
Chapter 3. Approximate and Improper Integration

Approximate Integration

3.1 Definition: Let f be integrable on [a, b]. We can approximate the integral of f on
[a, b] by any Riemann sum

I =

∫ b

a

f(x) dx ∼=
n∑
i=1

f(ci)∆ix

where a = x0 < x1 < · · · < xn = b, ∆ix = xi − xi−1 and ci ∈ [xi−1, xi]. The nth Left
Endpoint Approximation Ln, the nth Right Endpoint Approximation Rn, and the

nth Midpoint Approximation Mn, for the integral I =

∫ b

a

f(x) dx are the Riemann

sums for f obtained by using the partition of [a, b] into n equal sized subintervals and by
choosing ci to be the left endpoint, the right endpoint, or the midpoint of the ith subinterval
[xi−1, xi]. We have

Ln =

n∑
i=1

f(xi−1)∆x =
b− a
n

(
f(x0) + f(x1) + · · ·+ f(xn−1)

)
Rn =

n∑
i=1

f(xi)∆x =
b− a
n

(
f(x1) + f(x2) + · · ·+ f(xn)

)
Mn =

n∑
i=1

f
(xi−1 + xi

2

)
∆x =

b− a
n

(
f
(
x0+x1

2

)
+ f

(
x1+x2

2

)
+ · · ·+ f

(xn−1+xn
2

))
where xi = a+ b−a

n i and ∆x = b−a
n .

3.2 Definition: Let f be integrable on [a, b]. The Trapezoidal Approximation Tn

for the integral I =

∫ b

a

f(x) dx is defined as follows. We use the partition of [a, b] into

n equal-sized subintervals, so we let xi = a + b−a
n i and ∆x = b−a

n . Let gi be the linear
polynomial with gi(xi−1) = f(xi−1) and gi(xi) = f(xi). Let g be the piecewise-linear
function defined by g(x) = gi(x) for x ∈ [xi−1, xi]. We define

Tn =

∫ b

a

g(x) dx .

Note that ∫ xi

xi−1

g(x) dx =

∫ xi

xi−1

gi(x) dx =
f(xi−1) + f(xi)

2
∆x

(indeed, the integral measures the area of a trapezoid) so we have

Tn =
n∑
i=1

∫ xi

xi−1

g(x) dx =
n∑
i=1

f(xi−1) + f(xi)

2
∆x =

Ln +Rn
2

=
b− a
2n

(
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

)
.
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3.3 Definition: Let f be integrable on [a, b]. For an even positive integer n, we define the

Simpson Approximation Sn for the integral I =

∫ b

a

f(x) dx as follows. We partition

[a, b] into n equal-sized subintervals. Let xi = a+ b−a
n i and ∆x = b−a

n . For k = 1, 2, · · · , n2 ,
let gk be the quadratic polynomial with g(x2k−2) = f(x2k−2), g(x2k−1) = f(x2k−1) and
g(x2k) = f(x2k). Let g be the piecewise-quadratic function given by g(x) = gk(x) for
x ∈ [x2k−2, x2k]. We define

Sn =

∫ b

a

g(x) dx .

Note that if h(x) = Ax2 +Bx+ C is the quadratic polynomial with h(−1) = u, h(0) = v
and h(1) = w, then we must have u = h(−1) = A−B +C, v = h(0) = C and w = h(1) =
A+B+C. Solving these three equations gives A = u−2v+w

2 , B = w−u
2 and Cv so we have∫ 1

−1
h(x) dx =

∫ 1

−1

u−2v+w
2 x2 + w−u

2 x+ v dx

=
[
u−2v+w

6 x3 + w−u
4 x2 + v x

]1
−1

= u−2v+w
3 + 2v = u+4v+w

3 .

It follows, by shifting and scaling, that∫ x2k

x2k−2

gk(x) dx =
f(x2k−2) + 4f(x2k−1) + f(x2k)

3
∆x .

Thus

Sn =

n/2∑
k=1

∫ x2k

x2k−2

g(x) dx =

n/2∑
k=1

f(x2k−2) + 4f(x2k−1) + f(x2k)

3
∆x

=
b− a
3n

(
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

)
.

