
Solutions to the Linear Algebra Problems

1: (a) Determine whether the set
{

1√
2−a

∣∣∣a ∈ Q
}
⊆ R is linearly independent over Q.

Solution: The given set is not linearly independent. Indeed 1√
2−1 −

1√
2+1

= 2
√

2 = 4√
2−0 .

(b) Determine whether the set
{

1
x−a

∣∣∣a ∈ Q
}
⊆ Q(x) is linearly independent over Q.

Solution: This set is linearly independent. Indeed, by the Partial Fractions Decomposition Theorem, the set{
xk
∣∣k ∈ N

}
∪
{

1
(x−a)k

∣∣∣k ∈ Z+, a ∈ C
}

is a basis for C(x) over C.

2: (a) Find dimU where U = Span
{

cos(x− a)
∣∣∣a ∈ R

}
⊆ C0(R).

Solution: Note that U = Span
{

cosx, sinx
}

because cosx ∈ U and sinx = cos
(
x − π

2

)
∈ U , and for every

a ∈ R we have cos(x− a) = cosx cos a+ sinx sin a ∈ Span {cosx, sinx}. Also note that {cosx, sinx} is linearly
independent because if a cosx+ b sinx = 0 for all x then taking x = 0 gives a = 0 and taking x = π

2 gives b = 0.
Thus dimU = 2.

(b) Find dimU where U = Span
{

sin2 x, cos2 x, tan2 x, sec2 x
}
⊆ C0

(
0, π2

)
.

Solution: Note that Span
{

sin2 x, cos2 x, tan2 x, sec2 x
}

= Span
{

sin2 x, cos2 x, tan2 x
}

because we have

sec2 x = 1 + tan2 x = sin2 x+ cos2 x+ tan2 x .

Also note that
{

sin2 x, cos2 x, tan2 x
}

is linearly independent because if a sin2 x + b cos2 x + c tan2 x = 0 for
all x then taking x = π

6 , π
4 and x = π

3 gives the three equations 1
4a + 1

2b + 3
4c = 0, 3

4a + 1
2b + 1

4c = 0 and
1
3a+ b+ 3c = 0, and the coefficient matrix is invertible since

det

 1
4

1
2

3
4

3
4

1
2

1
4

1
3 1 3

 = 3
8 + 1

24 + 9
16 −

1
16 −

9
8 −

3
24 = − 6

8 −
2
24 + 8

16 = − 3
4 −

1
12 + 1

2 = − 1
3 .

Thus dimU = 3.

3: (a) Find A−1 where A ∈Mn(R) with Ai,j =

{
0 if i = j

1 if i 6= j.

Solution: Let B ∈ Mn(R) be the matrix whose entries are all equal to 1. Note that A = B − I and B2 = nB.
For x ∈ R with x sufficiently near zero, we have

(xB − I)−1 = −(I − xB)−1 = −
(
I + xB + x2B2 + x3B3 + · · ·

)
= −

(
I + xB + x2nB + x3n2B + · · ·

)
= −

(
I + x

1−xn B
)

= x
xn−1 B − I.

By replacing x by 1, we guess that A−1 = (B − I)−1 = 1
n−1B − I, and indeed we have

A
(

1
n−1B − I

)
=
(
B − I

)(
1

n−1B − I
)

= 1
n−1B

2 −
(
1− 1

n−1
)
B + I = n

n−1B −
n
n−1B + I = I.

Thus A−1 = 1
n−1B − I.

(b) Let a ∈ R. Find detA where A ∈Mn(R) with Ai,j =

{
a if i = j

1 if i 6= j.

Solution: Let An and Bn denote the n× n matrices

An =


a 1 1
1 a 1
1 1 a

. . .

 , Bn =


1 1 1
1 a 1
1 1 a

. . .

 .

