
Chapter 7. Sequences and Series

Review of Sequences

7.1 Definition: A sequence (of real numbers) is a function a : {k, k+ 1, k+ 2, · · ·} → R
for some integer k. For a sequence a : {k, k + 1, · · ·} → R, we write an = a(n) for n ≥ k,
we refer to the function a as the sequence {an} or the sequence {an}n≥k, and we write

{an}n≥k = ak, ak+1, ak+2, · · ·

We say that {an}n≥k lies in the set I ⊂ R when an ∈ I for every n ≥ k.

7.2 Definition: We say the sequences {an}n≥k converges to the real number l, or that
the limit of the sequence {an}n≥k is equal to l, and we write lim

n→∞
an = l or we write

an → l (as n→∞), when for every ε > 0 there exists N ≥ k such that for every integer n
we have

n > N =⇒ |an − l| < ε .

We say the sequence {an} converges if it converges to some real number l.

We say the limit of {an} is equal to infinity, and write lim
n→∞

an =∞ or an →∞ when

for every R ∈ R there exists N ≥ k such that for every integer n we have

n > N =⇒ an > R .

We say the limit of {an} is equal to negative infinity and write lim
n→∞

an = −∞ or an → −∞
when for every R ∈ R there exists N ≥ k such that for every integer n we have

n > N =⇒ an < R .

7.3 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let l be a positive
integer. Then lim

n→∞
an exists if and only if lim

n→∞
an+l exists, and in this case the limits are

equal.

7.4 Theorem: (Linearity, Products and Quotients) If {an} and {bn} are convergent
sequences then
(1) for any real number c, {c an} converges with lim

n→∞
c an = c lim

n→∞
an,

(2) the sequence {an + bn} converges with lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn,

(3) the sequence {anbn} converges with lim
n→∞

(anbn) =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
, and

(4) if lim
n→∞

bn 6= 0 then the sequence
{an
bn

}
converges with lim

n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
.

7.5 Note: By defining algebraic operations on the extended real line R∪{±∞}, the above
theorem can be extended to include many cases in which lim

n→∞
an = ±∞ or lim

n→∞
bn = ±∞,

but some care is needed for the so called indeterminate forms ∞−∞, 0 · ∞, 0
0 , ∞∞ .

1



7.6 Theorem: (Sequences and Functions) Let f : [a,∞) → R be a function and let
an = f(n) for all integers n ≥ k. If lim

x→∞
f(x) = l then lim

n→∞
an = l (where the limit l can

be finite or infinite) .

7.7 Example: Find lim
n→∞

(
1 +

1

n

)n
.

Solution: Let f(x) =
(
1+ 1

x

)x
= e

x ln(1+1/x)
so that an = f(n) for all n ≥ 1. By l’Hôpital’s

Rule we have

lim
x→∞

x ln
(
1 + 1

x

)
= lim
x→∞

1 + 1
x

1
x

= lim
x→∞

− 1
x2

1 + 1
x

− 1
x2

= lim
x→∞

1

1 + 1
x

= 1

and so lim
n→∞

an = lim
x→∞

f(x) = e1 = e.

7.8 Theorem: (Comparison and Squeeze) Let {an}, {bn} and {cn} be sequences.
(1) If an ≤ bn for all n and lim

n→∞
an and lim

n→∞
bn both exist, then lim

n→∞
an ≤ lim

n→∞
bn

(2) If an ≤ bn ≤ cn for all n ≥ k and if lim
n→∞

an = lim
n→∞

cn then lim
n→∞

bn = lim
n→∞

an.

7.9 Theorem: (Sequences and Absolute Values) Let {an} be a sequence.

(1) If lim
n→∞

an exists then lim
n→∞

|an| =
∣∣∣ lim
n→∞

an

∣∣∣.
(2) If lim

n→∞
|an| = 0 then lim

n→∞
an = 0.

(3) If |an| ≤ bn for all n ≥ k and lim
n→∞

bn = 0 then lim
n→∞

an = 0.

