Solutions to the Linear Algebra Problems

1: (a) Determine whether the set $\left\{\left.\frac{1}{\sqrt{2}-a} \right\rvert\, a \in \mathbf{Q}\right\} \subseteq \mathbf{R}$ is linearly independent over \mathbf{Q}.
Solution: The given set is not linearly independent. Indeed $\frac{1}{\sqrt{2}-1}-\frac{1}{\sqrt{2}+1}=2 \sqrt{2}=\frac{4}{\sqrt{2}-0}$.
(b) Determine whether the set $\left\{\left.\frac{1}{x-a} \right\rvert\, a \in \mathbf{Q}\right\} \subseteq \mathbf{Q}(x)$ is linearly independent over \mathbf{Q}.

Solution: This set is linearly independent. Indeed, by the Partial Fractions Decomposition Theorem, the set $\left\{x^{k} \mid k \in \mathbf{N}\right\} \cup\left\{\left.\frac{1}{(x-a)^{k}} \right\rvert\, k \in \mathbf{Z}^{+}, a \in \mathbf{C}\right\}$ is a basis for $\mathbf{C}(x)$ over \mathbf{C}.
2: (a) Find $\operatorname{dim} U$ where $U=\operatorname{Span}\{\cos (x-a) \mid a \in \mathbf{R}\} \subseteq \mathcal{C}^{0}(\mathbf{R})$.
Solution: Note that $U=\operatorname{Span}\{\cos x, \sin x\}$ because $\cos x \in U$ and $\sin x=\cos \left(x-\frac{\pi}{2}\right) \in U$, and for every $a \in \mathbf{R}$ we have $\cos (x-a)=\cos x \cos a+\sin x \sin a \in \operatorname{Span}\{\cos x, \sin x\}$. Also note that $\{\cos x, \sin x\}$ is linearly independent because if $a \cos x+b \sin x=0$ for all x then taking $x=0$ gives $a=0$ and taking $x=\frac{\pi}{2}$ gives $b=0$. Thus $\operatorname{dim} U=2$.
(b) Find $\operatorname{dim} U$ where $U=\operatorname{Span}\left\{\sin ^{2} x, \cos ^{2} x, \tan ^{2} x, \sec ^{2} x\right\} \subseteq \mathcal{C}^{0}\left(0, \frac{\pi}{2}\right)$.

Solution: Note that Span $\left\{\sin ^{2} x, \cos ^{2} x, \tan ^{2} x, \sec ^{2} x\right\}=\operatorname{Span}\left\{\sin ^{2} x, \cos ^{2} x, \tan ^{2} x\right\}$ because we have

$$
\sec ^{2} x=1+\tan ^{2} x=\sin ^{2} x+\cos ^{2} x+\tan ^{2} x
$$

Also note that $\left\{\sin ^{2} x, \cos ^{2} x, \tan ^{2} x\right\}$ is linearly independent because if $a \sin ^{2} x+b \cos ^{2} x+c \tan ^{2} x=0$ for all x then taking $x=\frac{\pi}{6}, \frac{\pi}{4}$ and $x=\frac{\pi}{3}$ gives the three equations $\frac{1}{4} a+\frac{1}{2} b+\frac{3}{4} c=0, \frac{3}{4} a+\frac{1}{2} b+\frac{1}{4} c=0$ and $\frac{1}{3} a+b+3 c=0$, and the coefficient matrix is invertible since

$$
\operatorname{det}\left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & \frac{3}{4} \\
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{3} & 1 & 3
\end{array}\right)=\frac{3}{8}+\frac{1}{24}+\frac{9}{16}-\frac{1}{16}-\frac{9}{8}-\frac{3}{24}=-\frac{6}{8}-\frac{2}{24}+\frac{8}{16}=-\frac{3}{4}-\frac{1}{12}+\frac{1}{2}=-\frac{1}{3} .
$$