3.4 Theorem: (Error Bounds for Approximate Integration) Suppose that the higher order

derivatives of f exist and are continuous on [a, b]. Let I =

∫ b

a

f(x) dx. and let Ln, Rn,

Tn, Mn and Sn be the left endpoint, right endpoint, midpoint, trapezoidal and Simpson
approximation of I. Then ∣∣Ln − I∣∣ ≤ (b− a)2

2n
max
a≤x≤b

∣∣f ′(x)
∣∣

∣∣Rn − I∣∣ ≤ (b− a)2

2n
max
a≤x≤b

∣∣f ′(x)
∣∣

∣∣Tn − I∣∣ ≤ (b− a)3

12n2
max
a≤x≤b

∣∣f ′′(x)
∣∣

∣∣Mn − I
∣∣ ≤ (b− a)3

24n2
max
a≤x≤b

∣∣f ′′(x)
∣∣

∣∣Sn − I∣∣ ≤ (b− a)5

180n4
max
a≤x≤b

∣∣f ′′′′(x)
∣∣
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3.5 Example: Let f(x) = sin2 x. Find the exact value I =

∫ 4π/3

0

f(x) dx, find the

approximations L8, R8, M8, T8 and S8, and find a bound on the error for each of these
approximations.

Solution: The exact value of the integral is

I =

∫ 4π/3

0

sin2 x dx =

∫ 4π/3

0

1
2 −

1
2 cos 2x dx =

[
1
2 x−

1
4 sin 2x

]4π/3
0

= 4π
3 −

√
3
8 .

When we divide the interval
[
0, 4π/3

]
into 8 equal subintervals, the size each of the subin-

tervals is ∆x = π
6 and the endpoints of the subintervals are 0, π6 ,

π
3 ,

π
2 ,

2π
3 ,

5π
6 , π,

7π
6 ,

4π
3 .

Thus the approximations are

L8 = π
6

(
f(0)+ f

(
π
6

)
+ f
(
π
3

)
+ f
(
π
2

)
+ f
(
2π
3

)
+ f
(
5π
6

)
+ f(π)+ f

(
7π
6

) )
= π

6

(
0 + 1

4 + 3
4 + 1 + 3

4 + 1
4 + 0 + 1

4

)
= 13π

24 ,

R8 = π
6

(
f
(
π
6

)
+ f
(
π
3

)
+ f
(
π
2

)
+ f
(
2π
3

)
+ f
(
5π
6

)
+ f(π)+ f

(
7π
6

)
+ f
(
4π
3

) )
= π

6

(
1
4 + 3

4 + 1 + 3
4 + 1

4 + 0 + 1
4 + 3

4

)
= 2π

3 ,

T8 = 1
2

(
L8 +R8

)
= 29π

48 ,

M8 = π
6

(
f
(
π
12

)
+ f
(
π
4

)
+ f
(
5π
12

)
+ f
(
7π
12

)
+ f
(
3π
4

)
+ f
(
11π
12

)
+ f
(
13π
12

)
+ f
(
15π
12

) )
= π

6

(
2−
√
3

4 + 1
2 + 2+

√
3

4 + 2+
√
3

4 + 1
2 + 2−

√
3

4 + 2−
√
3

4 + 1
2

)
= π

6

(
4−

√
3
4

)
,

S8 = π
18

(
f(0)+ 4f

(
π
6

)
+ 2f

(
π
3

)
+ 4f

(
π
2

)
+ 2f

(
2π
3

)
+ 4f

(
5π
6

)
+ 2f(π) + 4f

(
7π
6

)
+ f
(
4π
3

) )
= π

18

(
0 + 1 + 3

2 + 4 + 3
2 + 1 + 0 + 1 + 3

4

)
= 43π

72 .

Note that to find the values of f needed for the midpoint approximation M8, we used the
identity f(x) = sin2 x = 1

2 −
1
2 cos 2x. From this same identity, we obtain f ′(x) = sin 2x

and then f ′′(x) = 2 cos 2x, f ′′′(x) = −4 sin 2x and f ′′′′(x) = −8 cos 2x. Thus we find that

max
0≤x≤4π/3

∣∣f ′(x)
∣∣ = 1 , max

0≤x≤4π/3

∣∣f ′′(x)
∣∣ = 2 and max

0≤x≤4π/3

∣∣f ′′′′(x)
∣∣ = 8 .

