Chapter 7. Sequences and Series

Review of Sequences

7.1 Definition: A sequence (of real numbers) is a function a : {k,k+1,k+2,---} = R
for some integer k. For a sequence a : {k,k+1,---} — R, we write a,, = a(n) for n > k,
we refer to the function a as the sequence {a, } or the sequence {a, }n>k, and we write

{an}n>k = ar, aps1, aryo, - -
We say that {a,}n>r lies in the set I C R when a,, € I for every n > k.

7.2 Definition: We say the sequences {ay, },>r converges to the real number [, or that

the limit of the sequence {a,},>k is equal to [, and we write lim a,, = [ or we write
- n— oo

ap, — 1 (as n — o0), when for every € > 0 there exists N > k such that for every integer n
we have

n>N=l|a, — | <e.

We say the sequence {a,} converges if it converges to some real number /.

We say the limit of {a, } is equal to infinity, and write lim a, = oo or a,, — oo when
n—oo

for every R € R there exists NV > k such that for every integer n we have
n>N—a, > R.

We say the limit of {a,, } is equal to negative infinity and write lim a,, = —cc or a,, = —c0
n—oo

when for every R € R there exists N > k such that for every integer n we have
n>N—a, <R.

7.3 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let | be a positive

integer. Then lim a, exists if and only if lim a,4; exists, and in this case the limits are
n— oo n—oo

equal.

7.4 Theorem: (Linearity, Products and Quotients) If {a,} and {b,} are convergent
sequences then

(1) for any real number ¢, {ca,} converges with lim ca, =c¢ lim a,,
n—oo n—oo

(2) the sequence {a,, + b,} converges with lim (a,, + b,) = lim a, + lim b,,
n— 00 n— 00 n—00

(3) the sequence {a,b,} converges with nli_)rréo(anbn) = (nli_{ilo an> (n im bn>, and

— 00
a a lim a,
(4) if lim b,, # 0 then the sequence {—n} converges with lim — = 222
n—o00 by, n—o0 by, lim b,
n—oo

7.5 Note: By defining algebraic operations on the extended real line RU{+o00}, the above
theorem can be extended to include many cases in which lim a, = +o00 or lim b, = $o0,
n—oo n—oo

but some care is needed for the so called indeterminate forms co — oo, 0 - 00, ¥, &

) 0% oo
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7.6 Theorem: (Sequences and Functions) Let f : [a,00) — R be a function and let
a, = f(n) for all integers n > k. If lim f(x) =1 then lim a, =l (where the limit [ can
n—oo

Tr—r 00
be finite or infinite) .

1\n
7.7 Example: Find lim (1—|— —) .
n

n—oo

Solution: Let f(z) = (1+ %)m = ") 6 that a, = f(n) for all n > 1. By I’'Hopital’s
Rule we have

1
~z2
1+2 1+ 4
lim xln(l—l—l) = lim T = lim Z_ = lim =1

and so lim a, = lim f(z) =e' =e.
n—oo Tr— 00

7.8 Theorem: (Comparison and Squeeze) Let {a,}, {b,} and {c,} be sequences.
(1) If a,, < by, for all n and lim a, and lim b,, both exist, then lim a, < lim b,

n— 00 n—oo n—oo n—oo
(2) If a,, < b, < ¢, for alln > k and if lim a, = lim ¢, then lim b, = lim a,.
n— o0 n—o0 n—oo n—o00

7.9 Theorem: (Sequences and Absolute Values) Let {a,} be a sequence.

(1) If lim a,, exists then lim |a,|= ‘ lim a,|.
n—00 n—00 n— 00

(2) If lim |ay,|=0 then lim a, = 0.
(3) If |lay,| < b, for alln > k and lim b, =0 then lim a, = 0.

n—oo n— oo

7.10 Definition: The sequence {ay},>k is called increasing when a,, < a,41 for all
n > k, or equivalently when n < m = a,, < a,, for all integers n,m > k. The sequence
{an}n>k is called strictly increasing when a, < a,4+1 for all n > k. The sequence
{an}n>k is bounded above by the real number b when a,, < b for all n > k, and in this
case b is called an upper bound for the sequence. We say that {a, } is bounded above
when it is bounded above by some real number b. We have similar definitions for the terms
decreasing, strictly decreasing, bounded below and lower bound.