Thus $\operatorname{dim} U=3$.
3: (a) Find A^{-1} where $A \in M_{n}(\mathbf{R})$ with $A_{i, j}=\left\{\begin{array}{l}0 \text { if } i=j \\ 1 \text { if } i \neq j .\end{array}\right.$
Solution: Let $B \in M_{n}(\mathbf{R})$ be the matrix whose entries are all equal to 1 . Note that $A=B-I$ and $B^{2}=n B$. For $x \in \mathbf{R}$ with x sufficiently near zero, we have

$$
\begin{aligned}
(x B-I)^{-1} & =-(I-x B)^{-1}=-\left(I+x B+x^{2} B^{2}+x^{3} B^{3}+\cdots\right)=-\left(I+x B+x^{2} n B+x^{3} n^{2} B+\cdots\right) \\
& =-\left(I+\frac{x}{1-x n} B\right)=\frac{x}{x n-1} B-I
\end{aligned}
$$

By replacing x by 1 , we guess that $A^{-1}=(B-I)^{-1}=\frac{1}{n-1} B-I$, and indeed we have

$$
A\left(\frac{1}{n-1} B-I\right)=(B-I)\left(\frac{1}{n-1} B-I\right)=\frac{1}{n-1} B^{2}-\left(1-\frac{1}{n-1}\right) B+I=\frac{n}{n-1} B-\frac{n}{n-1} B+I=I
$$

Thus $A^{-1}=\frac{1}{n-1} B-I$.
(b) Let $a \in \mathbf{R}$. Find $\operatorname{det} A$ where $A \in M_{n}(\mathbf{R})$ with $A_{i, j}=\left\{\begin{array}{l}a \text { if } i=j \\ 1 \text { if } i \neq j\end{array}\right.$

Solution: Let A_{n} and B_{n} denote the $n \times n$ matrices

$$
A_{n}=\left(\begin{array}{cccc}
a & 1 & 1 & \\
1 & a & 1 & \\
1 & 1 & a & \\
& & & \ddots .
\end{array}\right), B_{n}=\left(\begin{array}{cccc}
1 & 1 & 1 & \\
1 & a & 1 & \\
1 & 1 & a & \\
& & & \ddots
\end{array}\right)
$$

By first performing the row operation $R_{1} \mapsto R_{1}-R_{2}$ on the matrix B_{n}, and then expanding the determinant along the first row, we find that $\operatorname{det}\left(B_{n}\right)=(a-1) \operatorname{det} B_{n-1}$. Since $\operatorname{det}\left(B_{1}\right)=1$, it follows that $\operatorname{det}\left(B_{n}\right)=(a-1)^{n-1}$ for all $n \geq 1$. By performing the same row operation on the matrix A_{n} and then expanding the determinant along the first row, we find that $\operatorname{det}\left(A_{n}\right)=(a-1)\left(\operatorname{det}\left(A_{n-1}\right)+\operatorname{det}\left(B_{n-1}\right)\right)$. Since $\operatorname{det}\left(A_{1}\right)=a$, an easy induction argument shows that $\operatorname{det}\left(A_{n}\right)=(a-1)^{n-1}(a+n-1)$ for all $n \geq 1$.

4: Let $A, B \in M_{n}(\mathbf{R})$.
(a) Show that if trace $\left(A^{T} A+B^{T} B\right)=\operatorname{trace}\left(A B+A^{T} B^{T}\right)$ then $A=B^{T}$.

Solution: Suppose that trace $\left(A^{T} A+B^{T} B\right)=\operatorname{trace}\left(A B+A^{T} B^{T}\right)$. Then using the inner product on $M_{n}(\mathbf{R})$ given by $\langle A, B\rangle=\operatorname{trace}\left(B^{T} A\right)$ we have

$$
\begin{aligned}
\left|A-B^{T}\right|^{2} & =\operatorname{trace}\left(\left(A-B^{T}\right)^{T}\left(A-B^{T}\right)\right)=\operatorname{trace}\left(\left(A^{T}-B\right)\left(A-B^{T}\right)\right) \\
& =\operatorname{trace}\left(A^{T} A-A^{T} B^{T}-B A+B B^{T}\right) \\
& =\operatorname{trace}\left(A^{T} A\right)+\operatorname{trace}\left(B B^{T}\right)-\operatorname{trace}(B A)-\operatorname{trace}\left(A^{T} B^{T}\right) \\
& =\operatorname{trace}\left(A^{T} A\right)+\operatorname{trace}\left(B^{T} B\right)-\operatorname{trace}(A B)-\operatorname{trace}\left(A^{T} B^{T}\right) \\
& =\operatorname{trace}\left(A^{T} A+B^{T} B\right)-\operatorname{trace}\left(A B+A^{T} B^{T}\right)=0
\end{aligned}
$$

(b) Show that if $A B \in \operatorname{Span}\{A, B\}$ but $A B \notin \operatorname{Span}\{A\} \cup \operatorname{Span}\{B\}$ then $A B=B A$.

