The Riemann Integral

1.1 Definition: A partition of the closed interval [a, b] is a set $X = \{x_0, x_1, \dots, x_n\}$ with

$$
a = x_0 < x_1 < x_2 < \cdots < x_n = b \, .
$$

The intervals $[x_{i-1}, x_i]$ are called the **subintervals** of $[a, b]$, and we write

$$
\Delta_i x = x_i - x_{i-1}
$$

for the size of the ith subinterval. Note that

$$
\sum_{i=1}^{n} \Delta_i x = b - a \, .
$$

The size of the partition X, denoted by $|X|$ is

$$
|X| = \max \left\{ \Delta_i x \middle| 1 \le i \le n \right\}.
$$

1.2 Definition: Let X be a partition of [a, b], and let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. A **Riemann sum** for f on X is a sum of the form

$$
S = \sum_{i=1}^{n} f(t_i) \Delta_i x \quad \text{ for some } t_i \in [x_{i-1}, x_i].
$$

The points t_i are called **sample points**.

1.3 Definition: Let $f : [a, b] \to \mathbb{R}$ be bounded. We say that f is (**Riemann**) integrable on [a, b] when there exists a number I with the property that for every $\epsilon > 0$ there exists $\delta > 0$ such that for every partition X of [a, b] with $|X| < \delta$ we have $|S - I| < \epsilon$ for every Riemann sum for f on X , that is

$$
\left|\sum_{i=1}^n f(t_i)\Delta_i x - I\right| < \epsilon.
$$

for every choice of $t_i \in [x_{i-1}, x_i]$ The number I can be shown to be unique. It is called the (**Riemann**) integral of f on $[a, b]$, and we write

$$
I = \int_a^b f
$$
, or $I = \int_a^b f(x) dx$.

1.4 Example: Show that the constant function $f(x) = c$ is integrable on any interval [a, b] and we have \int^b a $c \, dx = c(b-a).$

Solution: The solution is left as an exercise.

1.5 Example: Show that the identity function $f(x) = x$ is integrable on any interval [a, b], and we have \int^b a $x dx = \frac{1}{2}$ $\frac{1}{2}(b^2 - a^2).$

Solution: Let $\epsilon > 0$. Choose $\delta = \frac{2\epsilon}{b}$ $\frac{2\epsilon}{b-a}$. Let X be any partition of [a, b] with $|X| < \delta$. Let $t_i \in [x_{i-1}, x_i]$ and set $S = \sum_{i=1}^{n}$ $i=1$ $f(t_i)\Delta_ix = \sum_{i=1}^{n}$ $i=1$ $t_i\Delta_ix$. We must show that $|S-\frac{1}{2}\rangle$ $\frac{1}{2}(b^2-a^2)| < \epsilon.$ Notice that

$$
\sum_{i=1}^{n} (x_i + x_{i-1})\Delta_i x = \sum_{i=1}^{n} (x_i + x_{i-1})(x_i - x_{i-1}) = \sum_{i=1}^{n} x_i^2 - x_{i-1}^2
$$

= $(x_1^2 - x_0^2) + (x_2^2 - x_1^2) + \dots + (x_{n-1}^2 - x_{n-2}^2) + (x_n^2 - x_{n-1}^2)$
= $-x_0^2 + (x_1^2 - x_1^2) + \dots + (x_{n-1}^2 - x_{n-1}^2) + x_n^2$
= $x_n^2 - x_0^2 = b^2 - a^2$

and that when $t_i \in [x_{i-1}, x_i]$ we have $\left| t_i - \frac{1}{2} \right|$ $\frac{1}{2}(x_i + x_{i-1}) \leq \frac{1}{2}$ $\frac{1}{2}(x_i - x_{i-1}) = \frac{1}{2}\Delta_i x$, and so

