The Faculty of Mathematics at the University of Waterloo
in association with
The Centre for Education in Mathematics and Computing
and
The Canadian Mathematics Competition
presents

The First Annual Small c Competition

for First Year Students

Saturday 29 September 2001

Time: 1 hour

Calculators are permitted.

Instructions:

- 1. Do not open the contest booklet until you are told to do so.
- 2. You may use slide rules, abaci, rulers, protractors, compasses and paper for rough work.
- 3. On your response form, print your name, program, and ID number.
- 4. This is a multiple choice test. Each question is followed by five possible answers marked **A**, **B**, **C**, **D**, and **E**. Only one of these is correct. When you have decided on your choice, enter it in the appropriate box on the response form.
- 5. Scoring: Each correct answer is worth 5 in Part A, 6 in Part B, and 8 in Part C. There is *no penalty* for an incorrect answer. Each unanswered question is worth 2, to a maximum of 20.
- 6. Diagrams are *not* drawn to scale. They are intended as aids only.
- 7. When your supervisor instructs you to begin, you will have sixty minutes of working time.

Part A

1. The value of $3^0 - 2^1 + 1^2 - 0^3$ is

(A) 4 **(B)** 2 **(C)** 0 **(D)** 3 **(E)** 1

2.		e get on the next			70%, $82%$, $80%$, $65%$, and $85%$. What of $80%$, assuming that all six tests are		
	(A) 78%	(B) 80%	(C) 88%	(D) 98%	(E) 100%		
3.	If $a \bigstar b = a +$	b^2 , then $(2 \bigstar 3) \bigstar$	4 equals				
	(A) 27	(B) 9	(C) 24	(D) 53	(E) 23		
4.	The points A	(4,-3), B(7,-8)	and $C(w, w)$ all	lie on the same	straight line. The value of w is		
	(A) $\frac{2}{11}$	(B) 1	(C) $\frac{11}{8}$	(D) 0	(E) $\frac{11}{6}$		
5.	When $\frac{1}{4}$ of a r	number is subtrac	cted from $\frac{1}{3}$ of the	e same number,	the result is 48. The original number is		
	(A) 4	(B) 12	(C) 144	(D) 576	(E) 1152		
6.	In degrees, th	the equivalent of $\frac{7}{1}$	$\frac{\pi}{8}$ radians is				
	(A) 430	(B) 140	(C) 1.22	(D) 35	(E) 70		
7.	The circumference of a circle is 40 cm. If the circumference is increased by 2 cm, then the increase, in cm, of the radius is						
	(A) π	(B) 1	(C) 2	(D) $\frac{1}{\pi}$	(E) $\frac{2}{\pi}$		
8.		of the first four into this sum is		are added togeth	ner. The largest prime number which		
	(A) 19	(B) 29	(C) 3	(D) 7	(E) 17		
9.	Two fair dice	are rolled. The p	probability that t	the sum of the m	umbers rolled is divisible by 3 is		
	(A) $\frac{4}{11}$	(B) $\frac{11}{36}$	(C) $\frac{1}{3}$	(D) 2	(E) $\frac{1}{9}$		
10.	Matilda think are supposed leaves at 8:00 (A) Albert w	s that her watch	shows the right train station at 7 probably happen	ime, but Albert:55 a.m. becaus	tt (relative to a National Time Signal). thinks that his is 4 minutes fast. They e the train comes in at 7:57 a.m. and		
	(D) They wil	ill get on the trail both miss the t l get on the train	rain.	ı.			

