Chapter 1. The Riemann Integral

The Riemann Integral

1.1 Definition: A partition of the closed interval [a,b] is a set X = {zg,z1, -+, 2.}
with
a=Tog< T <T2<---<xTp=~=.

The intervals [x;_1, z;] are called the subintervals of [a,b], and we write
Az =2 — i1

for the size of the i*® subinterval. Note that

Xn:Aix:b—a.
i=1

The size of the partition X, denoted by | X| is
| X| = maX{Aix‘l <i< n} )

1.2 Definition: Let X be a partition of [a,b], and let f : [a,b] — R be bounded. A
Riemann sum for f on X is a sum of the form

S = Zf(ti)Aix for some t; € [x;_1, ;] .
i=1

The points ¢; are called sample points.

1.3 Definition: Let f : [a,b] — R be bounded. We say that f is (Riemann) integrable
on [a,b] when there exists a number I with the property that for every e > 0 there exists
d > 0 such that for every partition X of [a,b] with |X| < § we have |S — I| < € for every
Riemann sum for f on X, that is

< €.

i f(tz)AllL' — I
=1

for every choice of t; € [z;_1,x;] The number I can be shown to be unique. It is called the
(Riemann) integral of f on [a,b], and we write

I:/abf,orI:/abf(m)dx.

1.4 Example: Show that the constant function f(z) = ¢ is integrable on any interval
b

[a,b] and we have / cdr=c(b—a).

a

Solution: The solution is left as an exercise.
1.5 Example: Show that the identity function f(x) = x is integrable on any interval

b
[a, b], and we have / r dr = 3 (b* — a?).

a
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Solution: Let € > 0. Choose § =

2. Let X be any partition of [a,b] with |X| < 4. Let

t; € (w1, m;) andset S = > f(t;) Az = > t;A;x. We must show that |S—1(b?—a?)| < e.
i=1 i=1
Notice that

n n
n

Z(% +zi1)Ajx = (i +xim1) (@ —xim1) = Z%’z —ziq?

=1 i=1 i=1
= (1‘12 - $02) + (1‘22 — 1’12) +---+ (l’n_12 — fL’n_Qz) + ($n2 — l‘n_12>
= —51302 + ($12 — .’E12) + -+ (ZUn_12 — ZCn_12) -+ £L‘n2

— 5,2 — 2 = b2 — a2

and that when ¢; € [z;_1,x;] we have }t (:cl + @i 1)‘ < %( —Ti_1) = A .z, and so

S — 1% - a?)| = —gé( +a o)A
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’ti — %(I‘Z + xi—i—l)’Aix

< 18w < 340
=36(b—a) =
1.6 Example: Let f(z) = {(1) i i;g Show that f is not integrable on [0, 1].

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I = fol f
Let e = 2. Choose d so that for every partition X with |X| < § we have |S—1I| < 1 for every

Riemann sum S for f on X. Choose a partition X with |X| < . Let S; = Y f(t:)Ax
i=1

where each t; € [x;_1,x;] is chosen with t; € Q, and let Sy = Z f(s;)A;x where each
=1

i € [xi—1,x;] is chosen with s; ¢ Q. Note that we have |S; — I| < iand |9 —I| <3
Since each t; € Q we have f(¢;) = 1 and so S1 = Z ft)Ax = Z Aix =1-0=1, and
i=1

since each s; ¢ Q we have f(s;) =0 and so Sy = Z f(si)A;z = 0. Since |51 —I| < 1 we
i=1

have \1—I| < Llandsoi < I < 32 andsince |S2 —I| < 1 we have |0 —I| < % and so
—5 < 1 < 5 glvmg a contradlctlon



Integrals of Continuous Functions

1.7 Theorem: (Continuous Functions are Integrable) Let f : [a,b] — R be continuous.
Then f is integrable on [a, b].

Proof: We omit the proof, which is quite difficult.

1.8 Note: Let f be integrable on [a,b]. Let X,, be any sequence of partitions of [a, b] with
lim |X,| =0. Let S,, be any Riemann sum for f on X,,. Then {S,,} converges with
n—oo

b
lim Sn:/ f(z)dx.
n— o0 a

Proof: Write I = ff f. Given € > 0, choose § > 0 so that for every partition X of [a, D]
with | X| < 6 we have |S — I| < € for every Riemann sum S for f on X, and then choose
N so that n > N = |X,,| < d. Then we have n > N = |S,, — I| < e.