Solution: Suppose that $A B \in \operatorname{Span}\{A, B\}$ but $A B \notin \operatorname{Span}\{A\} \cup \operatorname{Span}\{B\}$. Then we have $A B=s A+t B$ for some non-zero real numbers $0 \neq s, t \in \mathbf{R}$. Note that

$$
(A-t I)(B-s I)=A B-s A-t B+s t I=A B-A B+s t I=s t I
$$

and so we see that $(A-t I)$ is invertible with $(A-t I)^{-1}=\frac{1}{s t}(B-s I)$. It follows that

$$
I=\frac{1}{s t}(B-s I)(A-t I)=\frac{1}{s t}(B A-t B-s A+s t I)=\frac{1}{s t}(B A-A B+s t I)
$$

so that $s t I=B A-A B+s t I$, and hence $B A-A B=0$.
5: Let F be a field and let $A \in M_{k \times l}(F), B \in M_{l \times m}(F)$ and $C \in M_{m \times n}(F)$.
(a) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

Solution: Note that Range $\left(B^{T} A^{T}\right) \subseteq$ Range $\left(B^{T}\right)$, indeed if $x \in \operatorname{Range}\left(B^{T} A^{T}\right)$ then $x=B^{T} A^{T} y$ for some $y \in \mathbf{R}^{k}$ and then we have $x=B^{T} z$ for $z=A^{T} y$ so that $x \in \operatorname{Range}\left(B^{T}\right)$. Thus rank $\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(B^{T}\right)$, so

$$
\operatorname{rank}(A B)=\operatorname{rank}\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(B^{T}\right)=\operatorname{rank}(B)
$$

(b) Show that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq l+\operatorname{rank}(A B)$.

Solution: Note that

$$
\begin{aligned}
\operatorname{Range}(A) & =A\left(\mathbf{R}^{l}\right)=A\left(\text { Range }(B) \oplus \text { Range }(B)^{\perp}\right) \\
& =A(\text { Range } B)+A\left((\text { Range } B)^{\perp}\right) \\
& =\operatorname{Range}(A B)+A\left((\text { Range } B)^{\perp}\right)
\end{aligned}
$$

so we have

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim}(\text { Range } A) \leq \operatorname{dim}(\text { Range }(A B))+\operatorname{dim} A\left((\text { Range } B)^{\perp}\right) \\
& \left.=\operatorname{rank} A B+\operatorname{dim} A(\text { Range } B)^{\perp}\right) \leq \operatorname{rank} A B+\operatorname{dim}(\text { Range } B)^{\perp} \\
& =\operatorname{rank} A B+l-\operatorname{rank} B
\end{aligned}
$$

(c) Show that $\operatorname{rank}(A B)+\operatorname{rank}(B C) \leq \operatorname{rank}(B)+\operatorname{rank}(A B C)$.

Solution: Applying Part (b) to the matrices $A \in M_{k \times l}(F)$ and $B C \in M_{l \times n}(F)$ gives

$$
\operatorname{rank}(A)+\operatorname{rank}(B C) \leq l+\operatorname{rank}(A B C)
$$

In the case that B is onto, we have $\operatorname{rank}(A)=\operatorname{rank}(A B)$ and $l=\operatorname{rank}(B)$ and so

$$
\operatorname{rank}(A B)+\operatorname{rank}(B C) \leq \operatorname{rank}(B)+\operatorname{rank}(A B C)
$$

as required. When B is not onto, replace the matrices C, B and A by the linear maps $C^{\prime}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ given by $C^{\prime}(x)=C x$, and $B^{\prime}: \mathbf{R}^{m} \rightarrow$ Range (B) given by $B^{\prime}(y)=B y$, and $A^{\prime}:$ Range $(B) \rightarrow \mathbf{R}^{k}$ given by $A^{\prime}(z)=A z$. The linear map B^{\prime} is onto, and applying the above inequality to the linear maps A^{\prime}, B^{\prime} and C^{\prime} gives

$$
\operatorname{rank}\left(A^{\prime} B^{\prime}\right)+\operatorname{rank}\left(B^{\prime} C^{\prime}\right) \leq \operatorname{rank}\left(B^{\prime}\right)+\operatorname{rank}\left(A^{\prime} B^{\prime} C^{\prime}\right)
$$

Finally, notice that Range $\left(A^{\prime} B^{\prime}\right)=$ Range $(A B)$, Range $\left(B^{\prime} C^{\prime}\right)=$ Range $(B C)$, Range $\left(B^{\prime}\right)=$ Range (B) and Range $\left(A^{\prime} B^{\prime} C^{\prime}\right)=$ Range $(A B C)$.

