Review of Sequences

7.1 Definition: A sequence (of real numbers) is a function $a: \{k, k+1, k+2, \dots\} \to \mathbb{R}$ for some integer k. For a sequence $a: \{k, k+1, \dots\} \to \mathbb{R}$, we write $a_n = a(n)$ for $n \geq k$, we refer to the function a as the sequence $\{a_n\}$ or the sequence $\{a_n\}_{n\geq k}$, and we write

$$
\{a_n\}_{n\geq k}=a_k,a_{k+1},a_{k+2},\cdots
$$

We say that $\{a_n\}_{n\geq k}$ lies in the set $I \subset \mathbb{R}$ when $a_n \in I$ for every $n \geq k$.

7.2 Definition: We say the sequences $\{a_n\}_{n\geq k}$ converges to the real number l, or that the **limit** of the sequence $\{a_n\}_{n\geq k}$ is equal to l, and we write $\lim_{n\to\infty} a_n = l$ or we write $a_n \to l$ (as $n \to \infty$), when for every $\epsilon > 0$ there exists $N \geq k$ such that for every integer n we have

$$
n > N \Longrightarrow |a_n - l| < \epsilon \, .
$$

We say the sequence $\{a_n\}$ converges if it converges to some real number l.

We say the limit of $\{a_n\}$ is equal to infinity, and write $\lim_{n\to\infty} a_n = \infty$ or $a_n \to \infty$ when for every $R \in \mathbb{R}$ there exists $N \geq k$ such that for every integer n we have

$$
n > N \Longrightarrow a_n > R.
$$

We say the limit of $\{a_n\}$ is equal to negative infinity and write $\lim_{n\to\infty} a_n = -\infty$ or $a_n \to -\infty$ when for every $R \in \mathbb{R}$ there exists $N \geq k$ such that for every integer n we have

$$
n>N\Longrightarrow a_n
$$

7.3 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let l be a positive integer. Then $\lim_{n\to\infty} a_n$ exists if and only if $\lim_{n\to\infty} a_{n+l}$ exists, and in this case the limits are equal.

7.4 Theorem: (Linearity, Products and Quotients) If $\{a_n\}$ and $\{b_n\}$ are convergent sequences then

(1) for any real number c, $\{ca_n\}$ converges with $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$, (2) the sequence $\{a_n + b_n\}$ converges with $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$, (3) the sequence $\{a_nb_n\}$ converges with $\lim_{n\to\infty}(a_nb_n) = \left(\lim_{n\to\infty}a_n\right)\left(\lim_{n\to\infty}b_n\right)$, and (4) if $\lim_{n\to\infty} b_n \neq 0$ then the sequence $\left\{\frac{a_n}{b_n}\right\}$ b_n $\}$ converges with $\lim_{n\to\infty}$ a_n b_n $=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}a_n}$ $\lim_{n\to\infty}b_n$.

7.5 Note: By defining algebraic operations on the extended real line $\mathbb{R}\cup\{\pm\infty\}$, the above theorem can be extended to include many cases in which $\lim_{n\to\infty} a_n = \pm\infty$ or $\lim_{n\to\infty} b_n = \pm\infty$, but some care is needed for the so called **indeterminate forms** $\infty - \infty, 0 \cdot \infty, \frac{0}{0}$ $\frac{0}{0}, \frac{\infty}{\infty}$.

7.6 Theorem: (Sequences and Functions) Let $f : [a, \infty) \to \mathbb{R}$ be a function and let $a_n = f(n)$ for all integers $n \geq k$. If $\lim_{x \to \infty} f(x) = l$ then $\lim_{n \to \infty} a_n = l$ (where the limit l can be finite or infinite) .

7.7 Example: Find $\lim_{n\to\infty} (1+$ 1 n $\big)^n$.

Solution: Let $f(x) = (1 + \frac{1}{x})^x = e^{x \ln(1 + 1/x)}$ so that $a_n = f(n)$ for all $n \ge 1$. By l'Hôpital's Rule we have

1

$$
\lim_{x \to \infty} x \ln \left(1 + \frac{1}{x} \right) = \lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{-\frac{1}{x^2}}{1 + \frac{1}{x}}}{-\frac{1}{x^2}} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = 1
$$

and so $\lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = e^1 = e$.

7.8 Theorem: (Comparison and Squeeze) Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be sequences. (1) If $a_n \leq b_n$ for all n and $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ both exist, then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$ (2) If $a_n \le b_n \le c_n$ for all $n \ge k$ and if $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$ then $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n$.

7.9 Theorem: (Sequences and Absolute Values) Let $\{a_n\}$ be a sequence.

(1) If $\lim_{n \to \infty} a_n$ exists then $\lim_{n \to \infty} |a_n| = \left| \lim_{n \to \infty} a_n \right|$. (2) If $\lim_{n \to \infty} |a_n| = 0$ then $\lim_{n \to \infty} a_n = 0$. (3) If $|a_n| \leq b_n$ for all $n \geq k$ and $\lim_{n \to \infty} b_n = 0$ then $\lim_{n \to \infty} a_n = 0$.

7.10 Definition: The sequence $\{a_n\}_{n\geq k}$ is called **increasing** when $a_n \leq a_{n+1}$ for all $n \geq k$, or equivalently when $n \leq m \Longrightarrow a_n \leq a_m$ for all integers $n, m \geq k$. The sequence ${a_n}_{n\geq k}$ is called **strictly increasing** when $a_n < a_{n+1}$ for all $n \geq k$. The sequence ${a_n}_{n\geq k}$ is **bounded above** by the real number b when $a_n \leq b$ for all $n \geq k$, and in this case b is called an upper bound for the sequence. We say that $\{a_n\}$ is bounded above when it is bounded above by some real number b. We have similar definitions for the terms decreasing, strictly decreasing, bounded below and lower bound.