7.11 Theorem: (Monotone Convergence)

(1) If {a,} is increasing and bounded above by b, then {a,} converges and lim a, <b.
n— o0

(2) If {a,} is increasing and is not bounded above, then lim a, = occ.
n—oo

(3) If {a,} is decreasing and bounded below by ¢, then {a,} converges and lim a, > c.
n—oo

(4) If {a,} is decreasing and is not bounded below, then lim a, = —o0.
n—oo



an?+3

7.12 Example: Let a; = 2 and for n > 1 let a,+1 = . Show that {a,} converges,

and find the limit.

Solution: Suppose, for the moment, that {a,} converges and let [ = lim a,. Note that
n— o0

we also have lim a,41 = [ (by Theorem 6.3) and so by taking the limit on both sides
n—00

of the recurrence equation a,; = “”T“’ we find that [ = laTJr?’, that is 4 = [? + 3, so we
have 0 =% — 41+ 3 = (I — 1)(I — 3) and so [ = 1 or 3. This argument shows that if {a,}
converges then the limit must be 1 or 3.

We claim that 1 < a1 < a, <3 foralln >1. When n =1 we have a,, = a; = 2 and
pt1 = Qg = % and so the claim is true when n = 1. Fix £ > 1 and suppose, inductively,

that the claim is true when n = k. Then we have
1<app<ar<3=1<ap " <ar’<9=4<ap1°+3<a,> +3<12

2 2
1§ak+z+3§ak4+3 <3=1<api2<apy1 <3

and so the claim is also true when n = k + 1. By Mathematical Induction, the claim is
true for all n > 1. Thus we have 1 < ap41 <a, <3 foralln>1

Since a,41 < a, for all n, the sequence is decreasing, and since 1 < a,, for all n, the
sequence is bounded below. By the Monotone Convergence Theorem, the sequence does
converge. Since we know that the limit must be 1 or 3, and since the sequence starts at 2

and decreases, it follows that the limit must be 1. Thus lim a, = 1.
n—oo



Series

7.13 Definition: Let {a,},>r be a sequence. The series Z a, is defined to be the
n>k
sequence {S;};>, where
l

Slzzan:ak+ak+1+"'+al~
n==k

The term 5 is called the I** partial sum of the series Z an. The sum of the series,
n>k
denoted by

o
S:Zan:ak+ak+1+ak+2+"',
n==k

is the limit of the sequence of partial sums, if it exists, and we say the series converges
when the sum exists and is finite.

7.14 Example: (Geometric Series) Show that for a # 0, the series Z a, converges if
n>k
and only if |r| < 1, and that in this case

00 k
ar

E ar™ = )
1—r

n==k

Solution: The {** partial sum is
S = Zar" =ar® + ar* Tt 4 arft2 4 art.
n=k
When r = 1 we have S; = a(l — k + 1) and so llim S; = oo (+00 when a > 0 and
— 00

—oo when @ < 0). When r # 1 we have rS; = ar®**t + ar**2 + ... 4 ar! + ar't!, so
Sy —rS; = arf —ar™ = ar®(1 — r'=*+1) and so

ark(1 — pl=k+1)

S, =
: 1—r
When r > 1, llim rI=F Tl = 50 and so llim S; = oo (+o00 when a > 0 and —oo when
—00 —00
a < 0). When r < —1, lim rt=**1 does not exist, and so neither does lim S;. When
l—o0 N l—o0
Ir| < 1, we have lim #'=**' =0 and so lim S; = , as required.
=00 =00 1—7r
0 3n+1
7.15 Example: Find Z 21
n=-—1

Solution: This is a geometric series. By the formula in the previous example, we have

o 3.3n 0 n 6 3)~1 6.4
Z 92n—1 Z o—1.4n Z 6(%) = 1(4_)§ =2 =32.