7.10 Definition: The sequence {an}n≥k is called increasing when an ≤ an+1 for all
n ≥ k, or equivalently when n ≤ m =⇒ an ≤ am for all integers n,m ≥ k. The sequence
{an}n≥k is called strictly increasing when an < an+1 for all n ≥ k. The sequence
{an}n≥k is bounded above by the real number b when an ≤ b for all n ≥ k, and in this
case b is called an upper bound for the sequence. We say that {an} is bounded above
when it is bounded above by some real number b. We have similar definitions for the terms
decreasing, strictly decreasing, bounded below and lower bound.

7.11 Theorem: (Monotone Convergence)
(1) If {an} is increasing and bounded above by b, then {an} converges and lim

n→∞
an ≤ b.

(2) If {an} is increasing and is not bounded above, then lim
n→∞

an =∞.

(3) If {an} is decreasing and bounded below by c, then {an} converges and lim
n→∞

an ≥ c.
(4) If {an} is decreasing and is not bounded below, then lim

n→∞
an = −∞.
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7.12 Example: Let a1 = 2 and for n ≥ 1 let an+1 =
an

2 + 3

4
. Show that {an} converges,

and find the limit.

Solution: Suppose, for the moment, that {an} converges and let l = lim
n→∞

an. Note that

we also have lim
n→∞

an+1 = l (by Theorem 6.3) and so by taking the limit on both sides

of the recurrence equation an+1 = an+3
4 we find that l = l2+3

4 , that is 4l = l2 + 3, so we
have 0 = l2 − 4l + 3 = (l − 1)(l − 3) and so l = 1 or 3. This argument shows that if {an}
converges then the limit must be 1 or 3.

We claim that 1 ≤ an+1 ≤ an ≤ 3 for all n ≥ 1. When n = 1 we have an = a1 = 2 and
an+1 = a2 = 7

4 and so the claim is true when n = 1. Fix k ≥ 1 and suppose, inductively,
that the claim is true when n = k. Then we have

1 ≤ ak+1 ≤ ak ≤ 3 =⇒ 1 ≤ ak+1
2 ≤ ak2 ≤ 9 =⇒ 4 ≤ ak+1

2 + 3 ≤ ak2 + 3 ≤ 12

=⇒ 1 ≤ ak+1
2+3

4 ≤ ak
2+3
4 ≤ 3 =⇒ 1 ≤ ak+2 ≤ ak+1 ≤ 3

and so the claim is also true when n = k + 1. By Mathematical Induction, the claim is
true for all n ≥ 1. Thus we have 1 ≤ an+1 ≤ an ≤ 3 for all n ≥ 1

Since an+1 ≤ an for all n, the sequence is decreasing, and since 1 ≤ an for all n, the
sequence is bounded below. By the Monotone Convergence Theorem, the sequence does
converge. Since we know that the limit must be 1 or 3, and since the sequence starts at 2
and decreases, it follows that the limit must be 1. Thus lim

n→∞
an = 1.
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Series

7.13 Definition: Let {an}n≥k be a sequence. The series
∑
n≥k

an is defined to be the

sequence {Sl}l≥k where

Sl =
l∑

n=k

an = ak + ak+1 + · · ·+ al .

The term Sl is called the lth partial sum of the series
∑
n≥k

an. The sum of the series,

denoted by

S =

∞∑
n=k

an = ak + ak+1 + ak+2 + · · · ,

is the limit of the sequence of partial sums, if it exists, and we say the series converges
when the sum exists and is finite.

7.14 Example: (Geometric Series) Show that for a 6= 0, the series
∑
n≥k

an converges if

and only if |r| < 1, and that in this case

∞∑
n=k

arn =
ark

1− r
.

Solution: The lth partial sum is

Sl =
∞∑
n=k

arn = ark + ark+1 + ark+2 + · · ·+ arl .

When r = 1 we have Sl = a(l − k + 1) and so lim
l→∞

Sl = ±∞ (+∞ when a > 0 and

−∞ when a < 0). When r 6= 1 we have rSl = ark+1 + ark+2 + · · · + arl + arl+1, so
Sl − rSl = ark − arl+1 = ark

(
1− rl−k+1

)
and so

Sl =
ark(1− rl−k+1)

1− r
.

When r > 1, lim
l→∞

rl−k+1 = ∞ and so lim
l→∞

Sl = ±∞ (+∞ when a > 0 and −∞ when

a < 0). When r ≤ −1, lim
l→∞

rl−k+1 does not exist, and so neither does lim
l→∞

Sl. When

|r| < 1, we have lim
l→∞

rl−k+1 = 0 and so lim
l→∞

Sl =
ark

1− r
, as required.

