
Chapter 1. The Riemann Integral

The Riemann Integral

1.1 Definition: A partition of the closed interval [a, b] is a set X = {x0, x1, · · · , xn}
with

a = x0 < x1 < x2 < · · · < xn = b .

The intervals [xi−1, xi] are called the subintervals of [a, b], and we write

∆ix = xi − xi−1
for the size of the ith subinterval. Note that

n∑
i=1

∆ix = b− a .

The size of the partition X, denoted by |X| is

|X| = max
{

∆ix
∣∣1 ≤ i ≤ n} .

1.2 Definition: Let X be a partition of [a, b], and let f : [a, b] → R be bounded. A
Riemann sum for f on X is a sum of the form

S =
n∑
i=1

f(ti)∆ix for some ti ∈ [xi−1, xi] .

The points ti are called sample points.

1.3 Definition: Let f : [a, b]→ R be bounded. We say that f is (Riemann) integrable
on [a, b] when there exists a number I with the property that for every ε > 0 there exists
δ > 0 such that for every partition X of [a, b] with |X| < δ we have |S − I| < ε for every
Riemann sum for f on X, that is∣∣∣∣∣

n∑
i=1

f(ti)∆ix− I

∣∣∣∣∣ < ε .

for every choice of ti ∈ [xi−1, xi] The number I can be shown to be unique. It is called the
(Riemann) integral of f on [a, b], and we write

I =

∫ b

a

f , or I =

∫ b

a

f(x) dx .

1.4 Example: Show that the constant function f(x) = c is integrable on any interval

[a, b] and we have

∫ b

a

c dx = c(b− a).

Solution: The solution is left as an exercise.

1.5 Example: Show that the identity function f(x) = x is integrable on any interval

[a, b], and we have

∫ b

a

x dx = 1
2 (b2 − a2).
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Solution: Let ε > 0. Choose δ = 2ε
b−a . Let X be any partition of [a, b] with |X| < δ. Let

ti ∈ [xi−1, xi] and set S =
n∑
i=1

f(ti)∆ix =
n∑
i=1

ti∆ix. We must show that |S− 1
2 (b2−a2)| < ε.

Notice that

n∑
i=1

(xi + xi−1)∆ix =

n∑
i=1

(xi + xi−1)(xi − xi−1) =

n∑
i=1

xi
2 − xi−12

= (x1
2 − x02) + (x2

2 − x12) + · · ·+ (xn−1
2 − xn−22) + (xn

2 − xn−12)

= −x02 + (x1
2 − x12) + · · ·+ (xn−1

2 − xn−12) + xn
2

= xn
2 − x02 = b2 − a2

and that when ti ∈ [xi−1, xi] we have
∣∣ti − 1

2 (xi + xi−1)
∣∣ ≤ 1

2 (xi − xi−1) = 1
2∆ix, and so∣∣S − 1

2 (b2 − a2)
∣∣ =

∣∣∣ n∑
i=1

ti∆ix− 1
2

n∑
i=1

(xi + xi−1)∆ix
∣∣∣

=
∣∣∣ n∑
i=1

(
ti − 1

2 (xi + xi+1)
)

∆ix
∣∣∣

≤
n∑
i=1

∣∣ti − 1
2 (xi + xi+1)

∣∣∆ix

≤
n∑
i=1

1
2∆ix∆ix ≤

n∑
i=1

1
2δ∆ix

= 1
2δ(b− a) = ε .

1.6 Example: Let f(x) =

{
1 if x ∈ Q
0 if x /∈ Q .

Show that f is not integrable on [0, 1].

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I =
∫ 1

0
f .

Let ε = 1
2 . Choose δ so that for every partition X with |X| < δ we have |S−I| < 1

2 for every

Riemann sum S for f on X. Choose a partition X with |X| < δ. Let S1 =
n∑
i=1

f(ti)∆ix

where each ti ∈ [xi−1, xi] is chosen with ti ∈ Q, and let S2 =
n∑
i=1

f(si)∆ix where each

si ∈ [xi−1, xi] is chosen with si /∈ Q. Note that we have |S1 − I| < 1
2 and |S2 − I| < 1

2 .