The above theorem gives the following error bounds.∣∣L8 − I
∣∣ ≤ (4π/3)2

16
· 1 = π2

9∣∣Rr − I∣∣ ≤ (4π/3)2

16
· 1 = π2

9∣∣Tn − I∣∣ ≤ (4π/3)3

12 · 62
· 2 = 8π3

36∣∣Mn − I
∣∣ ≤ (4π/3)3

24 · 62
· 2 = 4π3

36∣∣Sn − I∣∣ ≤ (4π/3)5

180 · 64
· 8 = 27π5

5·311
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Improper Integration

3.6 Definition: Suppose that f : [a, b)→ R is integrable on every closed interval contained
in [a, b). Then we define the improper integral of f on [a, b) to be∫ b

a

f = lim
t→b−

∫ t

a

f

provided the limit exists and, when the improper integral exists and is finite, we say
that f is improperly integrable on [a, b), (or that the improper integral of f on [a, b)
converges). In this definition we also allow the case that b =∞, and then we have∫ ∞

a

f = lim
t→∞

∫ t

a

f .

Similarly, if f : (a, b]→ R is integrable on every closed interval in (a, b] then we define the
improper integral of f on (a, b] to be∫ b

a

f = lim
t→a+

∫ b

t

f

provided the limit exists, and we say that f is improperly integrable on (a, b] when the
improper integral is finite. In this definition we also allow the case that a = −∞. For a
function f : (a, b) → R, which is integrable on every closed interval in (a, b), we choose a
point c ∈ (a, b), then we define the improper integral of f on (a, b) to be∫ b

a

f =

∫ c

a

f +

∫ b

c

f

provided that both of the improper integrals on the right exist and can be added, and we
say that f is improperly integrable on (a, b) when both of the improper integrals on
the right are finite. As an exercise, you should verify that the value of this integral does
not depend on the choice of c.

3.7 Notation: For a function F : (a, b)→ R write[
F (x)

]b−
a+

= lim
x→b−

F (x)− lim
x→a+

F (x) .

We use similar notation when F : [a, b)→ R and when F : (a, b]→ R.

3.8 Note: Suppose that f : (a, b)→ R is integrable on every closed interval contained in
(a, b) and that F is differentiable with F ′ = f on (a, b). Then∫ b

a

f =
[
F (x)

]b−
a+
.

A similar result holds for functions defined on half-open intervals [a, b) and (a, b].

Proof: Choose c ∈ (a, b). By the Fundamental Theorem of Calculus we have∫ b

a

f =

∫ c

a

f +

∫ b

c

f = lim
s→a+

∫ c

s

f + lim
t→b−

∫ t

c

f

= lim
s→a+

(
F (c)− F (s)

)
+ lim
t→b−

(
F (t)− F (c)

)
= lim
t→b−

F (t)− lim
s→a+

F (s) =
[
F (x)

]b−
a+
.
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3.9 Example: Find

∫ 1

0

dx

x
and find

∫ 1

0

dx√
x

.

Solution: We have ∫ 1

0

dx

x
=
[

lnx
]1
0+

= 0− (−∞) =∞

and ∫ 1

0

dx√
x

=
[
2
√
x
]1
0+

= 2− 0 = 2 .

3.10 Example: Show that

∫ 1

0

dx

xp
converges if and only if p < 1.

Solution: The case that p = 1 was dealt with in the previous example. If p > 1 so that
p− 1 > 0 then we have∫ 1

0

dx

xp
=

[
−1

(p− 1)xp−1

]1
0+

=
(
− 1
p−1

)
−
(
−∞

)
=∞

and if p < 1 so that 1− p > 0 then we have∫ 1

0

dx

xp
=

[
x1−p

1− p

]1
0+

=
(

1
1−p

)
−
(
0
)

= 1
1−p .

3.11 Example: Show that

∫ ∞
1

dx

xp
converges if and only if p > 1.

Solution: When p = 1 we have∫ ∞
1

dx

xp
=

∫ ∞
1

1

x
=
[

lnx
]∞
1

=∞− 0 =∞ .