7.15 Example: Find

∞∑
n=−1

3n+1

22n−1
.

Solution: This is a geometric series. By the formula in the previous example, we have

∞∑
n=−1

3n+1

22n−1
=

∞∑
n=−1

3 · 3n

2−1 · 4n
=

∞∑
n=−1

6
(
3
4

)n
=

6
(
3
4

)−1
1− 3

4

=
6 · 43

1
4

= 32 .
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7.16 Example: (Telescoping Series) Find
∞∑
i=1

1

n2 + 2n
.

Solution: We use a partial fractions decomposition. The lth partial sum is

Sl =

l∑
n=1

1

n(n+ 2)
=

l∑
n=1

( 1
2

n
−

1
2

n+ 2

)
= 1

2

l∑
n=1

(
1
n −

1
n+2

)
= 1

2

( (
1− 1

3

)
+
(
1
2 −

1
4

)
+
(
1
3 −

1
5

)
+ · · ·+

(
1

n−2 −
1
n

)
+
(

1
n−1 −

1
n+1

)
+
(

1
n −

1
n+2

))
= 1

2

(
1 + 1

2 −
1

n+1 −
1

n+2

)
,

since all the other terms cancel. Thus the sum of the series is

S = lim
l→∞

Sl = 1
2

(
1 + 1

2

)
= 3

4 .

7.17 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let {an}n≥k
be a sequence. Then for any integer m ≥ k, the series

∑
n≥k

an converges if and only if the

series
∑
n≥m

an converges, and in this case
∞∑
n=k

an =
(
ak + ak+1 + · · ·+ am−1

)
+

∞∑
n=m

an .

Proof: Let Sl =
l∑

n=k

an and let Tl =
l∑

n=m

an. Then for all l ≥ m we have

Sl =
(
ak + ak+1 + · · ·+ am−1

)
+ Tl ,

and so {Sl} converges if and only if {Tl} converges, and in this case

lim
l→∞

Sl =
(
ak + ak+1 + · · ·+ am−1

)
+ lim
l→∞

Tl .

7.18 Note: Since the first finitely many terms do not affect the convergence of a series, we

often omit the subscript n ≥ k in the expression
∑
n≥k

an when we are interested in whether

or not the series converges. On the other hand, we cannot omit the subscript n = k when

we are interested in the value of the sum

∞∑
n=k

an.

7.19 Definition: When we approximate a value x by the value y, the (absolute) error
in our approximation is |x− y|.

7.20 Note: If
∑
n≥k

an converges and l ≥ k then, by the above theorem, so does
∞∑

n≥l+1

an.

If we approximate the sum S =
∞∑
n=k

an by the lthpartial sum Sl =
l∑

n=k

an, then the error

in our approximation is ∣∣S − Sl∣∣ =

∣∣∣∣∣
∞∑

n=l+1

an

∣∣∣∣∣ .
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7.21 Theorem: (Linearity) If
∑
an and

∑
bn are convergent series then

(1) for any real number c,
∑
can converges and

∞∑
n=k

can = c

∞∑
n=k

an , and

(2) the series
∑

(an + bn) converges and
∞∑
n=k

(an + bn) =
∞∑
n=k

an +
∞∑
n=k

bn .

Proof: This follows immediately from the Linearity Theorem for sequences.

7.22 Theorem: (Series of Positive Terms) Let
∑
an be a series.

(1) If an ≥ 0 for all n ≥ k then either
∑
an converges or

∞∑
n=k

an =∞.

(2) If an ≤ 0 for all n ≥ k then either
∑
an converges or

∞∑
n=k

an = −∞.

Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if
an ≥ 0 for all n ≥ k, then {Sl} is increasing (since Sl+1 = Sl + al+1 ≥ Sl for all l). Either
{Sl} is bounded above, in which case {Sl} converges hence

∑
an converges, or {Sl} is

unbounded, in which case lim
n→∞

Sl =∞ hence
∞∑
n=k

an =∞.
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Convergence Tests

7.23 Theorem: (Divergence Test) If
∑
an converges then lim

n→∞
an = 0. Equivalently, if

lim
n→∞

an either does not exist, or exists but is not equal to 0, then
∑
an diverges.