1
n=—1 n=—1 n=-—1 4 4




1

7.16 Example: (Telescoping Series) Find Z o
n n

0o
=1

Solution: We use a partial fractions decomposition. The [*!

! 1 Lo/1 1 !
Slzzn(n+2)zz(%_ni2):%nz(%_”%?)

partial sum is

since all the other terms cancel. Thus the sum of the series is

S=1lm S =5(1+3)=3.

l—o00 4

7.17 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let {ay }n>k
be a sequence. Then for any integer m > k, the series Z a,, converges if and only if the

n>k
series Z an converges, and in this case
n>m 0 o0
> an = (ak+arpr+ o amor) + D an.
n==k n=m

! l
Proof: Let S; = Z an and let T; = Z an. Then for all [ > m we have
n=k n=m
Si = (ak +akg1 + - +am) +Ti,
and so {5} converges if and only if {7}} converges, and in this case

lim S; = (ak—l—ak_i_l—l—---—l—am_l) + lim T;.
|— o0 l— o0

7.18 Note: Since the first finitely many terms do not affect the convergence of a series, we

often omit the subscript n > k in the expression Z a, when we are interested in whether
n>k
or not the series converges. On the other hand, we cannot omit the subscript n = £ when
o0

we are interested in the value of the sum Z Ay, -
n=~k

7.19 Definition: When we approximate a value x by the value y, the (absolute) error
in our approximation is |z — y|.

o0
7.20 Note: If Z an converges and [ > k then, by the above theorem, so does Z Ay, -
n>k n>l+1

0o l
If we approximate the sum S = Z a, by the I*'partial sum S; = Z an, then the error

. . . . n=~k n==k
in our approximation is
00
|S — Sl‘ - g ap,
n=I[+1




7.21 Theorem: (Linearity) If > a, and )b, are Convergent series then

(1) for any real number ¢, Y ca,, converges and Z cay =c Z ay , and
n=~k n=~k
oo oo oo
(2) the series Y (ay + b,) converges and Z(an +b,) = Z an + Z by, -
n=~k n=

Proof: This follows immediately from the Linearity Theorem for sequences.

7.22 Theorem: (Series of Positive Terms) Let ) a,, be a series.
oo

(1) If a,, > 0 for all n > k then either ) a,, converges or Z ap, = 00.

n==k
%)

(2) If a,, <0 for all n > k then either ) a,, converges or Z ap = —00.
n=~k

Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if
a, > 0 for all n > k, then {S;} is increasing (since S;41 = S; + a;41 > S for all [). Either
{Si} is bounded above, in which case {S;} converges hence ) a,, converges, or {S;} is

unbounded, in which case lim S; = oo hence 5 a, = 00
n—oo k
n=



Convergence Tests

7.23 Theorem: (Divergence Test) If > a,, converges then lim a, = 0. Equivalently, if

n—oo

lim a, either does not exist, or exists but is not equal to 0, then ) a,, diverges.
n—oo

Proof: Suppose that > a, converges, and say Z a, = S. Let S; be the [*'partial sum.

Then llirn S; =8 = lim S;_1, and we have g, _Sl —S;_1, and so
—00 l—o0

hmal_thl—thl 1=5—-5=0.

l—o00
7.24 Example: Determine whether 3 e'/™ converges.

Solution: Since lim /™ =¥ =1, S el/™ diverges by the Divergence Test.

n— oo

7.25 Note: The converse of the Divergence Test is false. For example, as we shall see in
Example 6.27 below, > 1 diverges even though lim 1 =0.

n— o0

7.26 Theorem: (Integral Test) Let f(x) be positive and decreasing for x > k, and let

a, = f(n) for all integersn > k. Then > a,, converges if and only if / f(x) dx converges,
k

and in this case, for any | > k we have

f daj<2an /f

I+ n=I+1

Proof: Let T, be the m'" partial sum for Z ap, S0 Tp, = Z a,. Note that since
n>l+1 n=Il+1
f(z) is decreasing, it is integrable on any closed interval. Also, for each n > | we have

an, = f(n) < f(x) for all x € [n — 1,n], so/ f(x d:z:>/ ap dxr = a, and so
T,, = Z Z fda:—/f da:</f
n=Il+1 =i417/n"1
Since f(n) = a, is positive, the sequence {T},} is increasing. If / f converges, then