Since each ti ∈ Q we have f(ti) = 1 and so S1 =
n∑
i=1

f(ti)∆ix =
n∑
i=1

∆ix = 1− 0 = 1, and

since each si /∈ Q we have f(si) = 0 and so S2 =
n∑
i=1

f(si)∆ix = 0. Since |S1 − I| < 1
2 we

have |1 − I| < 1
2 and so 1

2 < I < 3
2 , and since |S2 − I| < 1

2 we have |0 − I| < 1
2 and so

− 1
2 < I < 1

2 , giving a contradiction.
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Integrals of Continuous Functions

1.7 Theorem: (Continuous Functions are Integrable) Let f : [a, b] → R be continuous.
Then f is integrable on [a, b].

Proof: We omit the proof, which is quite difficult.

1.8 Note: Let f be integrable on [a, b]. Let Xn be any sequence of partitions of [a, b] with
lim
n→∞

|Xn| = 0. Let Sn be any Riemann sum for f on Xn. Then {Sn} converges with

lim
n→∞

Sn =

∫ b

a

f(x) dx .

Proof: Write I =
∫ b
a
f . Given ε > 0, choose δ > 0 so that for every partition X of [a, b]

with |X| < δ we have |S − I| < ε for every Riemann sum S for f on X, and then choose
N so that n > N =⇒ |Xn| < δ. Then we have n > N =⇒ |Sn − I| < ε.

1.9 Note: Let f be integrable on [a, b]. If we let Xn be the partition of [a, b] into n
equal-sized subintervals, and we let Sn be the Riemann sum on Xn using right-endpoints,
then by the above note we obtain the formula∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix , where xn,i = a+ b−a
n i and ∆n,ix = b−a

n .

1.10 Example: Find

∫ 2

0

2x dx.

Solution: Let f(x) = 2x. Note that f is continuous and hence integrable, so we have∫ 2

0

2x dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix = lim
n→∞

n∑
i=1

f
(
2i
n

) (
2
n

)
= lim
n→∞

n∑
i=1

22i/n
(
2
n

)
= lim
n→∞

2 · 41/n

n
· 4− 1

41/n − 1
, by the formula for the sum of a geometric sequence

=
(

lim
n→∞

6 · 41/n
)(

lim
n→∞

1

n
(
41/n − 1

)) = 6 lim
n→∞

1
n

41/n − 1
= 6 lim

x→0

x

4x − 1

= 6 lim
x→0

1

ln 4 · 4x
, by l’Hôpital’s Rule

= 6
ln 4 = 3

ln 2 .
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1.11 Lemma: (Summation Formulas) We have

n∑
i=1

1 = n ,
n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4

Proof: These formulas could be proven by induction, but we give a more constructive

proof. It is obvious that
n∑
i=1

1 = 1 + 1 + · · · 1 = n. To find
n∑
i=1

i, consider
n∑
n=1

(
i2− (i−1)2

)
.

On the one hand, we have
n∑
i=1

(
i2 − (i− 1)2

)
= (12 − 02) + (22 − 12) + · · ·+ ((n− 1)2 − (n− 2)2) + (n2 − (n− 1)2)

= −02 + (12 − 12) + (22 − 22) + · · ·+ ((n− 1)2 − (n− 1)2) + n2

= n2

and on the other hand,
n∑
i=1

(
i2 − (i− 1)2

)
=

n∑
i=1

(
i2 − (i2 − 2i+ 1)

)
=

n∑
i=1

(2i− 1) = 2
n∑
i=1

i−
n∑
i=1

1

Equating these gives n2 = 2
n∑
i=1

i−
n∑
i=1

1 and so

2
n∑
i=1

i = n2 +
n∑
i=1

1 = n2 + n = n(n+ 1) ,

as required. Next, to find
∞∑
n=1

i2, consider
∑
i=1

(
i3 − (i− 1)3

)
. On the one hand we have

n∑
i=1

(
i3 − (i− 1)3

)
= (13 − 03) + (23 − 13) + (33 − 23) + · · ·+ (n3 − (n− 1)3)

= −03 + (13 − 13) + (23 − 23) + · · ·+ ((n− 1)3 − (n− 1)3) + n3

= n3

and on the other hand,
n∑
i=1

(
i3 − (i− 1)3

)
=

n∑
i=1

(
i3 − (i3 − 3i2 + 3i− 1)

)
=

n∑
i=1

(3i2 − 3i+ 1) = 3
n∑
i=1

i2 − 3
n∑
i=1

i+
n∑
i=1

1 .

