Chapter 8. Power Series

Power Series

8.1 Definition: A power series centred at a is a series of the form

ch(:z:—a)” =co+ci(z—a)+clr—a)® +es(x—a)® +---
n>0

for some real numbers c,,, where we use the convention that (z — a)? = 1.

8.2 Example: The geometric series Z ™ is a power series centred at 0. It converges
n>0
when |z| < 1 and for all such x the sum of the series is

s 1
T;)xnzl—:c'

8.3 Theorem: (The Interval and Radius of Convergence) Let Z cn(z —a)"™ be a power
n>0

series. Then the set of x € R for which the power series converges is an interval I centred

at a. Indeed there exists a (possibly infinite) number R € [0, co] such that

(1) if |[x — a| < R then Z cn(z —a)™ converges absolutely, and
n>0
(2) if |[x — a| > R then Z cn(x —a)™ diverges.

n>0

Proof: We prove parts (1) and (2) together by showing that for all » > 0, if > ¢,r"
converges then > ¢, (z — a)™ converges absolutely for all z € R with |z — a| < r (we can
then take R to be the least upper bound of the set of all such 7). Let r > 0. Suppose
that > c,r™ converges. Let x € R with |z —a| < r. Choose s with |z —a| < s < 7.
Since Y ¢, 7™ converges, we have ¢, 7™ — 0 by the Divergence Test. Choose N > 0 so that
lenr™| <1 for all n > N. Then for n > N we have
lx—a|™  |x—al* "

<

Z-@n

Tn

‘C"(x B a)n| = lear™| rn rn
and the series ) (f)n converges (its geometric with positive ratio 2 < 1), and so the series

> |en(z — a)™| converges too, by the Comparison Test.

8.4 Definition: The number R in the above theorem is called the radius of convergence
of the power series, and the interval [ is called the interval of convergence of the power
series.



-2
8.5 Example: Find the interval of convergence of the power series Z \/_ac)
n>1
(B—2x)" (g 3\
—9 o
and so Z: )" ch(x—a)”, where ¢y = 0, ¢, = (% forn > 1 and a =
n>1 n>0

%. Then

Solution: First note that this is in fact a power series, since

N

Now, let a, =

n 3-9 n—+1
Intl] _ ( ?) vn = /75 13 =2z — |3 - 22| as n — oo.
an Vn+1 (3—2x)" n+

By the Ratio Test, Y a, converges when |3 — 2z| < 1 and diverges when [3 — 2z| > 1.
Equivalently, it converges when z € (1,2) and diverges when x ¢ [1,2]. When z = 1 so
(3 —2z) =1, we have > a, = > \/Lﬁ, which diverges (its a p-series), and when z = 2 so

(3 —2z) = —1, we have > a, =), (_\/15)” which converges by the Alternating Series Test.

Thus the interval of convergence is I = (1,2].

8.6 Note: An argument similar to the one used in the above example, using the Ratio

Test, can be used to show that if lim

c
1 ‘ exists (finite or infinite) then the radius of

n—oo | Cp
convergence of the power series Y ¢, (z — a)™ is equal to
1 Cn
R=———=lim
. Cn+1 n—=00 | Cpt1
llm + n—+
n—oo | Cp

Indeed if we let R = lim and write a,, = ¢,(x — a)™ then we have

n—oo Cn+1
va] _ Jenno Zo ] ey, gy Ly,
|an| }Cn(x - a)n‘ Cn R

and so by the Ratio Test, if |z — a| < R then ) |a,| converges while if |z — a|] > R then
lan| — 00 so Y a, diverges. Thus R must be equal to the radius of convergence.



Operations on Power Series

8.7 Theorem: (Continuity of Power Series) Suppose that the power series Y . c,(z —a)"
o0

converges in an interval I. Then the sum f(z) = Z cn(z —a)™ is continuous in I.
n=0

Proof: We omit the proof

8.8 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series
> an(x—a)™ and > b, (x —a)™ both converge in the interval I. Then > (a, + b,)(z —a)"
and > (an — by )(x — a)™ both converge in I, and for all x € I we have

(Zanx—a ) (Zb T —a) ):i(anibn)(x—a)”

n=0

Proof: This follows from Linearity.

8.9 Theorem: (Multiplication of Power Series) Suppose the power series Y a,(x — a)"

and > b,(x — a)™ both converge in an open interval I with a € I. Let ¢, = > axbn_k.
k=0
Then ) ¢, (z — a)™ converges in I and for all x € I we have

5wt (o) (Ste-or).

Proof: This follows from the Multiplication of Series Theorem, since the power series
converge absolutely in 1.