6: Let V be a vector space over \mathbf{R}. Show that V is finite-dimensional if and only if V is not equal to the union of any countable set of proper subspaces.

Solution: Suppose first that V is infinite dimensional. Choose a countable linearly independent subset of V, say $\mathcal{U}=\left\{u_{1}, u_{2}, u_{3}, \cdots\right\} \subseteq \mathcal{V}$. Extend \mathcal{U} (if necessary) to a basis $\mathcal{U} \cup \mathcal{V}$ for V, where $\mathcal{U} \cap \mathcal{V}=\{0\}$. For each $k \in \mathbf{Z}^{+}$, let $V_{k}=\mathcal{V} \cup\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$. Then we have $V_{1} \varsubsetneqq V_{2} \varsubsetneqq V_{3} \varsubsetneqq \cdots$ and $V=\bigcup_{k=1}^{\infty} V_{k}$.

Conversely, suppose that V is finite dimensional. We shall show that no affine space $P \subseteq V$ is equal to the union of a countable set of proper affine subspaces. We prove this by induction on the dimension of P. When $\operatorname{dim} P=1$, the only proper affine subspaces of P are the one-point sets in P, and since P is uncountable it cannot be equal to the union of a countable set of proper affine subspaces. Let $n \geq 1$, and suppose, inductively, that no affine space $Q \subseteq V$ with $\operatorname{dim} Q=n-1$ is equal to the union of any countable set of proper affine subspaces. Let $P \subseteq V$ be an affine space with $\operatorname{dim} P=n$. Let $R_{1}, R_{2}, R_{3}, \cdots$ be proper affine subspaces of P. Since P has uncountably many affine subspaces of dimension $n-1$, we can choose an affine subspace $Q \subseteq P$ with $\operatorname{dim} Q=n-1$ and $Q \neq R_{i}$ for any i. Since each set $R_{i} \cap Q$ is either empty or is a proper affine subspace of Q, it follows from the induction hypothesis that $Q \neq \bigcup_{i=1}^{\infty}\left(R_{i} \cap Q\right)$. Thus $Q \nsubseteq \bigcup_{i=1}^{\infty} R_{i}$ and hence $P \neq \bigcup_{i=1}^{\infty} R_{i}$.

7: Let S be a non-empty set and let F be a field. Let U be an n-dimensional subspace of the vector space F^{S} of all functions $f: S \rightarrow F$. Show that there exist elements $a_{1}, a_{2}, \cdots, a_{n} \in S$ and functions $f_{1}, f_{2}, \cdots, f_{n} \in U$ such that $f_{j}\left(a_{i}\right)=\delta_{i, j}$ for all indices i, j.
Solution: Let $\left\{g_{1}, g_{2}, \cdots, g_{l}\right\}$ be a basis for U. For each $a \in S$, write $g(a)=\left(g_{1}(a), g_{2}(a), \cdots, g_{l}(a)\right)^{T} \in F^{l}$. Let $\mathcal{V}=\{g(a) \mid a \in S\}$ and let $V=\operatorname{Span} \mathcal{V} \subseteq F^{l}$. For all $t \in F^{l}$ we have

$$
\begin{aligned}
t \in V^{\perp} & \Longleftrightarrow t \cdot g(a)=0 \text { for all } a \in S \\
& \Longleftrightarrow t_{1} g_{1}(a)+t_{2} g_{2}(a)+\cdots+t_{l} g_{l}(a)=0 \text { for all } a \in S \\
& \Longleftrightarrow t_{1} g_{1}+t_{2} g_{2}+\cdots+t_{l} g_{l}=0 \in W \\
& \Longleftrightarrow t=0, \text { since } \mathcal{V} \text { is linearly independent },
\end{aligned}
$$