7.11 Theorem: (Monotone Convergence)

(1) If $\{a_n\}$ is increasing and bounded above by b, then $\{a_n\}$ converges and $\lim_{n\to\infty} a_n \leq b$.

(2) If $\{a_n\}$ is increasing and is not bounded above, then $\lim_{n\to\infty} a_n = \infty$.

(3) If $\{a_n\}$ is decreasing and bounded below by c, then $\{a_n\}$ converges and $\lim_{n\to\infty} a_n \geq c$.

(4) If $\{a_n\}$ is decreasing and is not bounded below, then $\lim_{n\to\infty} a_n = -\infty$.

7.12 Example: Let $a_1 = 2$ and for $n \ge 1$ let $a_{n+1} = \frac{a_n^2 + 3}{4}$ $\frac{1}{4}$. Show that $\{a_n\}$ converges, and find the limit.

Solution: Suppose, for the moment, that $\{a_n\}$ converges and let $l = \lim_{n \to \infty} a_n$. Note that we also have $\lim_{n\to\infty} a_{n+1} = l$ (by Theorem 6.3) and so by taking the limit on both sides of the recurrence equation $a_{n+1} = \frac{a_n+3}{4}$ $\frac{l+3}{4}$ we find that $l = \frac{l^2+3}{4}$ $\frac{+3}{4}$, that is $4l = l^2 + 3$, so we have $0 = l^2 - 4l + 3 = (l - 1)(l - 3)$ and so $l = 1$ or 3. This argument shows that if $\{a_n\}$ converges then the limit must be 1 or 3.

We claim that $1 \le a_{n+1} \le a_n \le 3$ for all $n \ge 1$. When $n = 1$ we have $a_n = a_1 = 2$ and $a_{n+1} = a_2 = \frac{7}{4}$ $\frac{7}{4}$ and so the claim is true when $n = 1$. Fix $k \ge 1$ and suppose, inductively, that the claim is true when $n = k$. Then we have

$$
1 \le a_{k+1} \le a_k \le 3 \Longrightarrow 1 \le a_{k+1}^2 \le a_k^2 \le 9 \Longrightarrow 4 \le a_{k+1}^2 + 3 \le a_k^2 + 3 \le 12
$$

$$
\Longrightarrow 1 \le \frac{a_{k+1}^2 + 3}{4} \le \frac{a_k^2 + 3}{4} \le 3 \Longrightarrow 1 \le a_{k+2} \le a_{k+1} \le 3
$$

and so the claim is also true when $n = k + 1$. By Mathematical Induction, the claim is true for all $n \geq 1$. Thus we have $1 \leq a_{n+1} \leq a_n \leq 3$ for all $n \geq 1$

Since $a_{n+1} \le a_n$ for all n, the sequence is decreasing, and since $1 \le a_n$ for all n, the sequence is bounded below. By the Monotone Convergence Theorem, the sequence does converge. Since we know that the limit must be 1 or 3, and since the sequence starts at 2 and decreases, it follows that the limit must be 1. Thus $\lim_{n\to\infty} a_n = 1$.

Series

7.13 Definition: Let $\{a_n\}_{n\geq k}$ be a sequence. The series \sum $n \geq k$ a_n is defined to be the sequence $\{S_l\}_{l\geq k}$ where

$$
S_l = \sum_{n=k}^{l} a_n = a_k + a_{k+1} + \dots + a_l.
$$

The term S_l is called the lth partial sum of the series \sum $n \geq k$ a_n . The sum of the series,

denoted by

$$
S = \sum_{n=k}^{\infty} a_n = a_k + a_{k+1} + a_{k+2} + \cdots,
$$

is the limit of the sequence of partial sums, if it exists, and we say the series converges when the sum exists and is finite.

7.14 Example: (Geometric Series) Show that for $a \neq 0$, the series \sum $n \geq k$ a_n converges if

and only if $|r| < 1$, and that in this case

$$
\sum_{n=k}^{\infty} ar^n = \frac{ar^k}{1-r}.
$$

Solution: The l^{th} partial sum is

$$
S_l = \sum_{n=k}^{\infty} ar^n = ar^k + ar^{k+1} + ar^{k+2} + \dots + ar^l.
$$

When $r = 1$ we have $S_l = a(l - k + 1)$ and so $\lim_{l \to \infty} S_l = \pm \infty$ (+ ∞ when $a > 0$ and $-\infty$ when $a < 0$). When $r \neq 1$ we have $rS_l = ar^{k+1} + ar^{k+2} + \cdots + ar^l + ar^{l+1}$, so $S_l - rS_l = ar^k - ar^{l+1} = ar^k(1 - r^{l-k+1})$ and so

$$
S_l = \frac{ar^k(1 - r^{l-k+1})}{1 - r}.
$$

When $r > 1$, $\lim_{l \to \infty} r^{l-k+1} = \infty$ and so $\lim_{l \to \infty} S_l = \pm \infty$ (+ ∞ when $a > 0$ and $-\infty$ when $a < 0$). When $r \le -1$, $\lim_{l \to \infty} r^{l-k+1}$ does not exist, and so neither does $\lim_{l \to \infty} S_l$. When $|r| < 1$, we have $\lim_{l \to \infty} r^{l-k+1} = 0$ and so $\lim_{l \to \infty} S_l =$ ar^k $1 - r$, as required.