Proof: Suppose that
∑
an converges, and say

∞∑
n=k

an = S. Let Sl be the lthpartial sum.

Then lim
l→∞

Sl = S = lim
l→∞

Sl−1, and we have al = Sl − Sl−1, and so

lim
l→∞

al = lim
l→∞

Sl − lim
l→∞

Sl−1 = S − S = 0 .

7.24 Example: Determine whether
∑
e1/n converges.

Solution: Since lim
n→∞

e1/n = e0 = 1,
∑
e1/n diverges by the Divergence Test.

7.25 Note: The converse of the Divergence Test is false. For example, as we shall see in
Example 6.27 below,

∑
1
n diverges even though lim

n→∞
1
n = 0.

7.26 Theorem: (Integral Test) Let f(x) be positive and decreasing for x ≥ k, and let

an = f(n) for all integers n ≥ k. Then
∑
an converges if and only if

∫ ∞
k

f(x) dx converges,

and in this case, for any l ≥ k we have∫ ∞
l+1

f(x) dx ≤
∞∑

n=l+1

an ≤
∫ ∞
l

f(x) dx .

Proof: Let Tm be the mth partial sum for
∑
n≥l+1

an, so Tm =
m∑

n=l+1

an. Note that since

f(x) is decreasing, it is integrable on any closed interval. Also, for each n ≥ l we have

an = f(n) ≤ f(x) for all x ∈ [n− 1, n], so

∫ n

n−1
f(x) dx ≥

∫ n

n−1
an dx = an and so

Tm =
m∑

n=l+1

an ≤
m∑

n=l+1

∫ n

n−1
f(x) dx =

∫ m

l

f(x) dx ≤
∫ ∞
l

f(x) dx .

Since f(n) = an is positive, the sequence {Tm} is increasing. If

∫ ∞
k

f converges, then

{Tn} is bounded above by

∫ ∞
l

f(x) dx, and so it converges with lim
m→∞

Tm ≤
∫ ∞
l

f(x) dx.

Similarly, for each n ≥ l we have an = f(n) ≥ f(x) for all x ∈ [n, n + 1] so that∫ n+1

n

f(x) dx ≤
∫ n+1

n

andx = an and so

Tm =
m∑

n=l+1

an ≥
m∑

n=l+1

∫ n+1

n

f(x) dx =

∫ m+1

l+1

f(x) dx .

If

∫ ∞
k

f converges, then lim
m→∞

Tm ≥ lim
m→∞

∫ m+1

l+1

f(x) dx =

∫ ∞
l+1

f(x) dx. If

∫ ∞
k

f = ∞

then lim
m→∞

∫ m+1

l+1

f(x) dx =∞, and so lim
m→∞

Tm =∞ too, by Comparison.
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7.27 Example: (p-Series) Show that the series
∑
n≥1

1

np
converges if and only if p > 1. In

particular, the harmonic series
∑

1
n diverges.

Solution: If p < 0 then lim
n→∞

1

np
= ∞ and if p = 0 then lim

n→∞

1

np
= 1, so in either case∑

1
np diverges by the Divergence Test. Suppose that p > 0. Let an = 1

np for integers
n ≥ 1, and let f(x) = 1

xp for real numbers x ≥ 1. Note that f(x) is positive and decreasing

for x ≥ 1 and an = f(n) for all n ≥ 1. Since we know that

∫ ∞
1

f(x) dx converges if and

only if p > 1, it follows from the Integral Test that
∑
an converges if and only if p > 1.

7.28 Example: Approximate S =
∞∑
n=1

1

2n2
so that the error is at most 1

100 .

Solution: We let an = 1
2n2 and f(x) = 1

2x2 so that we can apply the Integral Test. If we
choose to approximate the sum S by the lthpartial sum Sl, then the error is

E = S − Sl =
∞∑

n=l+1

an ≤
∫ ∞
l

1

2x2
dx =

[
− 1

2x

]∞
l

=
1

2l
,

and so to insure that E ≤ 1
100 we can choose l so that 1

2l ≤
1

100 , that is l ≥ 50. Since it
would be tedious to add up the first 50 terms of the series, we take an alternate approach.
The Integral Test gives us upper and lower bounds: we have∫ ∞

l+1

f(x) dx ≤ S − Sl ≤
∫ ∞
l

f(x) dx

1

2(l + 1)
≤ S − Sl ≤

1

2l

Sl +
1

2(l + 1)
≤ S ≤ Sl +

1

2l
.