and so we have $V^{\perp}=\{0\}$ and hence $V=F^{l}$. Since \mathcal{V} spans F^{l}, we can select a basis from amongst the elements of \mathcal{V}, and so we can choose $a_{1}, a_{2}, \cdots, a_{l} \in S$ so that $\left\{g\left(a_{1}\right), g\left(a_{2}\right), \cdots, g\left(a_{l}\right)\right\}$ is a basis for F^{l}. Let

$$
A=\left(g\left(a_{1}\right), g\left(a_{2}\right), \cdots, g\left(a_{l}\right)\right)=\left(\begin{array}{cccc}
g_{1}\left(a_{1}\right) & g_{1}\left(a_{2}\right) & \cdots & g_{1}\left(a_{l}\right) \\
g_{2}\left(a_{1}\right) & g_{2}\left(a_{2}\right) & \cdots & g_{2}\left(a_{l}\right) \\
& \vdots & & \\
g_{l}\left(a_{1}\right) & g_{l}\left(a_{2}\right) & \cdots & g_{l}\left(a_{l}\right)
\end{array}\right)
$$

and note that A is invertible since $\left\{g\left(a_{1}\right), g\left(a_{2}\right), \cdots, g\left(a_{l}\right)\right\}$ is a basis for F^{l}. Let $B=A^{-1}$, say B has entries $b_{i, j}=B_{i, j}$, and define $f_{1}, f_{2}, \cdots, f_{l} \in U$ by $f_{j}=\sum_{i=1}^{l} b_{j, i} g_{i}$. Then for $k=1,2, \cdots, l$ we have

$$
f_{j}\left(a_{k}\right)=\left(\sum b_{j, i} g_{i}\right)\left(a_{k}\right)=\sum b_{j, i} g_{i}\left(a_{k}\right)=(B A)_{j, k}=\delta_{j, k}
$$

8: Let $A, B \in M_{n}(\mathbf{R})$ with $A B=B A$ and $\operatorname{det}(A+B) \geq 0$. Show that $\operatorname{det}\left(A^{n}+B^{n}\right) \geq 0$ for all $n \in \mathbf{Z}^{+}$.
Solution: First we suppose that n is even, say $n=2 k$. Since the characteristic polynomial $f_{A}(x)=\operatorname{det}(A-x I)$ has finitely many roots, we can choose $\delta>0$ so that for all $x \in(0, \delta)$ we have $f_{A}(x) \neq 0$ so that the matrix $A_{x}=A-x I$ is invertible. Then for all $x \in(0, \delta)$ we have

$$
\begin{aligned}
\operatorname{det}\left(A_{x}{ }^{n}+B^{n}\right) & =\operatorname{det}\left(A_{x}^{2 k}+B^{2 k}\right)=\operatorname{det}\left(A_{x}^{2 k}\left(I+A_{x}^{-2 k} B^{2 k}\right)\right) \\
& =\operatorname{det}\left(A_{x}^{k}\right)^{2} \operatorname{det}\left(I+i A_{x}^{-k} B^{k}\right) \operatorname{det}\left(I-i A_{x}^{-k} B^{k}\right) \\
& =\operatorname{det}\left(A_{x}^{k}\right)^{2}\left|\operatorname{det}\left(I+i A_{x}{ }^{-k} B^{k}\right)\right|^{2} \geq 0
\end{aligned}
$$

Taking the limit as $x \rightarrow 0^{+}$we obtain $\operatorname{det}\left(A^{n}+B^{n}\right) \geq 0$.
Next we suppose that n is odd, say $n=2 k+1$. Let $\alpha=e^{i \pi / n}$ so that $\alpha^{n}+1=0$ and so that $x^{n}+1$ factors as $x^{n}+1=(x+1) \prod_{j=1}^{k}\left(x-\alpha^{j}\right)\left(x-\bar{\alpha}^{j}\right)$. Since $A B=B A$ we have $\left(A^{n}+B^{n}\right)=(A+B) \prod_{j=1}^{k}\left(A-\alpha^{j} B\right)\left(A-\bar{\alpha}^{j} B\right)$ and so

$$
\operatorname{det}\left(A^{n}+B^{n}\right)=\operatorname{det}(A+B) \prod_{j=1}^{k}\left(\operatorname{det}\left(A-\alpha^{j} B\right) \operatorname{det}\left(A-\bar{\alpha}^{j} B\right)\right)=\operatorname{det}(A+B) \prod_{j=1}^{k}\left|\operatorname{det}\left(A-\alpha^{j} B\right)\right|^{2} \geq 0
$$