7.15 Example: Find $\sum_{n=1}^{\infty}$ $n=-1$ 3^{n+1} $\frac{6}{2^{2n-1}}$.

Solution: This is a geometric series. By the formula in the previous example, we have

$$
\sum_{n=-1}^{\infty} \frac{3^{n+1}}{2^{2n-1}} = \sum_{n=-1}^{\infty} \frac{3 \cdot 3^n}{2^{-1} \cdot 4^n} = \sum_{n=-1}^{\infty} 6 \left(\frac{3}{4}\right)^n = \frac{6 \left(\frac{3}{4}\right)^{-1}}{1 - \frac{3}{4}} = \frac{6 \cdot \frac{4}{3}}{\frac{1}{4}} = 32.
$$

7.16 Example: (Telescoping Series) Find $\sum_{n=1}^{\infty}$ $i=1$ 1 $\frac{1}{n^2+2n}$

Solution: We use a partial fractions decomposition. The lth partial sum is

$$
S_l = \sum_{n=1}^l \frac{1}{n(n+2)} = \sum_{n=1}^l \left(\frac{\frac{1}{2}}{n} - \frac{\frac{1}{2}}{n+2}\right) = \frac{1}{2} \sum_{n=1}^l \left(\frac{1}{n} - \frac{1}{n+2}\right)
$$

= $\frac{1}{2} \left(\left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n}\right) + \left(\frac{1}{n-1} - \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{1}{n+2}\right) \right)$
= $\frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}\right)$,

since all the other terms cancel. Thus the sum of the series is

$$
S = \lim_{l \to \infty} S_l = \frac{1}{2} \left(1 + \frac{1}{2} \right) = \frac{3}{4} \, .
$$

7.17 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let $\{a_n\}_{n\geq k}$ be a sequence. Then for any integer $m \geq k$, the series \sum $n \geq k$ a_n converges if and only if the

series
$$
\sum_{n \ge m} a_n
$$
 converges, and in this case
\n
$$
\sum_{n=k}^{\infty} a_n = (a_k + a_{k+1} + \dots + a_{m-1}) + \sum_{n=m}^{\infty} a_n.
$$

Proof: Let $S_l = \sum$ $n = k$ a_n and let $T_l = \sum$ $n = m$ a_n . Then for all $l \geq m$ we have $S_l = (a_k + a_{k+1} + \cdots + a_{m-1}) + T_l,$

and so $\{S_l\}$ converges if and only if $\{T_l\}$ converges, and in this case

$$
\lim_{l \to \infty} S_l = (a_k + a_{k+1} + \dots + a_{m-1}) + \lim_{l \to \infty} T_l
$$

.

7.18 Note: Since the first finitely many terms do not affect the convergence of a series, we often omit the subscript $n \geq k$ in the expression \sum $n \geq k$ a_n when we are interested in whether or not the series converges. On the other hand, we cannot omit the subscript $n = k$ when we are interested in the value of the sum $\sum_{n=1}^{\infty} a_n$. $n = k$

7.19 Definition: When we approximate a value x by the value y, the (absolute) error in our approximation is $|x-y|$.

7.20 Note: If \sum $n \geq k$ a_n converges and $l \geq k$ then, by the above theorem, so does $\sum_{n=1}^{\infty}$ $n \geq l+1$ a_n . If we approximate the sum $S = \sum_{n=1}^{\infty}$ $n = k$ a_n by the *l*thpartial sum $S_l = \sum$ l $n = k$ a_n , then the **error** in our approximation is $\overline{}$ $\bigg\}$

$$
|S - S_l| = \left| \sum_{n=l+1}^{\infty} a_n \right|.
$$

7.21 Theorem: (Linearity) If $\sum a_n$ and $\sum b_n$ are convergent series then

- (1) for any real number c, $\sum ca_n$ converges and \sum^{∞} $n = k$ $ca_n = c \sum_{n=1}^{\infty}$ $n = k$ a_n , and
- (2) the series $\sum (a_n + b_n)$ converges and $\sum_{n=1}^{\infty}$ $n = k$ $(a_n + b_n) = \sum_{n=0}^{\infty}$ $n = k$ $a_n + \sum_{n=1}^{\infty}$ $n = k$ b_n .

Proof: This follows immediately from the Linearity Theorem for sequences.

- **7.22 Theorem:** (Series of Positive Terms) Let $\sum a_n$ be a series.
- (1) If $a_n \geq 0$ for all $n \geq k$ then either $\sum a_n$ converges or $\sum_{n=1}^{\infty}$ $n = k$ $a_n = \infty$. (2) If $a_n \leq 0$ for all $n \geq k$ then either $\sum a_n$ converges or $\sum_{n=1}^{\infty}$ $n = k$ $a_n = -\infty$.

Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if $a_n \geq 0$ for all $n \geq k$, then $\{S_l\}$ is increasing (since $S_{l+1} = S_l + a_{l+1} \geq S_l$ for all l). Either ${S_l}$ is bounded above, in which case ${S_l}$ converges hence $\sum a_n$ converges, or ${S_l}$ is unbounded, in which case $\lim_{n\to\infty} S_l = \infty$ hence $\sum_{n=1}^{\infty}$ $n = k$ $a_n = \infty$.

7.23 Theorem: (Divergence Test) If $\sum a_n$ converges then $\lim_{n\to\infty} a_n = 0$. Equivalently, if $\lim_{n\to\infty} a_n$ either does not exist, or exists but is not equal to 0, then $\sum a_n$ diverges.

Proof: Suppose that $\sum a_n$ converges, and say $\sum^{\infty} a_n = S$. Let S_l be the *l*thpartial sum. Then $\lim_{l \to \infty} S_l = S = \lim_{l \to \infty} S_{l-1}$, and we have $a_l = S_l - S_{l-1}$, and so

$$
\lim_{l \to \infty} a_l = \lim_{l \to \infty} S_l - \lim_{l \to \infty} S_{l-1} = S - S = 0.
$$

7.24 Example: Determine whether $\sum e^{1/n}$ converges.

Solution: Since $\lim_{n\to\infty}e^{1/n}=e^0=1, \sum e^{1/n}$ diverges by the Divergence Test.