{T,} is bounded above by / f(z) dz, and so it converges with hm T, < / f(x)dx.
Similarly, for each n > [ we have a,, = f(n) > f(z) for all x € [n,n + 1] so that

n+1 n+1
/ f(z)dx < / andx = a, and so

D IED S A

m+41
da?—/ . flx)dz.
!

n=I[l+1 n=Il4+1Y" +1
0o m+1 00 00
If f converges, then lim T, > lim flx)dx = f(z) dx. If/ f=o00
m+
then lim f(z)dr = o0, and so lim T, = oo too, by Comparison.



1
7.27 Example: (p-Series) Show that the series E — converges if and only if p > 1. In
n
n>1
particular, the harmonic series Y 1 diverges.

1 1
Solution: If p < 0 then lim — = oo and if p = 0 then lim — = 1, so in either case
n—oo NP n—oo NP

Z diverges by the Divergence Test. Suppose that p > 0. Let a, = ﬁ for integers
n 2 1 and let f(z) = 2L for real numbers « > 1. Note that f(z) is positive and decreasing

for x > 1 and a,, = f(n) for all n > 1. Since we know that / f(x) dx converges if and
1

only if p > 1, it follows from the Integral Test that > a,, converges if and only if p > 1.

1
7.28 Example: Approximate S = Z —— so that the error is at most 100

Solution: We let a,, = 557 and f(z) = 51 so that we can apply the Integral Test. If we
choose to approximate the sum S by the {*"partial sum S;, then the error is

11 1
E=5-5= Zan / —dx_{—%} =57
n=Il+1 l

and so to insure that £ < 100 we can choose [ so that 1 < 100, that is [ > 50. Since it
would be tedious to add up the first 50 terms of the serles we take an alternate approach.
The Integral Test gives us upper and lower bounds: we have

f()x<S S < /f
1

+1
<
2(1+1) = SS=Sis g
S+t <S< S+4-
PTouyry 7 PP

If approximate S using the midpoint of the upper and lower bounds, that is if we make
the approximation S & .5 + 5 (21 + 2(l+1)> then the error E will be at most half of the

difference of the bounds:
E <

N[+

(i ! > _ 1
20 T 20+1) ) T ;OFD)

< 155, that is [ (I + 1) > 25, and so we can take [ = 5.

To get £ < m
Thus we estimate

1
we want TYR(ESY)

~ 1(Ll 4y 1y_ 11,1 .1 ;1 . 1 /1 _ 5929
S_S5+2(10+12)_2+8+18+32+5O+20+24_7200'

(Incidentally, the exact value of this sum is 7{—; )



7.29 Theorem: (Comparison Test) Let 0 < a,, < b,, for alln > k. Then if > b,, converges
then so does > a,, and in this case,

9] (9]
Z a, < Z b, .
n=k n=k

! l
Proof: Let S; = Z a, and let T; = Z b,,. Since 0 < a,, b, for all n, the sequences {S;}

n==k n==k
and {T;} are increasing. Since a, < b, for all n we have S; < T; for all I. Suppose that
o0

> by, converges with say Z b, = T so that lim {Tl} =T. Then S; < T; < T for all I, so

n==k

{S;} is increasing and bounded above, hence convergent, and lim S; < lhm 1;.
l—o00 —00

7.30 Example: Determine whether Z converges.

3
"0 vne +1

Solution: Note that 0 < 7 3 = < \/%3 = n31/2 foralln > 1, and > # converges since it

is a p-series with p = 5, and so ) \/n%”T also converges, by the Comparison Test.

7.31 Example: Determine whether Z tan% converges.
n>1

Solution: For 0 < z < 5 we have x < tanz, so for n>1wehave 0 < = < tan . Since the
harmonic series Z diverges, the series Z tan = also diverges by the Comparlson Test.

