the basis S into two nonempty
sets A and B, then define f,g: R — R by

fx)= 2 ¢a(z) = X @a-a and g(x) = 3 ¢u(x) = 3 @3- b.
acA acA beB beB
Note that the above sums contain only finitely many non-zero terms, so they are well-defined. Also note that f
and g are periodic. Indeed for every b € B, we have f(z+b) = > do(x+b) = > dq(x) = f(x), and so f(x)
acA ac€A

is periodic with period b, and similarly, for every a € A the function g(z) is periodic with period a.