7.25 Note: The converse of the Divergence Test is false. For example, as we shall see in Example 6.27 below, $\sum \frac{1}{n}$ diverges even though $\lim_{n\to\infty} \frac{1}{n}$ $\frac{1}{n} = 0.$

7.26 Theorem: (Integral Test) Let $f(x)$ be positive and decreasing for $x \geq k$, and let $a_n = f(n)$ for all integers $n \geq k$. Then $\sum a_n$ converges if and only if $\int_{-\infty}^{\infty}$ k $f(x) dx$ converges, and in this case, for any $l \geq k$ we have

$$
\int_{l+1}^{\infty} f(x) dx \leq \sum_{n=l+1}^{\infty} a_n \leq \int_{l}^{\infty} f(x) dx.
$$

Proof: Let T_m be the m^{th} partial sum for \sum $n \geq l+1$ a_n , so $T_m = \sum_{n=1}^{m}$ $n=l+1$ a_n . Note that since $f(x)$ is decreasing, it is integrable on any closed interval. Also, for each $n \geq l$ we have $a_n = f(n) \le f(x)$ for all $x \in [n-1, n]$, so \int^n $n-1$ $f(x) dx \geq \int_0^{\infty}$ $n-1$ $a_n dx = a_n$ and so

$$
T_m = \sum_{n=l+1}^m a_n \le \sum_{n=l+1}^m \int_{n-1}^n f(x) \, dx = \int_l^m f(x) \, dx \le \int_l^\infty f(x) \, dx \, .
$$

Since $f(n) = a_n$ is positive, the sequence $\{T_m\}$ is increasing. If $\int_{-\infty}^{\infty}$ k f converges, then $\{T_n\}$ is bounded above by \int_0^∞ $\int_{l} f(x) dx$, and so it converges with $\lim_{m \to \infty} T_m \leq$ \int^{∞} l $f(x) dx$. Similarly, for each $n \geq l$ we have $a_n = f(n) \geq f(x)$ for all $x \in [n, n + 1]$ so that \int^{n+1} n $f(x) dx \leq \int^{n+1}$ n $a_n dx = a_n$ and so $T_m = \sum_{m=1}^{m}$ $n=l+1$ $a_n \geq \sum_{n=1}^{m}$ $n=l+1$ \int^{n+1} n $f(x) dx = \int^{m+1}$ $l+1$ $f(x) dx$. If \int^{∞} $f(x) dx = \int_{-\infty}^{\infty}$ $f(x) dx$. If $\int_{-\infty}^{\infty}$

 $\int_{k}^{\infty} f$ converges, then $\lim_{m \to \infty} T_m \ge \lim_{m \to \infty} \int_{l+1}^{m+1} f_l$ $l+1$ k $f = \infty$ then $\lim_{m \to \infty} \int_{l+1}^{m+1} f(x) dx = \infty$, and so $\lim_{m \to \infty} T_m = \infty$ too, by Comparison.

7.27 Example: (p-Series) Show that the series \sum $n\geq 1$ 1 $\frac{1}{n^p}$ converges if and only if $p > 1$. In particular, the **harmonic series** $\sum_{n=1}^{\infty}$ diverges.

Solution: If $p < 0$ then $\lim_{n \to \infty}$ 1 $\frac{1}{n^p} = \infty$ and if $p = 0$ then $\lim_{n \to \infty} \frac{1}{n^p}$ $\frac{1}{n^p} = 1$, so in either case $\sum \frac{1}{n^p}$ diverges by the Divergence Test. Suppose that $p > 0$. Let $a_n = \frac{1}{n^p}$ for integers $n \geq 1$, and let $f(x) = \frac{1}{x^p}$ for real numbers $x \geq 1$. Note that $f(x)$ is positive and decreasing for $x \ge 1$ and $a_n = f(n)$ for all $n \ge 1$. Since we know that $\int_{-\infty}^{\infty}$ 1 $f(x) dx$ converges if and only if $p > 1$, it follows from the Integral Test that $\sum a_n$ converges if and only if $p > 1$.

7.28 Example: Approximate $S = \sum_{n=1}^{\infty}$ $n=1$ 1 $2n^2$ so that the error is at most $\frac{1}{100}$.

Solution: We let $a_n = \frac{1}{2n^2}$ and $f(x) = \frac{1}{2x^2}$ so that we can apply the Integral Test. If we choose to approximate the sum S by the ℓ^{th} partial sum S_l , then the error is

$$
E = S - S_l = \sum_{n=l+1}^{\infty} a_n \le \int_l^{\infty} \frac{1}{2x^2} dx = \left[-\frac{1}{2x} \right]_l^{\infty} = \frac{1}{2l},
$$

and so to insure that $E \leq \frac{1}{100}$ we can choose l so that $\frac{1}{2l} \leq \frac{1}{100}$, that is $l \geq 50$. Since it would be tedious to add up the first 50 terms of the series, we take an alternate approach. The Integral Test gives us upper and lower bounds: we have

$$
\int_{l+1}^{\infty} f(x) dx \le S - S_l \le \int_l^{\infty} f(x) dx
$$

$$
\frac{1}{2(l+1)} \le S - S_l \le \frac{1}{2l}
$$

$$
S_l + \frac{1}{2(l+1)} \le S \le S_l + \frac{1}{2l}.
$$

If approximate S using the midpoint of the upper and lower bounds, that is if we make the approximation $S \cong S_l + \frac{1}{2}$ 2 $\frac{1}{2}$ $\frac{1}{2l} + \frac{1}{2(l+1)}$, then the error E will be at most half of the difference of the bounds:

$$
E \leq \frac{1}{2} \left(\frac{1}{2l} - \frac{1}{2(l+1)} \right) = \frac{1}{4l(l+1)}.
$$

To get $E \le \frac{1}{100}$ we want $\frac{1}{4l(l+1)} \le \frac{1}{100}$, that is $l(l+1) \ge 25$, and so we can take $l = 5$. Thus we estimate

$$
S \cong S_5 + \frac{1}{2} \left(\frac{1}{10} + \frac{1}{12} \right) = \frac{1}{2} + \frac{1}{8} + \frac{1}{18} + \frac{1}{32} + \frac{1}{50} + \frac{1}{20} + \frac{1}{24} = \frac{5929}{7200}.
$$

(Incidentally, the exact value of this sum is $\frac{\pi^2}{12}$).