When p > 1 so that p− 1 > 0 we have∫ ∞
1

dx

xp
=

[
−1

(p− 1)xp−1

]∞
1

= (0)−
(
− 1
p−1

)
= 1

p−1

and if p < 1 so that 1− p > 0 then we have∫ ∞
1

dx

xp
=

[
x1−p

1− p

]∞
1

=
(
∞
)
−
(

1
1−p

)
=∞ .

5



3.12 Example: Find

∫ ∞
0

e−x dx.

Solution: We have ∫ ∞
0

e−x dx =
[
− e−x

]∞
0

= 0− (−1) = 1 .

3.13 Example: Find

∫ 1

0

lnx dx.

Solution: We have ∫ 1

0

lnx dx =
[
x lnx− x

]1
0+

= (−1)− (0) = −1 ,

since l’Hôpital’s Rule gives lim
x→0+

x lnx = lim
x→0+

lnx
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

−x = 0.

3.14 Theorem: (Comparison) Let f and g be integrable on closed subintervals of (a, b),
and suppose that 0 ≤ f(x) ≤ g(x) for all x ∈ (a, b). If g is improperly integrable on (a, b)
then so is f and then we have ∫ b

a

f ≤
∫ b

a

g .

On the other hand, if

∫ b

a

f diverges then

∫ b

a

g diverges, too. A similar result holds for

functions f and g defined on half-open intervals.

Proof: The proof is left as an exercise.

3.15 Example: Determine whether

∫ π/2

0

√
secx dx converges.

Solution: For 0 ≤ x < π
2 we have cosx ≥ 1− 2

π x so secx ≤ 1
1− 2

π x
hence

√
secx ≤ 1√

1− 2
π x

.

Let u = 1− 2
π x so that du = − 2

π dx. Then∫ π/2

x=0

1√
1− 2

π x
dx =

∫ 0

u=1

−π2 u
−1/2 =

[
− π u1/2

]0
1

= π

which is finite. It follows that

∫ π/2

0

√
secx dx converges, by comparison.

3.16 Example: Determine whether

∫ ∞
0

e−x
2

dx converges.

Solution: For 0 ≤ u we have eu ≥ 1+u, so for 0 ≤ x we have ex
2 ≥ 1+x2, so e−x

2 ≤ 1

1 + x2
.

Since ∫ ∞
0

dx

1 + x2
=
[

tan−1 x
]∞
0

= π
2 ,

which is finite, we see that

∫ ∞
0

e−x
2

dx converges, by comparison.
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3.17 Theorem: (Estimation) Let f be integrable on closed subintervals of (a, b). If |f | is
improperly integrable on (a, b) then so is f , and then we have∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

A similar result holds for functions defined on half-open intervals.

Proof: The proof is left as an exercise.

3.18 Example: Show that

∫ ∞
0

sinx

x
dx converges.

Solution: We shall show that both of the integrals

∫ 1

0

sinx

x
dx and

∫ ∞
1

sinx

x
dx converge.

Since lim
x→0+

sinx

x
= 1, the function f defined by f(0) = 1 and f(x) =

sinx

x
for x > 0 is

continuous (hence integrable) on [0, 1]. By part 1 of the Fundamental Theorem of Calculus,

the function

∫ 1

r

f(x) dx is a continuous function of r for r ∈ [0, 1] and so we have∫ 1

0

sinx

x
dx = lim

r→0+

∫ 1

r

sinx

x
dx = lim

r→0+

∫ 1

r

f(x) dx =

∫ 1

0

f(x) dx ,

which is finite, so

∫ 1

0

sinx

x
dx converges.

Integrate by parts using u = 1
x , du = − 1

x2 dx, v = − sinx and dv = cosx dx to get∫ ∞
1

sinx

x
dx =

[
− cosx

x

]∞
1

−
∫ ∞
1

cosx

x2
dx = cos(1)−

∫ ∞
1

cosx

x2
dx .

Since
∣∣∣cosx

x2

∣∣∣ ≤ 1

x2
and

∫ ∞
1

dx

x2
converges, we see that

∫ ∞
1

∣∣∣cosx

x2

∣∣∣ dx converges too, by

comparison. Thus

∫ ∞
1

cosx

x2
dx also converges by the Estimation Theorem.
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