By first performing the row operationR1 7→ R1−R2 on the matrixBn, and then expanding the determinant along
the first row, we find that det(Bn) = (a− 1) detBn−1. Since det(B1) = 1, it follows that det(Bn) = (a− 1)n−1

for all n ≥ 1. By performing the same row operation on the matrix An and then expanding the determinant
along the first row, we find that det(An) = (a − 1)

(
det(An−1) + det(Bn−1)

)
. Since det(A1) = a, an easy

induction argument shows that det(An) = (a− 1)n−1(a+ n− 1) for all n ≥ 1.



4: Let A,B ∈Mn(R).

(a) Show that if trace (ATA+BTB) = trace (AB +ATBT ) then A = BT .

Solution: Suppose that trace (ATA + BTB) = trace (AB + ATBT ). Then using the inner product on Mn(R)
given by 〈A,B〉 = trace (BTA) we have∣∣A−BT ∣∣2 = trace

(
(A−BT )T (A−BT )

)
= trace

(
(AT −B)(A−BT )

)
= trace

(
ATA−ATBT −BA+BBT

)
= trace (ATA) + trace (BBT )− trace (BA)− trace (ATBT )

= trace (ATA) + trace (BTB)− trace (AB)− trace (ATBT )

= trace (ATA+BTB)− trace (AB +ATBT ) = 0.

(b) Show that if AB ∈ Span {A,B} but AB /∈ Span {A} ∪ Span {B} then AB = BA.

Solution: Suppose that AB ∈ Span {A,B} but AB /∈ Span {A} ∪ Span {B}. Then we have AB = sA + tB for
some non-zero real numbers 0 6= s, t ∈ R. Note that

(A− tI)(B − sI) = AB − sA− tB + stI = AB −AB + stI = stI

and so we see that (A− tI) is invertible with (A− tI)−1 = 1
st (B − sI). It follows that

I = 1
st (B − sI)(A− tI) = 1

st (BA− tB − sA+ stI) = 1
st (BA−AB + stI)

so that stI = BA−AB + stI, and hence BA−AB = 0.

5: Let F be a field and let A ∈Mk×l(F ), B ∈Ml×m(F ) and C ∈Mm×n(F ).

(a) Show that rank (AB) ≤ rank (B).

Solution: Note that Range (BTAT ) ⊆ Range (BT ), indeed if x ∈ Range (BTAT ) then x = BTAT y for some
y ∈ Rk and then we have x = BT z for z = AT y so that x ∈ Range (BT ). Thus rank (BTAT ) ≤ rank (BT ), so

rank (AB) = rank (BTAT ) ≤ rank (BT ) = rank (B).

(b) Show that rank (A) + rank (B) ≤ l + rank (AB).

Solution: Note that

Range (A) = A(Rl) = A
(

Range (B)⊕ Range (B)⊥
)

= A
(
RangeB

)
+A

(
(RangeB)⊥

)
= Range (AB) +A

(
(RangeB)⊥

)
so we have

rank (A) = dim
(
RangeA

)
≤ dim

(
Range (AB)

)
+ dimA

(
(RangeB)⊥

)
= rankAB + dimA

(
RangeB)⊥

)
≤ rankAB + dim(RangeB)⊥

= rankAB + l − rankB.

(c) Show that rank (AB) + rank (BC) ≤ rank (B) + rank (ABC).

Solution: Applying Part (b) to the matrices A ∈Mk×l(F ) and BC ∈Ml×n(F ) gives

rank (A) + rank (BC) ≤ l + rank (ABC).

In the case that B is onto, we have rank (A) = rank (AB) and l = rank (B) and so

rank (AB) + rank (BC) ≤ rank (B) + rank (ABC)

as required. When B is not onto, replace the matrices C, B and A by the linear maps C ′ : Rn → Rm given by
C ′(x) = Cx, and B′ : Rm → Range (B) given by B′(y) = By, and A′ : Range (B)→ Rk given by A′(z) = Az.
The linear map B′ is onto, and applying the above inequality to the linear maps A′, B′ and C ′ gives

rank (A′B′) + rank (B′C ′) ≤ rank (B′) + rank (A′B′C ′).