7.29 Theorem: (Comparison Test) Let $0 \le a_n \le b_n$ for all $n \ge k$. Then if $\sum b_n$ converges then so does $\sum a_n$ and in this case,

$$
\sum_{n=k}^{\infty} a_n \le \sum_{n=k}^{\infty} b_n.
$$

Proof: Let $S_l = \sum$ l $n = k$ a_n and let $T_l = \sum$ l $n = k$ b_n . Since $0 \le a_n, b_n$ for all n, the sequences $\{S_l\}$ and $\{T_l\}$ are increasing. Since $a_n \leq b_n$ for all n we have $S_l \leq T_l$ for all l. Suppose that $\sum b_n$ converges with say \sum^{∞} $n = k$ $b_n = T$ so that $\lim_{l \to \infty} \{T_l\} = T$. Then $S_l \le T_l \le T$ for all l, so $\{S_l\}$ is increasing and bounded above, hence convergent, and $\lim_{l\to\infty} S_l \leq \lim_{l\to\infty} T_l$.

7.30 Example: Determine whether \sum $n\geq 0$ $\frac{1}{\sqrt{2}}$ $n^3 + 1$ converges.

Solution: Note that $0 \leq \frac{1}{\sqrt{n^3+1}} \leq \frac{1}{\sqrt{n^3}} = \frac{1}{n^3}$ $\frac{1}{n^{3/2}}$ for all $n \geq 1$, and $\sum \frac{1}{n^{3/2}}$ converges since it is a *p*-series with $p=\frac{3}{2}$ $\frac{3}{2}$, and so $\sum \frac{1}{\sqrt{n^3+1}}$ also converges, by the Comparison Test.

7.31 Example: Determine whether \sum $n\geq 1$ $\tan \frac{1}{n}$ converges.

Solution: For $0 \leq x \leq \frac{\pi}{2}$ we have $x < \tan x$, so for $n \geq 1$ we have $0 \leq \frac{1}{n}$ $\frac{1}{n}$ < tan $\frac{1}{n}$. Since the harmonic series $\sum \frac{1}{n}$ diverges, the series $\sum \tan \frac{1}{n}$ also diverges by the Comparison Test.

7.32 Example: Approximate $S = \sum_{n=1}^{\infty}$ $n=0$ 1 n! so that the error is at most $\frac{1}{100}$.

Solution: If we make the approximation $S \cong S_l = \sum$ l $n=0$ 1 $n!$ then the error is

$$
E = S - S_l = \sum_{n=l+1}^{\infty} \frac{1}{n!}
$$

= $\frac{1}{(l+1)!} + \frac{1}{(l+2)!} + \frac{1}{(l+3)!} + \frac{1}{(l+4)!} + \cdots$
= $\frac{1}{(l+1)!} \left(1 + \frac{1}{l+2} + \frac{1}{(l+2)(l+3)} + \frac{1}{(l+2)(l+3)(l+4)} + \cdots \right)$
 $\leq \frac{1}{(l+1)!} \left(1 + \frac{1}{l+2} + \frac{1}{(l+2)^2} + \frac{1}{(l+2)^3} + \cdots \right)$
= $\frac{1}{(l+1)!} \frac{1}{1 - \frac{1}{l+2}}$
= $\frac{l+2}{(l+1)(l+1)!}$

where we used the Comparison Test and the formula for the sum of a geometric series. To get $E \leq \frac{1}{100}$ we can choose l so that $\frac{l+2}{(l+1)(l+1)!} \leq \frac{1}{100}$. By trial and error, we find that we can take $l = 4$, so we make the approximation

$$
S \cong S_4 = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} = \frac{65}{24}.
$$

(Incidentally, we shall see later that the exact value of this sum is e).

7.33 Theorem: (Limit Comparison Test) Let $a_n \geq 0$ and let $b_n > 0$ for all $n \geq k$. Suppose that $\lim_{n\to\infty}$ a_n b_n $=r.$ Then (1) if $r = \infty$ and $\sum a_n$ converges then so does $\sum b_n$, (2) if $r = 0$ and $\sum b_n$ converges then so does $\sum a_n$, and (3) if $0 < r < \infty$ then $\sum a_n$ converges if and only if $\sum b_n$ converges.

Proof: If $\lim_{n\to\infty} \frac{a_n}{b_n}$ $\frac{a_n}{b_n} = \infty$, then for large *n* we have $\frac{a_n}{b_n} > 1$ so that $a_n > b_n$, and so if $\sum a_n$ converges, then so does $\sum b_n$ by the Comparison Test. If $\lim_{n\to\infty} \frac{a_n}{b_n}$ $\frac{a_n}{b_n} = 0$ then for large *n* we have $\frac{a_n}{b_n} < 1$ so $a_n < b_n$, and so if $\sum b_n$ converges then so does $\sum a_n$ by the Comparison Test. Suppose that $\lim_{n\to\infty}\frac{a_n}{b_n}$ $\frac{a_n}{b_n} = r$ with $0 < r < \infty$. Choose N so that when $n > N$ we have a_n $\left| \frac{a_n}{b_n} - r \right| < \frac{r}{2}$ $\frac{r}{2}$ so that $\frac{r}{2} < \frac{a_n}{b_n}$ $\frac{a_n}{b_n} < \frac{3r}{2}$ $\frac{3r}{2}$ and hence

$$
0 < \frac{r}{2}b_n \le a_n \le \frac{3r}{2}b_n \, .
$$

If $\sum a_n$ converges, then $\sum \frac{r}{2}b_n$ converges by the Comparison Test, and hence $\sum b_n$ converges by linearity. If $\sum b_n$ converges, then $\sum \frac{3r}{2}b_n$ converges by linearity, and hence so does $\sum a_n$ by the Comparison Test.