1.9 Note: Let f be integrable on [a,b]. If we let X,, be the partition of [a,b] into n
equal-sized subintervals, and we let S,, be the Riemann sum on X,, using right-endpoints,
then by the above note we obtain the formula

b n
/ f(x)dx = lim Z f(xn,i)An iz, where z,; = a + b*Tai and A, ;x = b*T"’ .
a n— o0 =1

2
1.10 Example: Find/ 2% dx.
0

Solution: Let f(x) = 2". Note that f is continuous and hence integrable, so we have

2 n n n
2% dx = li i)\, ix = li 26\ (2) = | 92i/n (2
[ = i 3 A8 = Jim 35 (3) (2) = Jim Y (2

2-4Ym 41
= lim . , by the formula for the sum of a geometric sequence
n—o00 n 41/n 1
I (L R B S
o nl—>Hogo nl—>ncio n (41/” — 1) o nl—>néo 41/n 1 250 4z — 1
= Giig%) PYRTR by 'Hopital’s Rule
_ 6 _ 3
In4 In2 °



1.11 Lemma: (Summation Formulas) We have

n n

- o 2n+1 n—|—1
Si=n, Y=ty Z DI it 1)

=1 =1

Proof: These formulas could be proven by induction, but we give a more constructive
n n n
proof. It is obvious that Y. 1 =1+414---1=n. Tofind ) i, consider Y. (i*— (i —1)?).

i=1 i=1 n=1
On the one hand, we have

é(iQ_(i_l)z):(12—02)+(22—12)+-"+((n—1)2—(n—2)2)+(n2_(n_1)2)
= 0 (12— 1)+ (222t (n—1)% = (n— 1)) + n?

and on the other hand,

S (2 - (i—1)%) =

n

n n n
(2—(@2—2i+1)=>2i-1)=2>i->1
1 i=1 i=1 =1
n n
Equating these gives n? =25 i — > 1 and so
i=1 =1

n n
23 i=n*+ > 1=n’+n=n(n+1),
/ i=1

as required. Next, to find " i?, consider Y (i® — (i — 1)®). On the one hand we have

n=1 =1
S5 = = 1)) = (1 = 0%) + (P = 1) + (3 = ) 4+ (0 — (0= 1))
i=1
=00+ (1P =)+ (22 =2 4+ (n = 1)° = (n = 1)) + 0
= n3
and on the other hand,

_i (¢ = (i —1)%)

(= (i% = 3> + 3i — 1))
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n n n
Equating these gives n3 =352 -3 > i+ > 1 and so
i=1 =1 i=1

6> i2=2n3+6>i—-2> 1=2n3+3n(n+1)-2n=n(n+1)2n+1)
i=1 i=1 i=1

as required. Finally, to find >~ i3, consider (i4 —(i— 1)4). On the one hand we have
i=1 i=1

Z (14_(1_1)4) :n47
i=1
(as above) and on the other hand we have

> (it = (= 1)*) = 3 (43 - 6 +4z—1)_4zz —6> 7 +4>i— > 1.
i=1 i=1 i=1 i=1

1 =1
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n n n n
Equating these gives n* =413 -6 > i2+4> i~ > 1 and so
i=1 i=1 i=1 =1

4N B =nt46> 2 -4> i+ > 1
i=1 i=1 =1 i=1
=n'+nn+1)2n+1)—2n(n+1)+n
=n*4+2n3 +n? =n?*(n+1)%,

as required.
3

1.12 Example: Find / x + 223 dx.
1

Solution: Let f(x) = x + 223. Then

n—00 4

3 n
/ r+22° doe = lim Zf(acn’i)Anﬂ-x
1 i=1
:nli};o2f 1+ 31 ()

:nllngoizl<(1+%i) +2(1+%¢)3> (2)

= lim > (1+2i+2(1+5i+ 137 +56)) (3)

n
=1

n

= i E 6 4 28,4 48,2 , 32 .3

_nlggo <n+n22+n32+n42)
=1

= lim (
n—oo

=6+ % +82 4+ 2 =44
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Basic Properties of Integrals

1.13 Theorem: (Linearity) Let f and g be integrable on [a,b] and let ¢ € R. Then f + g
and cf are both integrable on [a,b] and

/ab<f+g>=/abf+/abg
/abcf:c/abf.