Finally, notice that Range (A′B′) = Range (AB), Range (B′C ′) = Range (BC), Range (B′) = Range (B) and
Range (A′B′C ′) = Range (ABC).



6: Let V be a vector space over R. Show that V is finite-dimensional if and only if V is not equal to the union of
any countable set of proper subspaces.

Solution: Suppose first that V is infinite dimensional. Choose a countable linearly independent subset of V , say
U = {u1, u2, u3, · · ·} ⊆ V. Extend U (if necessary) to a basis U ∪V for V , where U ∩V = {0}. For each k ∈ Z+,
let Vk = V ∪ {u1, u2, · · · , uk}. Then we have V1⊂6=V2⊂6=V3⊂6= · · · and V =

⋃∞
k=1 Vk.

Conversely, suppose that V is finite dimensional. We shall show that no affine space P ⊆ V is equal to the
union of a countable set of proper affine subspaces. We prove this by induction on the dimension of P . When
dimP = 1, the only proper affine subspaces of P are the one-point sets in P , and since P is uncountable it
cannot be equal to the union of a countable set of proper affine subspaces. Let n ≥ 1, and suppose, inductively,
that no affine space Q ⊆ V with dimQ = n − 1 is equal to the union of any countable set of proper affine
subspaces. Let P ⊆ V be an affine space with dimP = n. Let R1, R2, R3, · · · be proper affine subspaces of P .
Since P has uncountably many affine subspaces of dimension n − 1, we can choose an affine subspace Q ⊆ P
with dimQ = n− 1 and Q 6= Ri for any i. Since each set Ri ∩Q is either empty or is a proper affine subspace

of Q, it follows from the induction hypothesis that Q 6=
∞⋃
i=1

(Ri ∩Q). Thus Q ⊆
/ ∞⋃

i=1

Ri and hence P 6=
∞⋃
i=1

Ri.

7: Let S be a non-empty set and let F be a field. Let U be an n-dimensional subspace of the vector space FS of
all functions f : S → F . Show that there exist elements a1, a2, · · · , an ∈ S and functions f1, f2, · · · , fn ∈ U such
that fj(ai) = δi,j for all indices i, j.

Solution: Let {g1, g2, · · · , gl} be a basis for U . For each a ∈ S, write g(a) =
(
g1(a), g2(a), · · · , gl(a)

)T ∈ F l. Let

V =
{
g(a)

∣∣a ∈ S} and let V = SpanV ⊆ F l. For all t ∈ F l we have

t ∈ V ⊥ ⇐⇒ t. g(a) = 0 for all a ∈ S
⇐⇒ t1g1(a) + t2g2(a) + · · ·+ tlgl(a) = 0 for all a ∈ S
⇐⇒ t1g1 + t2g2 + · · ·+ tlgl = 0 ∈W
⇐⇒ t = 0 , since V is linearly independent,

and so we have V ⊥ = {0} and hence V = F l. Since V spans F l, we can select a basis from amongst the elements
of V, and so we can choose a1, a2, · · · , al ∈ S so that

{
g(a1), g(a2), · · · , g(al)

}
is a basis for F l. Let

A =
(
g(a1), g(a2), · · · , g(al)

)
=


g1(a1) g1(a2) · · · g1(al)
g2(a1) g2(a2) · · · g2(al)

...
gl(a1) gl(a2) · · · gl(al)


and note that A is invertible since

{
g(a1), g(a2), · · · , g(al)

}
is a basis for F l. Let B = A−1, say B has entries

bi,j = Bi,j , and define f1, f2, · · · , fl ∈ U by fj =
l∑
i=1

bj,igi. Then for k = 1, 2, · · · , l we have

fj(ak) =
(∑

bj,igi
)
(ak) =

∑
bj,igi(ak) = (BA)j,k = δj,k.

8: Let A,B ∈Mn(R) with AB = BA and det(A+B) ≥ 0. Show that det
(
An +Bn

)
≥ 0 for all n ∈ Z+.