If approximate S using the midpoint of the upper and lower bounds, that is if we make

the approximation S ∼= Sl + 1
2

(
1
2l + 1

2(l+1)

)
, then the error E will be at most half of the

difference of the bounds:
E ≤ 1

2

(
1
2l −

1
2(l+1)

)
= 1

4l(l+1) .

To get E ≤ 1
100 we want 1

4 l (l+1) ≤
1

100 , that is l (l + 1) ≥ 25, and so we can take l = 5.

Thus we estimate

S ∼= S5 + 1
2

(
1
10 + 1

12

)
= 1

2 + 1
8 + 1

18 + 1
32 + 1

50 + 1
20 + 1

24 = 5929
7200 .(

Incidentally, the exact value of this sum is π2

12

)
.
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7.29 Theorem: (Comparison Test) Let 0 ≤ an ≤ bn for all n ≥ k. Then if
∑
bn converges

then so does
∑
an and in this case,

∞∑
n=k

an ≤
∞∑
n=k

bn .

Proof: Let Sl =

l∑
n=k

an and let Tl =

l∑
n=k

bn. Since 0 ≤ an, bn for all n, the sequences {Sl}

and {Tl} are increasing. Since an ≤ bn for all n we have Sl ≤ Tl for all l. Suppose that∑
bn converges with say

∞∑
n=k

bn = T so that lim
l→∞
{Tl} = T . Then Sl ≤ Tl ≤ T for all l, so

{Sl} is increasing and bounded above, hence convergent, and lim
l→∞

Sl ≤ lim
l→∞

Tl.

7.30 Example: Determine whether
∑
n≥0

1√
n3 + 1

converges.

Solution: Note that 0 ≤ 1√
n3+1

≤ 1√
n3

= 1
n3/2 for all n ≥ 1, and

∑
1

n3/2 converges since it

is a p-series with p = 3
2 , and so

∑
1√
n3+1

also converges, by the Comparison Test.

7.31 Example: Determine whether
∑
n≥1

tan 1
n converges.

Solution: For 0 < x < π
2 we have x < tanx, so for n ≥ 1 we have 0 < 1

n < tan 1
n . Since the

harmonic series
∑

1
n diverges, the series

∑
tan 1

n also diverges by the Comparison Test.

7.32 Example: Approximate S =
∞∑
n=0

1

n!
so that the error is at most 1

100 .

Solution: If we make the approximation S ∼= Sl =
l∑

n=0

1

n!
then the error is

E = S − Sl =
∞∑

n=l+1

1

n!

= 1
(l+1)! + 1

(l+2)! + 1
(l+3)! + 1

(l+4)! + · · ·

= 1
(l+1)!

(
1 + 1

l+2 + 1
(l+2)(l+3) + 1

(l+2)(l+3)(l+4) + · · ·
)

≤ 1
(l+1)!

(
1 + 1

l+2 + 1
(l+2)2 + 1

(l+2)3 + · · ·
)

= 1
(l+1)!

1

1− 1
l+2

= l+2
(l+1)(l+1)!

where we used the Comparison Test and the formula for the sum of a geometric series. To
get E ≤ 1

100 we can choose l so that l+2
(l+1)(l+1)! ≤

1
100 . By trial and error, we find that we

can take l = 4, so we make the approximation

S ∼= S4 = 1 + 1 + 1
2 + 1

6 + 1
24 = 65

24 .

(Incidentally, we shall see later that the exact value of this sum is e).
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7.33 Theorem: (Limit Comparison Test) Let an ≥ 0 and let bn > 0 for all n ≥ k.

Suppose that lim
n→∞

an
bn

= r. Then

(1) if r =∞ and
∑
an converges then so does

∑
bn,

(2) if r = 0 and
∑
bn converges then so does

∑
an, and

(3) if 0 < r <∞ then
∑
an converges if and only if

∑
bn converges.