9: Let $A, B \in M_{n}(\mathbf{C})$. Suppose that the eigenvalues of A are distinct from the eigenvalues of B. Show that the linear map $L: M_{n}(\mathbf{C}) \rightarrow M_{n}(\mathbf{C})$ given by $L(X)=A X-X B$ is bijective.
Solution: Let $X \in \operatorname{Ker}(L)$. Then we have

$$
\begin{aligned}
& A X=X B \\
& A^{2} X=A X B=X B^{2} \\
& A^{3} X=A^{2} X B=A X B^{2}=X B^{3} \\
& A^{4} X=A^{3} X B=A^{2} X B^{2}=A X B^{3}=X B^{4}
\end{aligned}
$$

and so on so that $A^{k} X=X B^{k}$ for all $k \geq 0$. It follows that $f(A) X=X f(B)$ for every polynomial $f(x)$. In particular, we have $f_{B}(A) X=X f_{B}(B)=0$ where $f_{B}(x)$ is the characteristic polynomial of B. Let $\lambda_{1}, \cdots, \lambda_{n}$ be the eigenvalues of A (repeated according to multiplicity) and let μ_{1}, \cdots, μ_{n} be the eigenvalues of B. Then $f_{B}(x)=(-1)^{n} \prod_{i=1}^{n}\left(x-\mu_{i}\right)$ and the eigenvalues of the matrix $f_{B}(A)$ are the values $f_{B}\left(\lambda_{j}\right)=(-1)^{n} \prod_{i=1}^{n}\left(\lambda_{j}-\mu_{i}\right)$. Note that $f_{B}\left(\lambda_{j}\right) \neq 0$ since $\lambda_{j} \neq \mu_{i}$ for any i, j. Since the eigenvalues of $f_{B}(A)$ are non-zero, it follows that the matrix $f_{B}(A)$ is invertible. Since $f_{B}(A) X=0$ and $f_{B}(A)$ is invertible, we have $X=0$. Thus $\operatorname{Ker}(L)=\{0\}$ and so L is invertible.

10: Show that the identity map $I: \mathbf{R} \rightarrow \mathbf{R}$ given by $I(x)=x$ is equal to the sum of two periodic maps.
Solution: Let S be a basis for \mathbf{R} over \mathbf{Q}. Each $x \in \mathbf{R}$ can be expressed uniquely as a linear combination $x=\sum_{t \in S} x_{t} \cdot t$ where each $x_{t} \in \mathbf{Q}$ with $x_{t}=0$ for all but finitely many $t \in S$. For each $a \in S$ define a map $\phi_{a}: \mathbf{R} \rightarrow \mathbf{R}$ by $\phi_{a}(x)=x_{a} \cdot a$. Note that for every $b \in S$ with $b \neq a$, the function ϕ_{a} is periodic with period b because for $x \in \mathbf{R}$, if $x=\sum_{t \in S} x_{t} \cdot t=x_{a} \cdot a+x_{b} \cdot b+\sum_{t \neq a, b} x_{t} \cdot t$ then $x+b=x_{a} \cdot a+\left(x_{b}+1\right) \cdot b+\sum_{t \neq a, b} x_{t} \cdot t$ and so we have $\phi_{a}(x+b)=x_{a} \cdot a=\phi_{a}(x)$.

To express the identity map $I(x)$ as a sum of two periodic functions, partition the basis S into two nonempty sets A and B, then define $f, g: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
f(x)=\sum_{a \in A} \phi_{a}(x)=\sum_{a \in A} x_{a} \cdot a \text { and } g(x)=\sum_{b \in B} \phi_{b}(x)=\sum_{b \in B} x_{b} \cdot b .
$$

Note that the above sums contain only finitely many non-zero terms, so they are well-defined. Also note that f and g are periodic. Indeed for every $b \in B$, we have $f(x+b)=\sum_{a \in A} \phi_{a}(x+b)=\sum_{a \in A} \phi_{a}(x)=f(x)$, and so $f(x)$ is periodic with period b, and similarly, for every $a \in A$ the function $g(x)$ is periodic with period a.