$$
\begin{aligned} \left| S - \frac{1}{2} (b^2 - a^2) \right| &= \left| \sum_{i=1}^n t_i \Delta_i x - \frac{1}{2} \sum_{i=1}^n (x_i + x_{i-1}) \Delta_i x \right| \\ &= \left| \sum_{i=1}^n \left(t_i - \frac{1}{2} (x_i + x_{i+1}) \right) \Delta_i x \right| \\ &\le \sum_{i=1}^n \left| t_i - \frac{1}{2} (x_i + x_{i+1}) \right| \Delta_i x \\ &\le \sum_{i=1}^n \frac{1}{2} \Delta_i x \Delta_i x \le \sum_{i=1}^n \frac{1}{2} \delta \Delta_i x \\ &= \frac{1}{2} \delta(b - a) = \epsilon \,. \end{aligned}
$$

1.6 Example: Let $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \neq 0 \end{cases}$ $\begin{array}{c} 1 & \text{if } x \in \mathcal{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{array}$. Show that f is not integrable on [0, 1].

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write $I = \int_0^1 f$. Let $\epsilon = \frac{1}{2}$ $\frac{1}{2}$. Choose δ so that for every partition X with $|X| < \delta$ we have $|S-I| < \frac{1}{2}$ $\frac{1}{2}$ for every Riemann sum S for f on X. Choose a partition X with $|X| < \delta$. Let $S_1 = \sum_{n=1}^{\infty}$ $i=1$ $f(t_i)\Delta_ix$ where each $t_i \in [x_{i-1}, x_i]$ is chosen with $t_i \in \mathbb{Q}$, and let $S_2 = \sum_{i=1}^{n}$ $i=1$ $f(s_i)\Delta_ix$ where each $s_i \in [x_{i-1}, x_i]$ is chosen with $s_i \notin \mathbb{Q}$. Note that we have $|S_1 - I| < \frac{1}{2}$ $\frac{1}{2}$ and $|S_2 - I| < \frac{1}{2}$ $\frac{1}{2}$. Since each $t_i \in \mathbb{Q}$ we have $f(t_i) = 1$ and so $S_1 = \sum_{i=1}^{n}$ $i=1$ $f(t_i)\Delta_ix = \sum_{i=1}^n$ $i=1$ $\Delta_i x = 1 - 0 = 1$, and since each $s_i \notin \mathbb{Q}$ we have $f(s_i) = 0$ and so $S_2 = \sum_{i=1}^{n} f(s_i) \Delta_i x = 0$. Since $|S_1 - I| < \frac{1}{2}$ $i=1$ $rac{1}{2}$ we have $|1-I|<\frac{1}{2}$ $\frac{1}{2}$ and so $\frac{1}{2} < I < \frac{3}{2}$, and since $|S_2 - I| < \frac{1}{2}$ $\frac{1}{2}$ we have $|0 - I| < \frac{1}{2}$ $rac{1}{2}$ and so $-\frac{1}{2}$ $\frac{1}{2} < I < \frac{1}{2}$, giving a contradiction.

1.7 Theorem: (Continuous Functions are Integrable) Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous. Then f is integrable on $[a, b]$.

Proof: We omit the proof, which is quite difficult.

1.8 Note: Let f be integrable on $[a, b]$. Let X_n be any sequence of partitions of $[a, b]$ with $\lim_{n\to\infty} |X_n| = 0$. Let S_n be any Riemann sum for f on X_n . Then $\{S_n\}$ converges with

$$
\lim_{n \to \infty} S_n = \int_a^b f(x) \, dx \, .
$$

Proof: Write $I = \int_a^b f$. Given $\epsilon > 0$, choose $\delta > 0$ so that for every partition X of [a, b] with $|X| < \delta$ we have $|S - I| < \epsilon$ for every Riemann sum S for f on X, and then choose N so that $n > N \Longrightarrow |X_n| < \delta$. Then we have $n > N \Longrightarrow |S_n - I| < \epsilon$.