Proof: The proof is left as an exercise.

and

1.14 Theorem: (Comparison) Let f and g be integrable on [a,b]. If f(x) < g(x) for all

x € [a,b] then
b b
/fﬁ/ g-

Proof: The proof is left as an exercise.

1.15 Theorem: (Additivity) Let a < b < c and let f : [a,c] — R be bounded. Then f is
integrable on [a, c] if and only if f is integrable both on [a,b] and on [b, c|, and in this case

b c c
[+ =1
a b a
Proof: We omit the proof, which is quite difficult.

a a b
1.16 Definition: We define / f =0 and for a < b we define / f= —/ f.
a b a

1.17 Note: Using the above definition, the Additivity Theorem extends to the case
that a,b,c € R are not in increasing order: for any a,b,c € R, if f is integrable on

[ min{a, b, ¢}, max{a, b, c}| then
b c c
[reho=]r

1.18 Theorem: (Absolute Value) Let f be integrable on [a,b]. Then |f| is integrable on

[a, b] and
/abf s/ab|f|-

Proof: We omit the proof, which is quite difficult.




The Fundamental Theorem of Calculus

1.19 Notation: For a function F, defined on an interval containing [a, b], we write

[F(x)}z = F(b) — F(a).

1.20 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a,b]. Define F : [a,b] — R by

o= [ 1= [ ro

Then F' is continuous on [a,b]. Moreover, if f is continuous at a point = € [a,b] then F is
differentiable at x and

Fl(z) = f(z).
(2) Let f be integrable on [a,b]. Let F be differentiable on [a,b] with F' = f. Then
[ r=[re) = rw - F).

Proof: (1) Let M be an upper bound for |f| on [a,b]. For a < x,y < b we have

T Yy Yy
rw-ral=| 1= o) =| [ 1] <] [ 1] <
so given € > 0 we can choose § = 7 to get
ly—z| <é=|F(y) — F(z)| < Mly— 2| < M§ =¢.

Yy
/‘Mﬁ:Mw—x

Thus F is continuous on [a,b]. Now suppose that f is continuous at the point = € [a,b].
Note that for a < z,y < b with x # y we have

s =| Ll g
)
i
- | [ - )
sw_m|éﬂﬂw—fuﬂﬁw

Given € > 0, since f is continuous at x we can choose § > 0 so that

ly—a| <0 =|f(y) — f(z)| <e

sl e

and then for 0 < |y — z| < 6 we have

F(y)—F(w)_f(
y—x

<

ly — af!
and thus we have F'(z) = f(x) as required.



(2) Let f be integrable on [a, b]. Suppose that F' is differentiable on [a, b] with F' = f. Let
€ > 0 be arbitrary. Choose 6 > 0 so that for every partition X of [a,b] with | X]| < § we

b n
/ = ft) A
@ i=1
sample points ¢; € [x;_1, ;] as in the Mean Value Theorem so that
F(z;) — F(z;—
Py - P = Fla)

Ti— Tij—1

b n
JREED G
a i=1

have < € for every choice of sample points ¢; € [z;_1,x;]. Choose

that is f(t;)Asx = F(z;) — F(x;—1). Then <€, and

n n

S ft)Aiw = (F(x;) — F(zi-1)

) = (}(xl) — F(2)) + (F(z2) — F(z1)) + -+ (F(n — 1) = F(z,))
= —F(z)+ (F(z1) = F(z1)) + -+ (F(zn-1) = F(zn-1)) + F(z,)
= F(x,)— F(z) = F(b) — F(a).

and so < €. Since € was arbitrary,

b b
/f—(F(b)—F(a)) /f—(F(b)—F(a))‘ZU-

1.21 Definition: A function F such that F/ = f on an interval is called an antiderivative
of f on the interval.

1.22 Note: If G’ = F' = f on an interval, then (G — F')’ = 0, and so G — F is constant
on the interval, that is G = F + ¢ for some constant c.

1.23 Notation: We write
/f=F+c,0r /f(a:)da:zF(x)—l—c

when F' is an antiderivative of f on an interval, so that the antiderivatives of f on the
interval are the functions of the form G = F' + ¢ for some constant c.

dx
1422

V3
1.24 Example: Find/
0

—=tan" 'z 4 ¢, since — (tan"' ) and so by Part 2

1+ 22 dx T 142
of the Fundamental Theorem of Calculus, we have

/ L [tan_lx} —tan 13 —tan"10 = %
0

Solution: We have

1422 0