Proof: If lim
n→∞

an
bn

= ∞, then for large n we have an
bn

> 1 so that an > bn, and so if
∑
an

converges, then so does
∑
bn by the Comparison Test. If lim

n→∞
an
bn

= 0 then for large n we

have an
bn

< 1 so an < bn, and so if
∑
bn converges then so does

∑
an by the Comparison

Test. Suppose that lim
n→∞

an
bn

= r with 0 < r <∞. Choose N so that when n > N we have∣∣∣anbn − r∣∣∣ < r
2 so that r

2 <
an
bn
< 3r

2 and hence

0 < r
2bn ≤ an ≤

3r
2 bn .

If
∑
an converges, then

∑
r
2bn converges by the Comparison Test, and hence

∑
bn con-

verges by linearity. If
∑
bn converges, then

∑
3r
2 bn converges by linearity, and hence so

does
∑
an by the Comparison Test.

7.34 Example: Determine whether
∑

1√
n3−1 converges.

Solution: Note that we cannot use the same argument that we used earlier to show that∑
1√
n3+1

converges, because 1√
n3+1

< 1
n3/2 but 1√

n3−1 >
1

n3/2 . We use a different approach.

Let an = 1√
n3−1 and let bn = 1

n3/2 . Then lim
an
bn

= lim
n→∞

n3/2√
n3 − 1

= lim
n→∞

1√
1− 1

n3

= 1,

and
∑
bn =

∑
1

n3/2 converges (its a p-series with p = 3
2 ), and so

∑
an converges too, by

the Limit Comparison Test.
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7.35 Theorem: (Ratio Test) Let an > 0 for all n ≥ k. Suppose lim
n→∞

an+1

an
= r. Then

(1) if r < 1 then
∑
an converges, and

(2) if r > 1 then lim
n→∞

an =∞ so
∑
an =∞.

Proof: Suppose that lim
n→∞

an+1

an
= r < 1. Choose s with r < s < 1, and then choose N so

that when n > N we have an+1

an
< s and hence an+1 < san. Fix k > N . Then ak+1 < sak,

ak+2 < sak+1 < s2ak, ak+3 < sak+2 < s3ak, and so on, so we have an < bn = sn−kak for
all n ≥ k. Since

∑
bn is geometric with ratio s < 1, it converges, and hence so does

∑
an

by the Comparison Test.
Now suppose that lim

n→∞
an+1

an
= r > 1. Choose s with 1 < s < r, then choose N so

that when n > N we have an+1

an
> s and hence an+1 > san. Fix k > N . Then as above

an > bn = sn−kak for all n ≥ k, and lim
n→∞

bn =∞, so lim
n→∞

an =∞ too.

7.36 Example: Determine whether
∑

5n

n! converges.

Solution: Let an = 5n

n! . Then an+1

an
= 5n+1

(n+1)! ·
n!
5n = 5

n+1 → 0 as n → ∞, and so
∑
an

converges by the Ratio Test.

7.37 Note: If lim
n→∞

an+1

an
= 1, then

∑
an could converge or diverge. For example, if an = 1

n

then an+1

an
= n

n+1 → 1 as n→∞ and
∑
an diverges, but if bn = 1

n2 then bn+1

bn
= n2

(n+1)2 → 1

as n→∞ and
∑
bn converges.

7.38 Theorem: (Root Test) Let an ≥ 0 for all n ≥ k. Suppose that lim
n→∞

n
√
an = r. Then

(1) if r < 1 then
∑
an converges, and

(2) if r > 1 then lim
n→∞

an =∞ so
∑
an =∞.

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.

7.39 Example: Determine whether
∑(

n
n+1

)n2

converges.

Solution: Let an =
(

n
n+1

)n2

. Then n
√
an =

(
n
n+1

)n
= e

n ln( n
n+1 )

, and by l’Hôpital’s Rule

we have lim
n→∞

n ln
(

n
n+1

)
= lim

x→∞

ln
(

x
x+1

)
1
x

= lim
x→∞

1
(x+1)2

− 1
x2

= lim
x→∞

−x2

(x+ 1)2
= −1, and so

lim
n→∞

n
√
an = e−1 < 1. Thus

∑
an converges by the Root Test.
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7.40 Definition: A sequence {an}n≥k is said to be alternating when either we have
an = (−1)n|an| for all n ≥ k or we have an = (−1)n+1|an| for all n ≥ k.