1.9 Note: Let f be integrable on $[a, b]$. If we let X_n be the partition of $[a, b]$ into n equal-sized subintervals, and we let S_n be the Riemann sum on X_n using right-endpoints, then by the above note we obtain the formula

$$
\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{n,i}) \Delta_{n,i} x
$$
, where $x_{n,i} = a + \frac{b-a}{n} i$ and $\Delta_{n,i} x = \frac{b-a}{n}$.
1.10 Example: Find $\int_{0}^{2} 2^{x} dx$.

Solution: Let $f(x) = 2^x$. Note that f is continuous and hence integrable, so we have

$$
\int_{0}^{2} 2^{x} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{n,i}) \Delta_{n,i} x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{2i}{n}\right) \left(\frac{2}{n}\right) = \lim_{n \to \infty} \sum_{i=1}^{n} 2^{2i/n} \left(\frac{2}{n}\right)
$$

= $\lim_{n \to \infty} \frac{2 \cdot 4^{1/n}}{n} \cdot \frac{4 - 1}{4^{1/n} - 1}$, by the formula for the sum of a geometric sequence
= $\left(\lim_{n \to \infty} 6 \cdot 4^{1/n}\right) \left(\lim_{n \to \infty} \frac{1}{n \left(4^{1/n} - 1\right)}\right) = 6 \lim_{n \to \infty} \frac{\frac{1}{n}}{4^{1/n} - 1} = 6 \lim_{x \to 0} \frac{x}{4^x - 1}$
= $6 \lim_{x \to 0} \frac{1}{\ln 4 \cdot 4^x}$, by l'Hôpital's Rule
= $\frac{6}{\ln 4} = \frac{3}{\ln 2}$.

1.11 Lemma: (Summation Formulas) We have

$$
\sum_{i=1}^{n} 1 = n , \sum_{i=1}^{n} i = \frac{n(n+1)}{2} , \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} , \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}
$$

Proof: These formulas could be proven by induction, but we give a more constructive proof. It is obvious that $\sum_{n=1}^{\infty}$ $i=1$ $1 = 1 + 1 + \cdots 1 = n.$ To find $\sum_{n=1}^{n}$ $i=1$ i, consider $\sum_{n=1}^{\infty}$ $n=1$ $(i^2 - (i-1)^2)$. On the one hand, we have

$$
\sum_{i=1}^{n} (i^2 - (i - 1)^2) = (1^2 - 0^2) + (2^2 - 1^2) + \dots + ((n - 1)^2 - (n - 2)^2) + (n^2 - (n - 1)^2)
$$

= -0² + (1² – 1²) + (2² – 2²) + \dots + ((n - 1)² – (n - 1)²) + n²
= n²

and on the other hand,

$$
\sum_{i=1}^{n} (i^2 - (i-1)^2) = \sum_{i=1}^{n} (i^2 - (i^2 - 2i + 1)) = \sum_{i=1}^{n} (2i - 1) = 2 \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1
$$

Equating these gives $n^2 = 2 \sum_{n=1}^{\infty}$ $i=1$ $i-\sum_{i=1}^n$ $i=1$ 1 and so

$$
2\sum_{i=1}^{n} i = n^{2} + \sum_{i=1}^{n} 1 = n^{2} + n = n(n + 1),
$$

as required. Next, to find $\sum_{n=1}^{\infty}$ $n=1$ i^2 , consider \sum $i=1$ $(i^3 - (i - 1)^3)$. On the one hand we have

$$
\sum_{i=1}^{n} (i^3 - (i-1)^3) = (1^3 - 0^3) + (2^3 - 1^3) + (3^3 - 2^3) + \dots + (n^3 - (n-1)^3)
$$

= -0³ + (1³ - 1³) + (2³ - 2³) + \dots + ((n - 1)³ - (n - 1)³) + n³
= n³

and on the other hand,

$$
\sum_{i=1}^{n} (i^3 - (i-1)^3) = \sum_{i=1}^{n} (i^3 - (i^3 - 3i^2 + 3i - 1))
$$