7.34 Example: Determine whether $\sum \frac{1}{\sqrt{2}}$ $\frac{1}{n^3-1}$ converges.

Solution: Note that we cannot use the same argument that we used earlier to show that $\sum \frac{1}{\sqrt{n^3+1}}$ converges, because $\frac{1}{\sqrt{n^3+1}} < \frac{1}{n^{3/2}}$ but $\frac{1}{\sqrt{n^3}}$ $\frac{1}{n^3-1} > \frac{1}{n^3}$ $\frac{1}{n^{3/2}}$. We use a different approach. Let $a_n = \frac{1}{\sqrt{n^3}}$ $\frac{1}{n^3-1}$ and let $b_n = \frac{1}{n^3}$ $rac{1}{n^{3/2}}$. Then $\lim_{h \to 0} \frac{a_h}{h}$ $rac{a_n}{b_n} = \lim_{n \to \infty}$ $n^{3/2}$ √ $\frac{n}{n^3-1} = \lim_{n \to \infty}$ 1 $\sqrt{1-\frac{1}{n^3}}$ $\overline{n^3}$ $= 1,$

and $\sum b_n = \sum \frac{1}{n^{3/2}}$ converges (its a *p*-series with $p = \frac{3}{2}$ $(\frac{3}{2})$, and so $\sum a_n$ converges too, by the Limit Comparison Test.

7.35 Theorem: (Ratio Test) Let $a_n > 0$ for all $n \geq k$. Suppose $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ a_n $=r.$ Then

(1) if $r < 1$ then $\sum a_n$ converges, and (2) if $r > 1$ then $\lim_{n \to \infty} a_n = \infty$ so $\sum a_n = \infty$.

Proof: Suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ $\frac{n+1}{a_n} = r < 1$. Choose s with $r < s < 1$, and then choose N so that when $n > N$ we have $\frac{a_{n+1}}{a_n} < s$ and hence $a_{n+1} < s a_n$. Fix $k > N$. Then $a_{k+1} < s a_k$, $a_{k+2} < sa_{k+1} < s^2 a_k$, $a_{k+3} < sa_{k+2} < s^3 a_k$, and so on, so we have $a_n < b_n = s^{n-k} a_k$ for all $n \geq k$. Since $\sum b_n$ is geometric with ratio $s < 1$, it converges, and hence so does $\sum a_n$ by the Comparison Test.

Now suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ $\frac{n+1}{a_n} = r > 1$. Choose s with $1 < s < r$, then choose N so that when $n > N$ we have $\frac{a_{n+1}}{a_n} > s$ and hence $a_{n+1} > sa_n$. Fix $k > N$. Then as above $a_n > b_n = s^{n-k} a_k$ for all $n \ge k$, and $\lim_{n \to \infty} b_n = \infty$, so $\lim_{n \to \infty} a_n = \infty$ too.

7.36 Example: Determine whether $\sum_{n=1}^{\infty}$ $\frac{5^n}{n!}$ converges.

Solution: Let $a_n = \frac{5^n}{n!}$ $\frac{5^n}{n!}$. Then $\frac{a_{n+1}}{a_n} = \frac{5^{n+1}}{(n+1)!} \cdot \frac{n!}{5^n}$ $\frac{n!}{5^n} = \frac{5}{n+1} \to 0$ as $n \to \infty$, and so $\sum a_n$ converges by the Ratio Test.

7.37 Note: If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ $\frac{n+1}{a_n} = 1$, then $\sum a_n$ could converge or diverge. For example, if $a_n = \frac{1}{n}$ n then $\frac{a_{n+1}}{a_n} = \frac{n}{n+1} \to 1$ as $n \to \infty$ and $\sum a_n$ diverges, but if $b_n = \frac{1}{n^2}$ then $\frac{b_{n+1}}{b_n} = \frac{n^2}{(n+1)^2} \to 1$ as $n \to \infty$ and $\sum b_n$ converges.

7.38 Theorem: (Root Test) Let $a_n \geq 0$ for all $n \geq k$. Suppose that $\lim_{n \to \infty} \sqrt[n]{a_n} = r$. Then (1) if $r < 1$ then $\sum a_n$ converges, and (2) if $r > 1$ then $\lim_{n \to \infty} a_n = \infty$ so $\sum a_n = \infty$.

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.

7.39 Example: Determine whether $\sum \left(\frac{n}{n+1}\right)^{n^2}$ converges. Solution: Let $a_n = \left(\frac{n}{n+1}\right)^{n^2}$. Then $\sqrt[n]{a_n} = \left(\frac{n}{n+1}\right)^n = e^{n \ln\left(\frac{n}{n+1}\right)}$, and by l'Hôpital's Rule we have $\lim_{n\to\infty} n \ln\left(\frac{n}{n+1}\right) = \lim_{x\to\infty}$ $\ln\left(\frac{x}{x+1}\right)$ 1 $\frac{1}{\frac{1}{x}} = \lim_{x \to \infty}$ 1 $\frac{(x+1)^2}{x-1}$ $-\frac{1}{r^2}$ $\frac{1}{\frac{1}{x^2}} = \lim_{x \to \infty}$ $-x^2$ $\frac{x}{(x+1)^2} = -1$, and so $\lim_{n\to\infty} \sqrt[n]{a_n} = e^{-1} < 1.$ Thus $\sum a_n$ converges by the Root Test.