8.10 Theorem: (Division of Power Series) Suppose that Y a,(z —a)™ and > b,(x —a)"
both converge in an open interval I with a € I, and that by # 0. Define c¢,, by

_ b _
co:a‘_o ndforn>00 _aTL_M_n—lcl ..... M
bo ’ m 0

Then there is an open interval J with a € J such that ) ¢, (z — a)™ converges in J and
for all x € J,

Proof: We omit the proof.



8.11 Theorem: (Composition of Power Series) Let f(x Z an(z — a)" in an open
n=0

interval I with a € I, and let g(y) = Z bm(y — b)™ in an open interval J with b € J

m=0
and with ag € J. Let K be an open interval with a € K such that f(K) C J. For
each m > 0, let ¢, ,, be the coefficients, found by multiplying power series, such that

Z cnm(z—a)" = by ( Z an(x—a)” — b) . Then Y ¢y m converges for all m > 0, and
n=0 n=0 m=>0

for all x € K, Z < > cn,m) (x — a)™ converges and
n>0 =0

oo

S (55, cum)e = = 0(s).

Proof: We omit the proof.

8.12 Theorem: (Integration of Power Series) Supoose that »_ ¢, (x — a)™ converges in
oo

the interval I. Then for all x € I, the sum f(x) = Z cn(x —a)" is integrable on |a, x| (or

[x,a]) and "

/cht—a dt = Z/ en(t—a)"dt = Z +1(x—a)”+1.

Proof: We omit the proof

8.13 Theorem: (Differentiation of Power Series) Suppose that Y c,(z — a)™ converges

in the open interval I. Then the sum f(x Z cn(x — a)" is differentiable in I and
n=0

oo
= chn(:p —a)" !,
n=1

Proof: We omit the proof



1

8.14 E le: Find i tred at 0 wh i = ————, and
xample: Find a power series centred at 0 whose sum is f(x) P 3012 an

find its interval of convergence.

Solution: We have

fa) 1 1 1 1 :
x) = —
(:c—l—l)(:c—l—?) z+1 z+2 1+ 1+§
— 1 :c (="
-SSR = e - 3 e
n=0 n=0 n=0
=S (1 )
Since Z(— converges if and only if |z| < 1 and Z (-2) " converges when |z| < 2,
n= n=0
it follows from Linearity the the sum of these two series converges if and only if |z| < 1.
1
8.15 Example: Find a power series centred at —4 whose sum is f(x) = " and

find its interval of convergence.

Solution: We have

(@) 1 1 1 1 1
x pr— = _ = —_—
(z+1)(x4+2) z4+1 z+4+2 (r+4)-3 (z+4) -2
1 1 o'} [ee)
3 2 z+4\" 1 (z+4
3 2 n=0 n=0

Z 2n+1 - 3n+1) (x+4)"

Since —l “"— " converges when |z + 4| < 3 and x+4 " converges if and only if
3

|z + 4\ < 2, it follows that their sum converges if and only if | +4| < 2.

o
(1—=)*

Solution: We provide three solutions. For the first solution, we multiply two power series.
For |z| < 1 we have
1 1
flw) = l-2 1—x
=(l+z+2*+2°+ ) (14+az+2>+2°+ )
=1+(1+Dz+1+1+D)2* +(1+1+14+ 12+
=142z +32%+423 +---

= Z(n + 1)z"
n=0

8.16 Example: Find a power series centred at 0 whose sum is f(z) =




For the second solution, we note that f(z) = and we use long division.

1—2x + 22

1422+ 322 + 423 4 50t + - -
1 — 2z + 22 )1+Ox+0x2+0x3+0x4—

1 —2x + 2
2x — 22
2z — 4z° + 223
3z — 223
3z% — 623 + 324
43 — 8zt + - -
43 — 8zt + - -
5zt + ...
. . 1 1 . e
For the third solution, we note that / e =12 and we use differentiation.

=1+2>+2°+2* +2°+ -

1—=2

4 ! d(1+x+x + 2?2’ 4+ )
de \1—-2) dx

1
=142z +32 + 42 + 52t .
(1—=)

8.17 Example: Find a power series centred at 0 whose sum is In(1 + ).

Solution: For |z| < 1 we have

1
1+=x

ln(1+m):/1—x+x2—x3+—|—~-- dx

=l-ao+a®> -2+ -

— 1,2, 1.3 1,4, ..
=c+zx 5T —|—3ac 4x+

Putting in z = 0 gives 0 = ¢, and so

n(l+ x) Z (=" pn x— sz + gad — g2t 4

8.18 Example: Find a power series centred at 0 whose sum is f(x) = tan™! x.

Solution: For |z| < 1 we have

1
1+ 22

tan_lx:/l—x2+x4—x6—l—--- dx

=1—a? ot —af+ ...