=
$$
\sum_{i=1}^{n} (3i^2 - 3i + 1) = 3 \sum_{i=1}^{n} i^2 - 3 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1.
$$

Equating these gives $n^3 = 3 \sum_{n=1}^{\infty}$ $i=1$ $i^2-3\sum_{n=1}^{\infty}$ $i=1$ $i+\sum_{n=1}^{\infty}$ $i=1$ 1 and so

$$
6\sum_{i=1}^{n} i^2 = 2n^3 + 6\sum_{i=1}^{n} i - 2\sum_{i=1}^{n} 1 = 2n^3 + 3n(n+1) - 2n = n(n+1)(2n+1)
$$

as required. Finally, to find $\sum_{n=1}^{\infty}$ $i=1$ i^3 , consider \sum^n $i=1$ $(i^4 - (i - 1)^4)$. On the one hand we have

$$
\sum_{i=1}^{n} (i^4 - (i-1)^4) = n^4,
$$

(as above) and on the other hand we have

$$
\sum_{i=1}^{n} (i^4 - (i-1)^4) = \sum_{i=1}^{n} (4i^3 - 6i^2 + 4i - 1) = 4 \sum_{i=1}^{n} i^3 - 6 \sum_{i=1}^{n} i^2 + 4 \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1.
$$

Equating these gives $n^4 = 4 \sum_{n=1}^{\infty}$ $i=1$ $i^3-6\sum^n$ $i=1$ $i^2+4\sum^n$ $i=1$ $i-\sum_{i=1}^{n}$ $i=1$ 1 and so $4\sum_{1}^{n}$ $i=1$ $i^3 = n^4 + 6 \sum_{n=1}^n$ $i=1$ $i^2-4\sum_{n=1}^n$ $i=1$ $i+\sum_{n=1}^{\infty}$ $i=1$ 1 $= n⁴ + n(n + 1)(2n + 1) - 2n(n + 1) + n$ $= n^4 + 2n^3 + n^2 = n^2(n+1)^2,$

as required.

1.12 Example: Find \int_3^3 1 $x+2x^3 dx$.

Solution: Let $f(x) = x + 2x^3$. Then

$$
\int_{1}^{3} x + 2x^{3} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{n,i}) \Delta_{n,i} x
$$

\n
$$
= \lim_{n \to \infty} \sum_{i=1}^{n} f(1 + \frac{2}{n}i) (\frac{2}{n})
$$

\n
$$
= \lim_{n \to \infty} \sum_{i=1}^{n} ((1 + \frac{2}{n}i) + 2(1 + \frac{2}{n}i)^{3}) (\frac{2}{n})
$$

\n
$$
= \lim_{n \to \infty} \sum_{i=1}^{n} (1 + \frac{2}{n}i + 2(1 + \frac{6}{n}i + \frac{12}{n^{2}}i^{2} + \frac{8}{n^{3}}i^{3})) (\frac{2}{n})
$$

\n
$$
= \lim_{n \to \infty} \sum_{i=1}^{n} (\frac{6}{n} + \frac{28}{n^{2}}i + \frac{48}{n^{3}}i^{2} + \frac{32}{n^{4}}i^{3})
$$

\n
$$
= \lim_{n \to \infty} (\frac{6}{n} \sum_{i=1}^{n} 1 + \frac{28}{n^{2}} \sum_{i=1}^{n} i + \frac{48}{n^{3}} \sum_{i=1}^{n} i^{2} + \frac{32}{n^{4}} \sum_{i=1}^{n} i^{3})
$$

\n
$$
= \lim_{n \to \infty} (\frac{6}{n} \cdot n + \frac{28}{n^{2}} \cdot \frac{n(n+1)}{2} + \frac{48}{n^{3}} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{32}{n^{4}} \cdot \frac{n^{2}(n+1)^{2}}{4})
$$