7.41 Theorem: (Aternating Series Test) Let {an}n≥k be an alternating series. If {|an|}
is decreasing with lim

n→∞
|an| = 0 then

∑
n≥k

an converges, and in this case∣∣∣∣∣
∞∑
n=k

an

∣∣∣∣∣ ≤ |ak| .
Proof: To simplify notation, we give the proof in the case that k = 0 and an = (−1)n|an|.

Suppose that
{
|an|

}
is decreasing with |an| → 0. Let Sl =

l∑
n=0

an. We consider the

sequences {S2l} and {S2l−1} of even and odd partial sums. Note that since
{
|an|

}
is

decreasing, we have
S2l − S2l−1 = |a2l| − |a2l−1| ≤ 0

so
{
S2l

}
is decreasing, and we have

S2l = |a0| − |a1|+ |a2| − |a3|+ · · ·+ |a2l−2| − |a2l−1|+ |a2l|
=
(
|a0| − |a1|

)
+
(
|a2| − |a3|

)
+ · · ·+

(
|a2l−2| − |a2l−1|

)
+ |a2l|

≥ |a0| − |a1|

and so {S2l} is bounded below by |a0| − |a1|. Thus
{
S2l} converges by the Monotone

Convergence Theorem. Similarly,
{
S2l−1

}
is increasing and bounded above by |a0|, so it

also converges, and we have lim
l→∞

S2l−1 ≤ |a0|.
Finally we note that since |an| → 0, taking the limit on both sides of the equality

|a2l| = S2l − S2l−1 gives 0 = lim
l→∞

S2l − lim
l→∞

S2l−1. and so we have lim
l→∞

S2l = lim
l→∞

S2l−1.

It follows that
{
Sl
}

converges, and we have lim
l→∞

Sl = lim
l→∞

S2l = lim
l→∞

S2l−1 ≤ |a0|.

7.42 Example: Determine whether
∑
n≥2

(−1)n lnn√
n

converges.

Solution: Let an =
(−1)n lnn√

n
. Let f(x) =

lnx√
x

so that |an| = f(n). Note that

f ′(x) =

1
x ·
√
x− lnx · 1

2
√
x

x
=

2− lnx

2x3/2
,

so we have f ′(x) < 0 for x > e2. Thus f(x) is decreasing for x > e2, and so
{
|an|

}
is

decreasing for n ≥ 8. Also, by l’Hôpital’s Rule, we have

lim
x→∞

f(x) = lim
x→∞

lnx√
x

= lim
x→∞

1
x
1

2
√
x

= lim
x→∞

2√
x

= 0

and so |an| → 0 as n→∞. Thus
∑
an converges by the Alternating Series Test.

12



7.43 Example: Approximate the sum S =
∞∑
n=0

(−2)n

(2n)!
so that the error is at most 1

2000 .

Solution: Let an =
(−2)n

(2n)!
. Note that

|an+1|
|an|

=
2n+1

(2n+ 2)!
· (2n)!

2n
=

2

(2n+ 2)(2n+ 1)
=

1

(n+ 1)(2n+ 1)
.

Since |an+1|
|an| ≤ 1 for all n ≥ 0, we know that {|an|} is decreasing. Since lim

n→∞
|an+1|
|an| = 0, we

know that
∑
|an| converges by the Ratio Test, and so |an| → 0 by the Divergence Test.

This shows that we can apply the Alternating Series Test.

If we approximate S by the lthpartial sum Sl =
l∑

n=0

an, then by the Alternating Series

Test, the error is

E =
∣∣S − Sl∣∣ =

∣∣∣∣∣
∞∑

n=l+1

an

∣∣∣∣∣ ≤ ∣∣al+1

∣∣ =
2l+1

(2l + 2)!
.

To get E ≤ 1
2000 we can choose l so that 2l+1

(l+1)! ≤
1

2000 . By trial and error we find that we

can take l = 3. Thus we make the approximation

S ∼= S3 = 1− 2
2! + 22

4! −
23

6! = 1− 1 + 1
6 + 1

90 = 7
45 .(

We shall see later that the exact value of this sum is cos
√

2
)
.

