1: Find the sum of each of the following series, if the sum exists.

(a)
$$\sum_{n=0}^{\infty} \frac{2^{n+1}-1}{3^n}$$
 (b) $\sum_{n=2}^{\infty} \frac{4^{1-n}}{3^{n-1}}$ (c) $\sum_{n=1}^{\infty} \frac{3}{n^2+3n}$ (d) $\sum_{n=0}^{\infty} \frac{n}{(n+1)!}$

2: Determine which of the following series converge.

(a)
$$\sum_{n=0}^{\infty} \frac{\sqrt{n}}{2n^2 + 1}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n 2^{1/n}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ (d) $\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$

3: (a) Approximate the sum $S = \sum_{n=0}^{\infty} \frac{1}{5^n + 5n}$ by a partial sum S_ℓ so that the error is $S - S_\ell \leq \frac{1}{500}$.

- (b) Let $S = \sum_{n=1}^{\infty} \frac{n}{e^n}$. Use a calculator to find a value of ℓ such that $S S_{\ell} \leq \frac{1}{500}$.
- (c) Let $f(x) = \frac{1}{x(\ln x)^2}$, let $a_n = f(n)$ for $n \ge 2$, let $S = \sum_{n=2}^{\infty} a_n$, and let $S_{\ell} = \sum_{n=2}^{\ell} a_n$. Find a value of ℓ such that if we approximate S by $S \cong S_{\ell}$ then the absolute error is $|S S_{\ell}| \le \frac{1}{100}$ and, using a calculator, find

another value of ℓ such that if we approximate S by

$$S \cong T_{\ell} = S_{\ell} + \frac{1}{2} \left(\int_{\ell}^{\infty} f(x) \, dx + \int_{\ell+1}^{\infty} f(x) \, dx \right)$$

then the absolute error is $|S - T_{\ell}| \leq \frac{1}{100}$.

- **4:** Determine, with proof, which of the following statements are true for all sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$.
 - (a) If $\sum a_n$ converges that $\sum e^{a_n}$ diverges.
 - (b) If $\sum a_n$ converges then $\sum a_n^2$ converges.
 - (c) If $a_n \ge 0$ for all n and $\sum a_n$ converges then $\sum \frac{a_n}{1+a_n}$ converges.
 - (d) If $\sum a_n$ converges and $\sum |b_n|$ converges then $\sum a_n b_n$ converges.