\n
$$
= 6 + \frac{28}{2} + \frac{48 \cdot 2}{6} + \frac{32}{4} = 44.
$$

Basic Properties of Integrals

1.13 Theorem: (Linearity) Let f and g be integrable on [a, b] and let $c \in \mathbb{R}$. Then $f + g$ and cf are both integrable on [a, b] and

$$
\int_a^b (f+g) = \int_a^b f + \int_a^b g
$$

$$
\int_a^b cf = c \int_a^b f.
$$

and

Proof: The proof is left as an exercise.

1.14 Theorem: (Comparison) Let f and g be integrable on [a, b]. If $f(x) \le g(x)$ for all $x \in [a, b]$ then

$$
\int_a^b f \le \int_a^b g \, .
$$

Proof: The proof is left as an exercise.

1.15 Theorem: (Additivity) Let $a < b < c$ and let $f : [a, c] \rightarrow \mathbb{R}$ be bounded. Then f is integrable on [a, c] if and only if f is integrable both on [a, b] and on [b, c], and in this case

$$
\int_a^b f + \int_b^c f = \int_a^c f.
$$

Proof: We omit the proof, which is quite difficult.

1.16 Definition: We define
$$
\int_{a}^{a} f = 0
$$
 and for $a < b$ we define $\int_{b}^{a} f = -\int_{a}^{b} f$.

1.17 Note: Using the above definition, the Additivity Theorem extends to the case that $a, b, c \in \mathbb{R}$ are not in increasing order: for any $a, b, c \in \mathbb{R}$, if f is integrable on $\lceil \min\{a, b, c\}, \max\{a, b, c\} \rceil$ then

$$
\int_a^b f + \int_b^c f = \int_a^c f.
$$

1.18 Theorem: (Absolute Value) Let f be integrable on [a, b]. Then $|f|$ is integrable on $[a, b]$ and

$$
\left| \int_a^b f \right| \leq \int_a^b |f| \, .
$$

Proof: We omit the proof, which is quite difficult.

The Fundamental Theorem of Calculus

1.19 Notation: For a function F , defined on an interval containing $[a, b]$, we write

$$
\[F(x)\]_a^b = F(b) - F(a)\,.
$$

1.20 Theorem: (The Fundamental Theorem of Calculus) (1) Let f be integrable on [a, b]. Define $F : [a, b] \to \mathbb{R}$ by

$$
F(x) = \int_a^x f = \int_a^x f(t) dt.
$$

Then F is continuous on [a, b]. Moreover, if f is continuous at a point $x \in [a, b]$ then F is differentiable at x and

$$
F'(x) = f(x) \, .
$$

(2) Let f be integrable on [a, b]. Let F be differentiable on [a, b] with $F' = f$. Then

$$
\int_a^b f = \left[F(x) \right]_a^b = F(b) - F(a) .
$$

Proof: (1) Let M be an upper bound for $|f|$ on [a, b]. For $a \le x, y \le b$ we have

$$
\left| F(y) - F(x) \right| = \left| \int_a^y f - \int_a^x f \right| = \left| \int_x^y f \right| \le \left| \int_x^y |f| \right| \le \left| \int_x^y M \right| = M|y - x|
$$

so given $\epsilon > 0$ we can choose $\delta = \frac{\epsilon}{M}$ to get

$$
|y - x| < \delta \Longrightarrow |F(y) - F(x)| \le M|y - x| < M\delta = \epsilon.
$$