7.40 Definition: A sequence $\{a_n\}_{n\geq k}$ is said to be **alternating** when either we have $a_n = (-1)^n |a_n|$ for all $n \geq k$ or we have $a_n = (-1)^{n+1} |a_n|$ for all $n \geq k$.

7.41 Theorem: (Aternating Series Test) Let $\{a_n\}_{n\geq k}$ be an alternating series. If $\{|a_n|\}$ is decreasing with $\lim_{n\to\infty} |a_n| = 0$ then $\sum_{n\geq 1}$ $n \geq k$ a_n converges, and in this case

$$
\left|\sum_{n=k}^{\infty} a_n\right| \leq |a_k|.
$$

Proof: To simplify notation, we give the proof in the case that $k = 0$ and $a_n = (-1)^n |a_n|$. Suppose that $\{|a_n|\}$ is decreasing with $|a_n| \to 0$. Let $S_l = \sum_{n=1}^{\infty}$ l $n=0$ a_n . We consider the sequences $\{S_{2l}\}\$ and $\{S_{2l-1}\}\$ of even and odd partial sums. Note that since $\{|a_n|\}\$ is decreasing, we have

$$
S_{2l} - S_{2l-1} = |a_{2l}| - |a_{2l-1}| \le 0
$$

so $\{S_{2l}\}\$ is decreasing, and we have

$$
S_{2l} = |a_0| - |a_1| + |a_2| - |a_3| + \cdots + |a_{2l-2}| - |a_{2l-1}| + |a_{2l}|
$$

= (|a_0| - |a_1|) + (|a_2| - |a_3|) + \cdots + (|a_{2l-2}| - |a_{2l-1}|) + |a_{2l}|
\ge |a_0| - |a_1|

and so $\{S_{2l}\}\$ is bounded below by $|a_0| - |a_1|$. Thus $\{S_{2l}\}\$ converges by the Monotone Convergence Theorem. Similarly, $\{S_{2l-1}\}\$ is increasing and bounded above by $|a_0|$, so it also converges, and we have $\lim_{l \to \infty} S_{2l-1} \leq |a_0|$.

Finally we note that since $|a_n| \to 0$, taking the limit on both sides of the equality $|a_{2l}| = S_{2l} - S_{2l-1}$ gives $0 = \lim_{l \to \infty} S_{2l} - \lim_{l \to \infty} S_{2l-1}$ and so we have $\lim_{l \to \infty} S_{2l} = \lim_{l \to \infty} S_{2l-1}$. It follows that $\{S_l\}$ converges, and we have $\lim_{l\to\infty} S_l = \lim_{l\to\infty} S_{2l} = \lim_{l\to\infty} S_{2l-1} \leq |a_0|$.

7.42 Example: Determine whether \sum $n\geq 2$ $\frac{(-1)^n \ln n}{\sqrt{n}}$ \overline{n} converges.

Solution: Let $a_n =$ $\frac{(-1)^n \ln n}{\sqrt{n}}$ \overline{n} . Let $f(x) = \frac{\ln x}{\sqrt{2}}$ $\frac{d}{dx}$ so that $|a_n| = f(n)$. Note that $f'(x) =$ 1 $\frac{1}{x}$. √ $\overline{x} - \ln x \cdot \frac{1}{2}$ $\frac{1}{2\sqrt{x}}$ \overline{x} = $2 - \ln x$ $\frac{m w}{2x^{3/2}}$,

so we have $f'(x) < 0$ for $x > e^2$. Thus $f(x)$ is decreasing for $x > e^2$, and so $\{|a_n|\}$ is decreasing for $n \geq 8$. Also, by l'Hôpital's Rule, we have

$$
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0
$$

and so $|a_n| \to 0$ as $n \to \infty$. Thus $\sum a_n$ converges by the Alternating Series Test.

7.43 Example: Approximate the sum $S = \sum_{n=1}^{\infty}$ $n=0$ $\frac{(-2)^n}{(2n)!}$ so that the error is at most $\frac{1}{2000}$.

Solution: Let $a_n =$ $(-2)^n$ $\frac{(2n)!}{(2n)!}$. Note that

$$
\frac{|a_{n+1}|}{|a_n|} = \frac{2^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{2^n} = \frac{2}{(2n+2)(2n+1)} = \frac{1}{(n+1)(2n+1)}.
$$

Since $\frac{|a_{n+1}|}{|a_n|} \le 1$ for all $n \ge 0$, we know that $\{|a_n|\}$ is decreasing. Since $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$ $\frac{a_{n+1}}{|a_n|} = 0$, we know that $\sum |a_n|$ converges by the Ratio Test, and so $|a_n| \to 0$ by the Divergence Test. This shows that we can apply the Alternating Series Test.

If we approximate S by the lth partial sum $S_l = \sum$ l $n=0$ a_n , then by the Alternating Series Test, the error is

$$
E = |S - S_l| = \left| \sum_{n=l+1}^{\infty} a_n \right| \leq |a_{l+1}| = \frac{2^{l+1}}{(2l+2)!}.
$$

To get $E \le \frac{1}{2000}$ we can choose l so that $\frac{2^{l+1}}{(l+1)!} \le \frac{1}{2000}$. By trial and error we find that we can take $l = 3$. Thus we make the approximation

$$
S \cong S_3 = 1 - \frac{2}{2!} + \frac{2^2}{4!} - \frac{2^3}{6!} = 1 - 1 + \frac{1}{6} + \frac{1}{90} = \frac{7}{45}.
$$

(We shall see later that the exact value of this sum is $\cos \sqrt{2}$).

7.44 Definition: A series Σ $n \geq k$ a_n is said to **converge absolutely** when \sum $n \geq k$ $|a_n|$ converges. The series is said to **converge conditionally** if Σ $n \geq k$ a_n converges but Σ $n \geq k$ $|a_n|$ diverges.