7.32 Example: Approximate S = Z — so that the error is at most 155
n= 0

!
1
Solution: If we make the approximation S = S; = Z - then the error is
= n
o0

E=S-S= > %

n=I[l+1

_ 1 1 1 1
= tary tarer tarr o

1 1 1 1
= 0! (1 tie T oo T o T )

1 1 1 1
< T (1 iz T arer Tarer T )
_ 1 1
= @iT . L
B — 5

_ 4+2
= GrnD!
where we used the Comparison Test and the formula for the sum of a geometric series. To

get B < m we can choose [ so that w < 100 By trial and error, we find that we

can take [ = 4, so we make the appr0x1mat10n

(Incidentally, we shall see later that the exact value of this sum is e).



7.33 Theorem: (Limit Comparison Test) Let a, > 0 and let b, > 0 for all n > k.
Suppose that lim dn _ r. Then
n—oo n
(1) if r = 00 and ) a,, converges then so does » . by,
(2) if r =0 and ) b,, converges then so does ) a,, and

(3) if 0 < r < oo then ) a, converges if and only if Y b, converges.

Proof: If lim % = oo, then for large n we have ‘g—" > 1 so that a,, > b,, and so if ) a,
n—oo ’n

converges, then so does ) b, by the Comparison Test. If lim 3= =
n—oo “n

have “" < 180 a, < by, and so if Y b, converges then so does > a,, by the Comparison
Test. Suppose that hm ‘;Z =r with 0 < r < co. Choose N so that when n > N we have

0 then for large n we

= —r‘ < § so that § < Z” < 3T and hence

0< b, <ap < %b,.

If > ay converges, then ) £b, converges by the Comparison Test, and hence ) b, con-
verges by linearity. If )b, converges, then ) 37"b converges by hnearlty, and hence so
does > a,, by the Comparison Test.

7.34 Example: Determine whether » \/71}‘771 converges.

Solution: Note that we cannot use the Same argument that we used earlier to show that
> \/111374_1 converges, because NG %”+ T <3 /2 but \/ L — > 5 /2 \/Ne use a different approach.
3/2
_ 1 — 1 n — 1 1 _
Let a, = 7T and let b, = — /2 Then lim > bn nh_)n(%o N nh_)ngo ﬂ =1,
and > b, = > # converges (its a p-series with p = %), and so Y a, converges too, by
the Limit Comparison Test.

10



7.35 Theorem: (Ratio Test) Let a,, > 0 for all n > k. Suppose lim ntl _ ). Then

n—00 QU
(1) if r < 1 then ) a,, converges, and
(2) if r > 1 then lim a, =00 50 ) a, = 0.
n—oo

Proof: Suppose that lim “2*: = < 1. Choose s with r < s < 1, and then choose N so

n—oo 9n
that when n > N we have ag—:l < s and hence a,,11 < sa,. Fix k> N. Then ay < sag,
42 < Sap41 < s2ay, k43 < SQp42 < s3ay, and so on, so we have a, < b, = s" *a;, for
all n > k. Since ) b, is geometric with ratio s < 1, it converges, and hence so does > a,,
by the Comparison Test.
Now suppose that nli—>Holo G’Z—:l =1 > 1. Choose s with 1 < s < r, then choose N so

that when n > N we have a;“ > s and hence a, 41 > sa,. Fix k > N. Then as above

n

an > by, = s" *aqy, for all n > k, and lim b,, = oo, so lim a, = oo too.
n—oo n—oo
7.36 Example: Determine whether » % converges.
. n n+1
Solution: Let a,, = ‘Z—, Then % = h . % = HLH — 0 as n — oo, and so Y a,

converges by the Ratio Test.

7.37 Note: If lim % =1, then ) a,, could converge or diverge. For example, if a,, = %

n—oo
. . 2
then “2+ = 7 — lasn — ocoand ) a, diverges, but if b, = = then bg“ = (n’}r—l)Q —1

as n — oo and ) _ b, converges.