Equating these gives n3 = 3
n∑
i=1

i2 − 3
n∑
i=1

i+
n∑
i=1

1 and so

6
n∑
i=1

i2 = 2n3 + 6
n∑
i=1

i− 2
n∑
i=1

1 = 2n3 + 3n(n+ 1)− 2n = n(n+ 1)(2n+ 1)

as required. Finally, to find
n∑
i=1

i3, consider
n∑
i=1

(
i4 − (i− 1)4

)
. On the one hand we have

n∑
i=1

(
i4 − (i− 1)4

)
= n4 ,

(as above) and on the other hand we have

n∑
i=1

(
i4 − (i− 1)4

)
=

n∑
i=1

(4i3 − 6i2 + 4i− 1) = 4
n∑
i=1

i3 − 6
n∑
i=1

i2 + 4
n∑
i=1

i−
n∑
i=1

1 .
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Equating these gives n4 = 4
n∑
i=1

i3 − 6
n∑
i=1

i2 + 4
n∑
i=1

i−
n∑
i=1

1 and so

4
n∑
i=1

i3 = n4 + 6
n∑
i=1

i2 − 4
n∑
i=1

i+
n∑
i=1

1

= n4 + n(n+ 1)(2n+ 1)− 2n(n+ 1) + n

= n4 + 2n3 + n2 = n2(n+ 1)2 ,

as required.

1.12 Example: Find

∫ 3

1

x+ 2x3 dx.

Solution: Let f(x) = x+ 2x3. Then∫ 3

1

x+ 2x3 dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix

= lim
n→∞

n∑
i=1

f
(
1 + 2

n i
) (

2
n

)
= lim
n→∞

n∑
i=1

((
1 + 2

n i
)

+ 2
(
1 + 2

n i
)3) ( 2

n

)
= lim
n→∞

n∑
i=1

(
1 + 2

n i+ 2
(
1 + 6

n i+ 12
n2 i

2 + 8
n3 i

3
)) (

2
n

)
= lim
n→∞

n∑
i=1

(
6
n + 28

n2 i+ 48
n3 i

2 + 32
n4 i

3
)

= lim
n→∞

(
6
n

n∑
i=1

1 + 28
n2

n∑
i=1

i+ 48
n3

n∑
i=1

i2 + 32
n4

n∑
i=1

i3
)

= lim
n→∞

(
6
n · n+ 28

n2 · n(n+1)
2 + 48

n3 · n(n+1)(2n+1)
6 + 32

n4 · n
2(n+1)2

4

)
= 6 + 28

2 + 48·2
6 + 32

4 = 44 .
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Basic Properties of Integrals

1.13 Theorem: (Linearity) Let f and g be integrable on [a, b] and let c ∈ R. Then f + g
and cf are both integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

and ∫ b

a

cf = c

∫ b

a

f .

Proof: The proof is left as an exercise.

1.14 Theorem: (Comparison) Let f and g be integrable on [a, b]. If f(x) ≤ g(x) for all
x ∈ [a, b] then ∫ b

a

f ≤
∫ b

a

g .

Proof: The proof is left as an exercise.

1.15 Theorem: (Additivity) Let a < b < c and let f : [a, c]→ R be bounded. Then f is
integrable on [a, c] if and only if f is integrable both on [a, b] and on [b, c], and in this case∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

Proof: We omit the proof, which is quite difficult.

1.16 Definition: We define

∫ a

a

f = 0 and for a < b we define

∫ a

b

f = −
∫ b

a

f .

1.17 Note: Using the above definition, the Additivity Theorem extends to the case
that a, b, c ∈ R are not in increasing order: for any a, b, c ∈ R, if f is integrable on[

min{a, b, c},max{a, b, c}
]

then ∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

1.18 Theorem: (Absolute Value) Let f be integrable on [a, b]. Then |f | is integrable on
[a, b] and ∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

Proof: We omit the proof, which is quite difficult.
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The Fundamental Theorem of Calculus

1.19 Notation: For a function F , defined on an interval containing [a, b], we write[
F (x)

]b
a

= F (b)− F (a) .

1.20 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a, b]. Define F : [a, b]→ R by

F (x) =

∫ x

a

f =

∫ x

a

f(t) dt .

Then F is continuous on [a, b]. Moreover, if f is continuous at a point x ∈ [a, b] then F is
differentiable at x and

F ′(x) = f(x) .