Part B

(A) 8

(A) $\frac{5}{4}$

11. If a + b = 12, b + c = 16 and c + a = 14, the value of b is

(C) 5

12. If $x - y = xy = \frac{x}{y}$ with x and y real numbers, the value of $x^2 + y^2$ is

(C) 0

(D) 9

(D) 2

(E) 4

(E) $\frac{1}{2}$

(B) 7

(B) $\frac{17}{4}$

	(A) 52	(B) 44	(C) 41	(D) 38	(E) 35
14.	The minimum	m value of $f(x)$ =	$=x^4-4x^3+6$ f	For $1 \le x \le 4$ is	
	(A) -75	(B) -21	(C) 1	(D) 3	(E) 6
15.	The numerica	al value of $\lim_{x\to 2} \frac{1}{2}$	$\frac{x-2}{2+3x-2x^2}$ is		
	(A) $-\frac{1}{3}$	(B) $\frac{1}{3}$	(C) ∞	(D) 0	(E) $-\frac{1}{5}$
	3 m/s. When at a rate of r	the foot of the m/s , where r is	ladder is 10 me	etres from the build	es away from the building at a rate of ding, the top is moving down the wall
	$({f A}) - \frac{5}{4}$	(B) $-\frac{1}{3}$	(C) $\frac{1}{3}$	(D) $\frac{5}{4}$	(E) 3
17.				nation $(x^2 - 1) y =$	$x^2 + 1$ has
17.	(A) 1 horizon(B) 0 horizon(C) 1 horizon(D) 2 horizon	the xy-plane deintal asymptotes antal asymptotes antal asymptotes antal asymptotes antal asymptotes	and 1 vertical as and 2 vertical a and 2 vertical as and 2 vertical a	symptotes. symptotes. symptotes. symptotes.	$x^2 + 1$ has
	(A) 1 horizon (B) 0 horizon (C) 1 horizon (D) 2 horizon (E) 0 horizon	ntal asymptote a ntal asymptotes ntal asymptote a ntal asymptotes ntal asymptotes	and 1 vertical as and 2 vertical a and 2 vertical as and 2 vertical a and 0 vertical a	symptotes. symptotes. symptotes. symptotes.	
	(A) 1 horizon (B) 0 horizon (C) 1 horizon (D) 2 horizon (E) 0 horizon	ntal asymptote a ntal asymptotes ntal asymptote a ntal asymptotes ntal asymptotes	and 1 vertical as and 2 vertical a and 2 vertical as and 2 vertical a and 0 vertical a	symptotes. symptotes. symptotes. symptotes. symptotes.	
18.	 (A) 1 horizon (B) 0 horizon (C) 1 horizon (D) 2 horizon (E) 0 horizon The number (A) 0 	ntal asymptotes antal asymptotes antal asymptotes antal asymptotes at a symptotes of solutions of the (B) 1	and 1 vertical as and 2 vertical a and 2 vertical as and 2 vertical a and 0 vertical and equation \sin^2 (C) 2	symptotes. symptotes. symptotes. symptotes. symptotes. $x = \cos x$ with $0 < \cos x$	$x < 2\pi$ is (E) 4
18.	 (A) 1 horizon (B) 0 horizon (C) 1 horizon (D) 2 horizon (E) 0 horizon The number (A) 0 	ntal asymptotes antal asymptotes antal asymptotes antal asymptotes at a symptotes of solutions of the (B) 1	and 1 vertical as and 2 vertical a and 2 vertical as and 2 vertical a and 0 vertical and equation \sin^2 (C) 2	symptotes. symptotes. symptotes. symptotes. symptotes. $x = \cos x$ with $0 <$ (D) π	$x < 2\pi$ is (E) 4
18.	(A) 1 horizon (B) 0 horizon (C) 1 horizon (D) 2 horizon (E) 0 horizon The number (A) 0 The number (A) 4	ntal asymptote a ntal asymptotes ntal asymptotes ntal asymptotes ntal asymptotes of solutions of th (B) 1 of three-digit po (B) 30	and 1 vertical as and 2 vertical as and 2 vertical as and 2 vertical a and 0 vertical and equation sin ² (C) 2 sitive integers w (C) 18	symptotes. symptotes. symptotes. symptotes. symptotes. symptotes. $x = \cos x$ with $0 < (\mathbf{D}) \pi$ whose digits have a	$x < 2\pi$ is (E) 4 product of 24 is (E) 24
18.	(A) 1 horizon (B) 0 horizon (C) 1 horizon (D) 2 horizon (E) 0 horizon The number (A) 0 The number (A) 4 What is the residue of the second of t	ntal asymptotes ntal asymptotes ntal asymptotes ntal asymptotes ntal asymptotes ntal asymptotes of solutions of th (B) 1 of three-digit po (B) 30 maximum value	and 1 vertical as and 2 vertical as and 2 vertical as and 2 vertical as and 0 vertical and 0 vertical and equation $\sin^2(\mathbf{C})$ 2 sitive integers w (C) 18 of $x + y$, given the	symptote. symptotes. symptotes. symptotes. symptotes. symptotes. $x = \cos x$ with $0 < (\mathbf{D}) \pi$ whose digits have a (\mathbf{D}) 21	$x < 2\pi$ is (E) 4 product of 24 is (E) 24

Part C

- 21. In the diagram, PBCQ is a trapezoid with PQ = 2 and BC = 3. If the area of triangle ABC is 36, then the area of PBCQ is
 - (A) 90
- **(B)** 95
- **(C)** 110
- **(D)** 100
- **(E)** 105

- 22. Starting at the point P(x,y) on the coordinate plane, a pin is randomly moved to either the point A(x+1,y) or the point B(x,y+1), with each move having a probability of $\frac{1}{2}$. If the pin starts at (0,0) and is moved to (4,4), what is the probability that it passes through (2,2)?
 - (A) $\frac{6}{35}$
- **(B)** $\frac{12}{25}$
- (C) $\frac{16}{35}$
- (D) $\frac{18}{35}$
- 23. In an arithmetic sequence, the sum of the first 2n terms is equal to the sum of the next n terms, $n \neq 0$. If the first term is $2\,005\,003$ and the common difference is n, then the value of n is
 - (A) 2000
- **(B)** 2004
- (C) 2001
- **(D)** 2003
- **(E)** 2002
- 24. A circle of radius 1 is divided into 3 equal arcs which are combined as shown in the diagram. The area enclosed by the 3 petals is

 - (A) $\pi \frac{3\sqrt{3}}{2}$ (B) $\pi \frac{3\sqrt{3}}{4}$ (C) $2\pi 3\sqrt{3}$ (D) $\frac{\pi}{3} \frac{\sqrt{3}}{2}$ (E) $\frac{\pi}{3}$

- 25. If a, b, c are the roots of $x^3 + 2x^2 + 7x = 19$, then the value of $a^3 + b^3 + c^3$ is
 - (A) 89
- **(B)** 91
- **(C)** 93
- **(D)** 95
- **(E)** 97