Thus F is continuous on [a, b]. Now suppose that f is continuous at the point $x \in [a, b]$. Note that for $a \leq x, y \leq b$ with $x \neq y$ we have

$$
\left| \frac{F(y) - F(x)}{y - x} - f(x) \right| = \left| \frac{\int_a^y f - \int_a^x f}{y - x} - f(x) \right|
$$

$$
= \left| \frac{\int_x^y f}{y - x} - \frac{\int_x^y f(x)}{y - x} \right|
$$

$$
= \frac{1}{|y - x|} \left| \int_x^y (f(t) - f(x)) dt \right|
$$

$$
\leq \frac{1}{|y - x|} \left| \int_x^y |f(t) - f(x)| dt \right|
$$

Given $\epsilon > 0$, since f is continuous at x we can choose $\delta > 0$ so that

$$
|y - x| < \delta \Longrightarrow |f(y) - f(x)| < \epsilon
$$

.

and then for $0 < |y - x| < \delta$ we have

$$
\left| \frac{F(y) - F(x)}{y - x} - f(x) \right| \le \frac{1}{|y - x|} \left| \int_x^y |f(t) - f(x)| dt \right|
$$

$$
\le \frac{1}{|y - x|} \left| \int_x^y \epsilon dt \right| = \frac{1}{|y - x|} \epsilon |y - x| = \epsilon.
$$

and thus we have $F'(x) = f(x)$ as required.

(2) Let f be integrable on [a, b]. Suppose that F is differentiable on [a, b] with $F' = f$. Let $\epsilon > 0$ be arbitrary. Choose $\delta > 0$ so that for every partition X of [a, b] with $|X| < \delta$ we have $\begin{array}{c} \hline \end{array}$ \int^b a $f-\sum_{n=1}^{\infty}$ $i=1$ $f(t_i)\Delta_ix$ $< \epsilon$ for every choice of sample points $t_i \in [x_{i-1}, x_i]$. Choose sample points $t_i \in [x_{i-1}, x_i]$ as in the Mean Value Theorem so that

$$
F'(t_i) = \frac{F(x_i) - F(x_{i-1})}{x_i - x_{i-1}},
$$

that is $f(t_i)\Delta_i x = F(x_i) - F(x_{i-1})$. Then \int^b a $f-\sum_{n=1}^{\infty}$ $i=1$ $f(t_i)\Delta_ix$ $< \epsilon$, and

$$
\sum_{i=1}^{n} f(t_i) \Delta_i x = \sum_{i=1}^{n} (F(x_i) - F(x_{i-1})
$$

= $(F(x_1) - F(x)) + (F(x_2) - F(x_1)) + \cdots + (F(n-1) - F(x_n))$
= $-F(x) + (F(x_1) - F(x_1)) + \cdots + (F(x_{n-1}) - F(x_{n-1})) + F(x_n)$
= $F(x_n) - F(x) = F(b) - F(a)$.

and so \int^b a $f - (F(b) - F(a))$ ϵ . Since ϵ was arbitrary, \int^b a $f - (F(b) - F(a))$ $= 0.$

1.21 Definition: A function F such that $F' = f$ on an interval is called an **antiderivative** of f on the interval.

1.22 Note: If $G' = F' = f$ on an interval, then $(G - F)' = 0$, and so $G - F$ is constant on the interval, that is $G = F + c$ for some constant c.

1.23 Notation: We write

$$
\int f = F + c , \text{ or } \int f(x) dx = F(x) + c
$$

when F is an antiderivative of f on an interval, so that the antiderivatives of f on the interval are the functions of the form $G = F + c$ for some constant c.

1.24 Example: Find $\int^{\sqrt{3}}$ √ 0 dx $\frac{dw}{1+x^2}$.

Solution: We have $\int \frac{dx}{1+x^2}$ $\frac{ax}{1+x^2} = \tan^{-1} x + c$, since $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+}$ $\frac{1}{1+x^2}$, and so by Part 2 of the Fundamental Theorem of Calculus, we have

$$
\int_0^{\sqrt{3}} \frac{dx}{1+x^2} = \left[\tan^{-1} x \right]_0^{\sqrt{3}} = \tan^{-1} \sqrt{3} - \tan^{-1} 0 = \frac{\pi}{3}.
$$