Solution: First we suppose that n is even, say n = 2k. Since the characteristic polynomial fA(x) = det(A− xI)
has finitely many roots, we can choose δ > 0 so that for all x ∈ (0, δ) we have fA(x) 6= 0 so that the matrix
Ax = A− xI is invertible. Then for all x ∈ (0, δ) we have

det(Ax
n +Bn) = det(A2k

x +B2k) = det
(
A2k
x (I +A−2kx B2k)

)
= det

(
Ax

k
)2

det
(
I + i Ax

−kBk
)

det
(
I − i Ax−kBk

)
= det

(
Ax

k
)2∣∣ det

(
I + i Ax

−kBk
)∣∣2 ≥ 0.

Taking the limit as x→ 0+ we obtain det(An +Bn) ≥ 0.
Next we suppose that n is odd, say n = 2k+ 1. Let α = ei π/n so that αn+ 1 = 0 and so that xn+ 1 factors

as xn + 1 = (x+ 1)
k∏
j=1

(x−αj)(x−αj). Since AB = BA we have (An +Bn) = (A+B)
k∏
j=1

(A−αjB)(A−αjB)

and so

det(An +Bn) = det(A+B)
k∏
j=1

(
det(A− αjB) det(A− αjB)

)
= det(A+B)

k∏
j=1

∣∣ det(A− αjB)
∣∣2 ≥ 0.



9: Let A,B ∈ Mn(C). Suppose that the eigenvalues of A are distinct from the eigenvalues of B. Show that the
linear map L : Mn(C)→Mn(C) given by L(X) = AX −XB is bijective.

Solution: Let X ∈ Ker (L). Then we have

AX = XB

A2X = AXB = XB2

A3X = A2XB = AXB2 = XB3

A4X = A3XB = A2XB2 = AXB3 = XB4

and so on so that AkX = XBk for all k ≥ 0. It follows that f(A)X = Xf(B) for every polynomial f(x). In
particular, we have fB(A)X = XfB(B) = 0 where fB(x) is the characteristic polynomial of B. Let λ1, · · · , λn
be the eigenvalues of A (repeated according to multiplicity) and let µ1, · · · , µn be the eigenvalues of B. Then

fB(x) = (−1)n
n∏
i=1

(x− µi) and the eigenvalues of the matrix fB(A) are the values fB(λj) = (−1)n
n∏
i=1

(λj − µi).

Note that fB(λj) 6= 0 since λj 6= µi for any i, j. Since the eigenvalues of fB(A) are non-zero, it follows that the
matrix fB(A) is invertible. Since fB(A)X = 0 and fB(A) is invertible, we have X = 0. Thus Ker (L) = {0}
and so L is invertible.

10: Show that the identity map I : R→ R given by I(x) = x is equal to the sum of two periodic maps.

Solution: Let S be a basis for R over Q. Each x ∈ R can be expressed uniquely as a linear combination
x =

∑
t∈S

xt · t where each xt ∈ Q with xt = 0 for all but finitely many t ∈ S. For each a ∈ S define a map

φa : R→ R by φa(x) = xa · a. Note that for every b ∈ S with b 6= a, the function φa is periodic with period b
because for x ∈ R, if x =

∑
t∈S

xt · t = xa · a+ xb · b+
∑
t6=a,b

xt · t then x+ b = xa · a+ (xb + 1) · b+
∑
t 6=a,b

xt · t and

so we have φa(x+ b) = xa · a = φa(x).
To express the identity map I(x) as a sum of two periodic functions, partition the basis S into two nonempty

sets A and B, then define f, g : R→ R by

f(x) =
∑
a∈A

φa(x) =
∑
a∈A

xa · a and g(x) =
∑
b∈B

φb(x) =
∑
b∈B

xb · b .

Note that the above sums contain only finitely many non-zero terms, so they are well-defined. Also note that f
and g are periodic. Indeed for every b ∈ B, we have f(x+ b) =

∑
a∈A

φa(x+ b) =
∑
a∈A

φa(x) = f(x), and so f(x)

is periodic with period b, and similarly, for every a ∈ A the function g(x) is periodic with period a.