7.38 Theorem: (Root Test) Let a,, > 0 for all n > k. Suppose that lim {/a,, = r. Then
n—oo
(1) if r < 1 then ) a,, converges, and
(2) if r > 1 then lim a, = 00 50 ) a, = 0.
n—oo

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.
2

n
7.39 Example: Determine whether » (nLH) converges.

n? n nln( 22—
Solution: Let a, = ( n ) . Then /a,, = <L> =" (”+1), and by I'Hopital’s Rule

n_—|—1 n+1
In (5%) 1 2
we have lim nln (L> — lim — 2 gy @D g, T —1, and so
n—oo n+1 T—00 % T— 00 —9%2 T— 00 (x —+ 1)2
lim /a, =e ! < 1. Thus > a, converges by the Root Test.

n—oo

11



7.40 Definition: A sequence {ay},>k is said to be alternating when either we have
an = (=1)"|a,| for all n > k or we have a,, = (—1)""1|a,| for all n > k.

7.41 Theorem: (Aternating Series Test) Let {a,}n>r be an alternating series. If {|ay|}

is decreasing with lim |a,| =0 then ) a,, converges, and in this case
n— o0
n>k

< lak|.

0o
> o
n==k

Proof: To simplify notation, we give the proof in the case that kK = 0 and a,, = (—1)"|a,|.
l

Suppose that {|a,|} is decreasing with |a,| — 0. Let S} = Zan. We consider the
n=0

sequences {S} and {Sy_1} of even and odd partial sums. Note that since {|a,|} is

decreasing, we have

Sar — Sar-1 = |az| — |az-1[ <0
SO {Sgl} is decreasing, and we have
So1 = |ao| — |ar| + |az| — |ag| + -+ + |azi—2| — |agi—1] + |ax]
= (|a0| - |a1|) + (|CL2| - |CL3|) + (|a21—2| - |a21—1|) + |azi]
> |ao| — |as]
and so {Sy} is bounded below by |ag| — |a1]. Thus {S} converges by the Monotone

Convergence Theorem. Similarly, {Sgl_l} is increasing and bounded above by |ag|, so it
also converges, and we have llim Sai—1 < ag].
— 00

Finally we note that since |a,| — 0, taking the limit on both sides of the equality

lag;| = So; — Sa;—1 gives 0 = lim Sy — lim So9;_;. and so we have lim Sg; = lim So;_q.
l— o0 l— o0 l—o0 l—o00
It follows that {Sl} converges, and we have lim S; = lim Sy = lim Sy < |ag|-
l—o0 l— 00 l— oo
(—=1)"Inn

7.42 Example: Determine whether Z converges.

n>2 \/ﬁ

(—=1)"Inn

NG

1
. Let f(z) = % so that |a,| = f(n). Note that
x
, _%'ﬁ_lnm‘_g\l/g_Z—lnx
f('r)_ - 21;3/2 )

T

Solution: Let a,, =

so we have f'(z) < 0 for > e?. Thus f(z) is decreasing for z > €2, and so {|a,|} is
decreasing for n > 8. Also, by I’Hopital’s Rule, we have

1 1
lim f(z)= lim —= = lim —— = lim 2 =0
T—00 T— 00 x T—00 —2\/5 r—00

and so |a,| — 0 as n — co. Thus ) a, converges by the Alternating Series Test.

12



_9\n
7.43 Example: Approximate the sum S = g (=2) so that the error is at most
(2n)! 2000
n=0

(=2)"
(2n)! "

lana| 270 (2n)! 2 1

lan]  @n+2)! 20 T 2n+2)2n+1) (n+D)@n+1)

Solution: Let a,, = Note that

Since |"+|1| <1 for all n > 0, we know that {|a,|} is decreasing. Since lim % =0, we
n—oo 19n

know that ) |a,| converges by the Ratio Test, and so |a,| — 0 by the Divergence Test.
This shows that we can apply the Alternating Series Test.
!