7.44 Definition: A series
∑
n≥k

an is said to converge absolutely when
∑
n≥k
|an| converges.

The series is said to converge conditionally if
∑
n≥k

an converges but
∑
n≥k
|an| diverges.

7.45 Example: For 0 < p ≤ 1, the p-series
∑

1
np diverges, but since

{
1
np

}
is decreasing

towards 0,
∑ (−1)n

np converges by the Alternating Series Test. Thus for 0 < p ≤ 1, the

alternating p-series
∑ (−1)n

np
converges conditionally.

7.46 Theorem: (Absolute Convergence Implies Convergence) If
∑
|an| converges then

so does
∑
an.

Proof: Suppose that
∑
|an| converges. Note that −|an| ≤ an ≤ |an| so that

0 ≤ an + |an| ≤ 2|an| for all n .

Since
∑
|an| converges,

∑
2|an| converges by linearity, and so

∑(
an + |an|

)
converges by

the Comparison Test. Since
∑
|an| and

∑(
an + |an|

)
both converge,

∑
an converges by

linearity.

7.47 Example: Determine whether
∑ sinn

n2
converges.

Solution: Let an =
sinn

n2
. Then |an| = | sinn|

n2 ≤ 1
n2 . Since

∑
1
n2 converges (its a p-series

with p = 2),
∑
|an| converges by the Comparison Test, and hence

∑
an converges too,

since absolute convergence implies convergence.
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Multiplication of Series

7.48 Theorem: (Multiplication of Series) Suppose that
∑
n≥0
|an| converges and

∑
n≥0

bn

converges and define cn =
n∑
k=0

akbn−k. Then
∑
n≥0

cn converges and

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Proof: Let Al =
l∑

n=0
an, Bl =

l∑
n=0

bn, Cl =
l∑

n=0
cn, A =

∞∑
n=0

an, B =
∞∑
n=0

bn, K =
∞∑
n=0
|an|

and El = B −Bl. Then we have

Cl = a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·+ (a0bl + · · ·+ alb0)

= a0Bl + a1Bl−1 + a2Bl−2 + · · ·+ alB0

= a0(B − El) + a1(B − El−1) + · · ·+ al(B − E0)

= AlB −
(
a0El + a1El−1 + · · ·+ alE0

)
and so ∣∣AB − Cl∣∣ ≤ ∣∣(A−Al)B∣∣+

∣∣a0El + a1El−1 + · · ·+ alE0

∣∣ .
Let ε > 0. Choose m so that j > m =⇒ Ej <

ε
3K . Let E = max

{
|E0|, · · · , |Em|

}
. Choose

L > m so that when l > L we have
l∑

n=l−m
|an| < ε

3E and we have |Al − A||B| < ε
3 . Then

for l > L,∣∣Cl −AB∣∣ < ∣∣(Al −A)B
∣∣+
∣∣a0El + · · ·+ al−m−1Em+1

∣∣+
∣∣al−mEm + · · ·+ alE0

∣∣
≤ ε

3 +

(
l−m−1∑
n=0

|an|
)

ε
3K +

(
l∑

n=l−m+1

|an|
)
E

< ε
3 +K ε

3K + ε
3EE = ε .

7.49 Example: Find an example of sequences {an}n≥0 and {bn}n≥0 such that
∑
n≥0

an and∑
n≥0

bn both converge, but
∑
n≥0

cn diverges where cn =
n∑
k=0

akbn−k.

Solution: Let an = bn =
(−1)n√
n+ 1

for n ≥ 0, and let

cn =
n∑
k=0

akbn−k = (−1)n
n∑
k=0

1√
(k + 1)(n− k + 1)

.

Recall that for p, q ≥ 0 we have
√
pq ≤ 1

2 (p+ q) (indeed (p+ q)2 − 4pq = p2 − 2pq + q2 =

(p − q)2 ≥ 0, so (p + q)2 ≥ 4pq). In particular
√

(k + 1)(n− k + 1) ≤ 1
2 (n + 2) and so

|cn| ≥
n∑
k=0

2
n+2 = 2(n+1)

n+2 . Thus lim
n→∞

|cn| 6= 0 so
∑
cn diverges by the Divergence Test.
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