- 1: (a) Find the length of the curve $y = \sqrt{4x x^2}$ with $0 \le x \le 3$.
 - (b) Find the length of the curve $y = 3x^{2/3}$ with $0 \le x \le 8$.
- **2:** (a) Find the area of the surface obtained by revolving the curve $y = \sqrt{x}$ with $0 \le x \le 2$ about the x-axis.

(b) Find the area of the surface which is obtained by revolving the curve $y = \cos x$ with $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ about the x-axis.

- **3:** Consider the IVP $y' = 2(x+y) \frac{1}{2}$ with y(0) = 0.
 - (a) Find the exact solution y = f(x) to the above IVP.

(b) Apply Euler's method with step size $\Delta x = \frac{1}{2}$ to find a polygonal approximation y = g(x) for $0 \le x \le 2$ to the above solution y = f(x).

(c) Sketch the direction field for the given DE along with the graph of the exact solution y = f(x) and the graph of the polygonal solution y = g(x).

4: (a) The amount A(t) of a radioactive substance satisfies the DE

$$A'(t) = k A(t)$$

for some constant k < 0. The substance has a half-life of 10 seconds, which means that $A(10) = \frac{1}{2}A(0)$. If A(5) = 100 then find the exact time t at which A(t) = 20.

(b) A murder victim is found in a room of constant teperature 25° C. At the time of murder, we assume that the victim's body temperature was 37° C. At 2:00 pm, the body temperature is measured to be 31° C and at 5:00 pm, it is measured to be 29° C. Determine the time of death, assuming that the temperature T = T(t) of the body at time t satisfies Newton's Law of Cooling T' = -k(T-25) for some constant k > 0.

5: A tank initially contains 20 L of pure water. Brine containing 5 grams of salt per liter of water enters the tank at 6 L/min. The solution is kept well mixed and drains from the tank at 2 L/min. Find the concentration of salt in the tank when the tank contains 80 L of brine.