If we approximate S by the [*'partial sum S; = Z a,, then by the Alternating Series

n=0
Test, the error is
o
2H{
= ‘S_Sl‘ = Z ap| < |al+1}=—-
- |
Nyl (20 + 2)!
To get £ < 2000 we can choose [ so that % < 2000 By trial and error we find that we

can take [ = 3. Thus we make the approximation
~ _ 2 22 2% 1 1 7
522133—— 1—-§T+-ZT'—'a-——1 —-1%—6 +—§6-— 15
(We shall see later that the exact value of this sum is cos \/5)

7.44 Definition: A series ) a, is said to converge absolutely when > |a,| converges.

n>k n>k
The series is said to converge conditionally if >  a, converges but »_ |a,| diverges.
n>k n>k

7.45 Example: For 0 < p < 1, the p-series > n—lp diverges, but since {nip} is decreasing
towards 0, > (_n% converges by the Alternating Series Test. Thus for 0 < p < 1, the

(=D"

alternating p-series Z converges conditionally.

7.46 Theorem: (Absolute Convergence Implies Convergence) If Y |a,| converges then
so does > ay,.

Proof: Suppose that > |a,| converges. Note that —|a,| < a,, < |a,| so that
0 < an+lan| < 2|ay,| for all n.

Since Y |a,| converges, Y- 2|a,| converges by linearity, and so >_ (an, + |an|) converges by
the Comparison Test. Since Y- |a,| and Y (an + |a,|) both converge, 3 a, converges by
linearity.

sinn
7.47 Example: Determine whether Z 5 converges.
n
i . . Slnn |51n n‘ 3 ]
Solution: Let a,, = . Then |a,| = < -5. Since Z —=> converges (its a p-series

with p = 2), > |a,| converges by the Comparlson Test, and hence ) a,, converges too,
since absolute convergence implies convergence.
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Multiplication of Series

7.48 Theorem: (Multiplication of Series) Suppose that . |a,| converges and ) by,
n>0 n>0

converges and define ¢,, = Z axbn—x. Then > ¢, converges and
k=0 n>0

S (See) (B)-

Proof: Let A; = Z an, By = Z by, C; = i Cny, A = i an, B = i b,, K = i |a,|
and £} = B — Bl Then we have e " " "
Cy = apbg + (apby + a1bg) + (apbe + a1by + asbg) + - - + (apb; + - - - + a;bo)
=aoB;+a1Bi—1+asBi_2+ -+ a;By
=ay(B—E)+a1(B—E;_1)+ -+ a(B — Ep)
= AB — (@B + a1 Ej—1 + - + a; Ep)
and so

|AB — Ci| < [(A— A)B| + |aoEi + a1 B + - -+ + i Ey | .

Let € > 0. Choose m so that j > m = E; < 3%. Let E = max {|Eo|,---,|Ep|}. Choose
l
L > m so that when [ > L we have ) |a,| < 3% and we have [4; — A||B| < §. Then

n=l—m
for { > L,
‘Cl —AB‘ < ‘(Al —A)B| + ‘aoEl + ---+CLl_m_1Em+1| + ‘al_mEm + - —I—CLZE()’
l—-m—1 l
§§+( ) yan|)3LK+( 5 ran|)E

n=l—-m+1
€ K - o)
< 3 3K 3E €.

7.49 Example: Find an example of sequences {ay, },>0 and {b,, },,>0 such that }_ a, and
n>0

n
> b, both converge, but > ¢, diverges where ¢,, = > agby_.
n>0 n>0 k=0

_1 n
Solution: Let a,, = b,, = \(/n——i)—l

n
= > agbp_i =
=0

for n > 0, and let

Z\/k+1 (n—k+1)
Recall that for p,q > 0 we have \/pq < 3 L(p+q) (indeed (p + ¢q)? — 4pq = p®> — 2pq + ¢* =
(p—q)* > 0,50 (p+q)* > 4pg). In particular \/(k+1)(n—k+1) < 2(n+2) and so

n
len| > ;;o ni+2 = 2(77:—;1) Thus nh—>IIolo len| # 0 so > ¢, diverges by the Divergence Test.
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