(2) Let f be integrable on [a, b]. Let F be differentiable on [a, b] with F ′ = f . Then∫ b

a

f =
[
F (x)

]b
a

= F (b)− F (a) .

Proof: (1) Let M be an upper bound for |f | on [a, b]. For a ≤ x, y ≤ b we have∣∣F (y)− F (x)
∣∣ =

∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣ =

∣∣∣∣∫ y

x

f

∣∣∣∣ ≤ ∣∣∣∣∫ y

x

|f |
∣∣∣∣ ≤ ∣∣∣∣∫ y

x

M

∣∣∣∣ = M |y − x|

so given ε > 0 we can choose δ = ε
M to get

|y − x| < δ =⇒
∣∣F (y)− F (x)

∣∣ ≤M |y − x| < Mδ = ε .

Thus F is continuous on [a, b]. Now suppose that f is continuous at the point x ∈ [a, b].
Note that for a ≤ x, y ≤ b with x 6= y we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ =

∣∣∣∣∣
∫ y
a
f −

∫ x
a
f

y − x
− f(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ y
x
f

y − x
−
∫ y
x
f(x)

y − x

∣∣∣∣∣
=

1

|y − x|

∣∣∣∣∫ y

x

(
f(t)− f(x)

)
dt

∣∣∣∣
≤ 1

|y − x|

∣∣∣∣∫ y

x

∣∣f(t)− f(x)
∣∣ dt∣∣∣∣ .

Given ε > 0, since f is continuous at x we can choose δ > 0 so that

|y − x| < δ =⇒
∣∣f(y)− f(x)

∣∣ < ε

and then for 0 < |y − x| < δ we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ ≤ 1

|y − x|

∣∣∣∣∫ y

x

∣∣f(t)− f(x)
∣∣ dt∣∣∣∣

≤ 1

|y − x|

∣∣∣∣∫ y

x

ε dt

∣∣∣∣ =
1

|y − x|
ε|y − x| = ε .

and thus we have F ′(x) = f(x) as required.
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(2) Let f be integrable on [a, b]. Suppose that F is differentiable on [a, b] with F ′ = f . Let
ε > 0 be arbitrary. Choose δ > 0 so that for every partition X of [a, b] with |X| < δ we

have

∣∣∣∣∣
∫ b

a

f −
n∑
i=1

f(ti)∆ix

∣∣∣∣∣ < ε for every choice of sample points ti ∈ [xi−1, xi]. Choose

sample points ti ∈ [xi−1, xi] as in the Mean Value Theorem so that

F ′(ti) =
F (xi)− F (xi−1)

xi − xi−1
,

that is f(ti)∆ix = F (xi)− F (xi−1). Then

∣∣∣∣∣
∫ b

a

f −
n∑
i=1

f(ti)∆ix

∣∣∣∣∣ < ε, and

n∑
i=1

f(ti)∆ix =

n∑
i=1

(
F (xi)− F (xi−1

)
=
(
F (x1)− F (x)

)
+
(
F (x2)− F (x1)

)
+ · · ·+

(
F (n− 1)− F (xn)

)
= −F (x) +

(
F (x1)− F (x1)

)
+ · · ·+

(
F (xn−1)− F (xn−1)

)
+ F (xn)

= F (xn)− F (x) = F (b)− F (a) .

and so

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ < ε. Since ε was arbitrary,

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ = 0.

1.21 Definition: A function F such that F ′ = f on an interval is called an antiderivative
of f on the interval.

1.22 Note: If G′ = F ′ = f on an interval, then (G − F )′ = 0, and so G − F is constant
on the interval, that is G = F + c for some constant c.

1.23 Notation: We write∫
f = F + c , or

∫
f(x) dx = F (x) + c

when F is an antiderivative of f on an interval, so that the antiderivatives of f on the
interval are the functions of the form G = F + c for some constant c.

1.24 Example: Find

∫ √3

0

dx

1 + x2
.

Solution: We have

∫
dx

1 + x2
= tan−1 x+ c, since

d

dx
(tan−1 x) =

1

1 + x2
, and so by Part 2

of the Fundamental Theorem of Calculus, we have∫ √3

0

dx

1 + x2
=
[

tan−1 x
]√3

0
= tan−1

√
3− tan−1 0 = π

3 .
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