7.45 Example: For $0 < p \le 1$, the *p*-series $\sum \frac{1}{n^p}$ diverges, but since $\{\frac{1}{n^p}\}\$ is decreasing towards 0, $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^p}$ converges by the Alternating Series Test. Thus for $0 < p \le 1$, the alternating *p*-series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ $\frac{1}{n^p}$ converges conditionally.

7.46 Theorem: (Absolute Convergence Implies Convergence) If $\sum |a_n|$ converges then so does $\sum a_n$.

Proof: Suppose that $\sum |a_n|$ converges. Note that $-|a_n| \le a_n \le |a_n|$ so that

$$
0 \le a_n + |a_n| \le 2|a_n|
$$
 for all n .

Since $\sum |a_n|$ converges, $\sum 2|a_n|$ converges by linearity, and so $\sum (a_n + |a_n|)$ converges by the Comparison Test. Since $\sum |a_n|$ and $\sum (a_n + |a_n|)$ both converge, $\sum a_n$ converges by linearity.

7.47 Example: Determine whether $\sum_{n=2}^{\infty} \frac{\sin n}{n}$ $\frac{n}{n^2}$ converges.

Solution: Let $a_n =$ $\sin n$ $\frac{\ln n}{n^2}$. Then $|a_n| = \frac{|\sin n|}{n^2} \le \frac{1}{n^2}$. Since $\sum \frac{1}{n^2}$ converges (its a *p*-series with $p = 2$, $\sum |a_n|$ converges by the Comparison Test, and hence $\sum a_n$ converges too, since absolute convergence implies convergence.

7.48 Theorem: (Multiplication of Series) Suppose that \sum $n\geq 0$ $|a_n|$ converges and Σ $n\geq 0$ b_n converges and define $c_n = \sum_{n=1}^n$ $k=0$ $a_k b_{n-k}$. Then \sum $n\geq 0$ c_n converges and $\sum_{i=1}^{\infty}$ $n=0$ $c_n =$ $\left(\begin{array}{c}\infty\\ \sum\end{array}\right)$ $n=0$ a_n) $\left(\sum_{n=1}^{\infty} \right)$ $n=0$ b_n \setminus . Proof: Let $A_l = \sum$ l $a_n, B_l = \sum$ l $b_n,\,C_l = \ \sum$ l $c_n, A = \sum_{n=1}^{\infty}$ $a_n, B = \sum_{n=1}^{\infty}$ $b_n, K = \sum_{n=1}^{\infty}$

 $n=0$ $n=0$ $n=0$ $n=0$ $n=0$ $n=0$ $|a_n|$ and $E_l = B - B_l$. Then we have

$$
C_l = a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \dots + (a_0b_l + \dots + a_lb_0)
$$

= $a_0B_l + a_1B_{l-1} + a_2B_{l-2} + \dots + a_lB_0$
= $a_0(B - E_l) + a_1(B - E_{l-1}) + \dots + a_l(B - E_0)$
= $A_lB - (a_0E_l + a_1E_{l-1} + \dots + a_lE_0)$

and so

$$
|AB - C_l| \le |(A - A_l)B| + |a_0E_l + a_1E_{l-1} + \cdots + a_lE_0|.
$$

Let $\epsilon > 0$. Choose m so that $j > m \Longrightarrow E_j < \frac{\epsilon}{3l}$ $\frac{\epsilon}{3K}$. Let $E = \max\{|E_0|, \cdots, |E_m|\}$. Choose $L > m$ so that when $l > L$ we have \sum l $n=l-m$ $|a_n| < \frac{\epsilon}{3l}$ $\frac{\epsilon}{3E}$ and we have $|A_l - A||B| < \frac{\epsilon}{3}$ $\frac{\epsilon}{3}$. Then for $l > L$,

$$
\left|C_{l} - AB\right| < \left|(A_{l} - A)B\right| + \left|a_{0}E_{l} + \dots + a_{l-m-1}E_{m+1}\right| + \left|a_{l-m}E_{m} + \dots + a_{l}E_{0}\right|
$$
\n
$$
\leq \frac{\epsilon}{3} + \left(\sum_{n=0}^{l-m-1} |a_{n}|\right) \frac{\epsilon}{3K} + \left(\sum_{n=l-m+1}^{l} |a_{n}|\right)E
$$
\n
$$
\leq \frac{\epsilon}{3} + K \frac{\epsilon}{3K} + \frac{\epsilon}{3E}E = \epsilon.
$$

7.49 Example: Find an example of sequences $\{a_n\}_{n\geq 0}$ and $\{b_n\}_{n\geq 0}$ such that \sum $n\geq 0$ a_n and

 \sum $n\geq 0$ b_n both converge, but \sum $n\geq 0$ c_n diverges where $c_n = \sum_{n=1}^n$ $_{k=0}$ a_kb_{n-k} .

Solution: Let $a_n = b_n =$ $\frac{(-1)^n}{\sqrt{2n}}$ $n+1$ for $n \geq 0$, and let

$$
c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.
$$

Recall that for $p, q \geq 0$ we have $\sqrt{pq} \leq \frac{1}{2}$ $\frac{1}{2}(p+q)$ (indeed $(p+q)^2 - 4pq = p^2 - 2pq + q^2 =$ $(p - q)^2 \ge 0$, so $(p + q)^2 \ge 4pq$. In particular $\sqrt{(k+1)(n-k+1)} \le \frac{1}{2}$ $\frac{1}{2}(n+2)$ and so $|c_n| \geq \sum_{n=1}^n$ $k=0$ $\frac{2}{n+2} = \frac{2(n+1)}{n+2}$. Thus $\lim_{n \to \infty} |c_n| \neq 0$ so $\sum c_n$ diverges by the Divergence Test.