— 1,3, 1.5 _ 1,74 ..
=c+zx 37T —|—5£L‘ 7£C+

Putting in x = 0 gives 0 = ¢, and so

— ( 1)n 2 1
t 1 —E N 7 p2n4l . 1.3, 1.5 1 T
an X n0(2 1):13 X 3$ +5.CC 733'



Taylor Series
oo
8.19 Theorem: Suppose that f(z) = Z cn(z — a)" in an open interval I centred at a.

n=0
Then f is infinitely differentiable at a and for all n > 0 we have

AR

Tl

9

where f(™)(a) denotes the n'" derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all

x € I, we have
oo
= Z nep(z—a) !
n=1

oo
nin —1)c,(z —a)" 2
n=2

@) =S nln = 1)(n - 2) ealw —a)" >,
n=3
and in general
£ ( Znn—l (n—k+1ecy(x—a)" "
n=~k

and so f(a) = co, f'(a) =c1, f"(a) =2-1co and f"(a) =3-2-1c¢3, and in general
f(")(a) =nlec,

8.20 Definition: Given a function f(x) whose derivatives of all order exist at z = a, we
define the Taylor series of f(z) centred at a to be the power series

[ (a)

= Z cn(x—a)®  where ¢, =
n!

n>0
and we define the ['" Taylor Polynomial of f(z) centred at a to be the I'" partial sum

f(a)

n!

= Z cn(x—a)®  where ¢, =

8.21 Example: Find the Taylor series centred at 0 for f(z) =

Solution: We have f(")(z) = e® for all n, so f((0) =1 and ¢, = & for all n > 0. Thus
the Taylor series is

o0
E 1 " = 1,2 _ 1.3 1.,.4



8.22 Example: Find the Taylor series centred at 0 for f(x) = sinzx.

Solution: We have f’(z) = cosz, f"(z) = —sinz, f"(x) = —cosz, f""(z) = sinx and so

on, so that in general f®™(z) = (=1)"sinz and f***+1(z) = (—1)" cos z. It follows that

£ (0) = 0 and f(Q”“)(O) = (—1)", so we have cg, =0 and cgp, 41 = (gm—)l)' Thus
(2n-1|—)1)'x2n+1 = — g2’ g2’ — gl 4

8.23 Example: Find the Taylor series centred at 0 for f(x) = cosz.

Solution: We have f'(x) = —sinz, f”(x) = —cosz, f"(x) = sinz, f"’(x) = cosz and so

on, so that in general f*™(z) = (—=1)"cosz and "tV (z) = (=1)"*'sinz. It follows

that ™ (0) = (—=1)" and f?**1(0) = 0, so we have ¢, = ((;711)), and co,4+1 = 0. Thus
)= 3% e =1 et gt

8.24 Example: Find the Taylor series centred at 0 for f(z) = (1 4 z)? where p € R.
Solution: f/(x) = p(1+2)P~", £(z) = plp—1)(1+2)7~2, () = p(p—1)(p—2)(1+2)7,
and in general

f) =plp-D(p=2) (p—n+ 11 +a2)"",

so f(0) =1, f/(0) = p, f(0) = p(p—1), and in general £ (0) = p(p—1)(p—2) - - - (p—n—+1),

and so we have ¢, = 2e=D@= 721), (p=n+1) Thys the Taylor series is

T(z) = Z (Z) o =14 px + p(pjl)la + p(p—lgl(p—Q)x3 + p(p—l)(zz2)(p—3) T
n=0

where we use the notation

(5)=1,andforn>1, (7)==t 0ontl

n!




8.25 Theorem: (Taylor) Let f(z) be infinitely differentiable in an open interval I with
a € I. Let Tj(z) be the I** Taylor polynomial for f(z) centred at a. Then for all x € T
there exists a number ¢ between a and x such that

(1) (¢
F() = Tix) = f(H—f)!)(x )

Proof: When x = a both sides of the above equation are 0. Suppose that x > a (the
case that x < a is similar). Since fU*1) is differentiable and hence continuous, by the
Extreme Value Theorem it attains its maximum and minimum values, say M and m.
Since m < fU+1(¢) < M for all t € I, we have

t1 t1 t1
/ mdtg/ f(l“)(t)dtg/ M dt

m(ty —a) < fO(t1) = fP(a) < M(t —a)

that is

for all t; > a in I. Integrating each term with respect to t; from a to to, we get
smlta —a)® < fEV(ts) — fO(a)(tz —a) < 5M(t — a)®
for all to > a in I. Integrating with respect to t5 from a to t3 gives
gm(ts —a)* < fU2(t3) — FU72)(a) — 5P (a)(ts — a)® < 5 M (t; — a)®
for all t3 > a in I. Repeating this procedure eventually gives
i — @)™ < ft) = Ti(te) < M (e — a)' !

for all t;41 > a in I. In particular —m(z — )™ < f(2) — Ti(z) <

1 I+1
(I+1) = (l+1)!M($ —a) ",
SO

m < (f(2) = T(z)) s < M.

(x—a)t+1
By the Intermediate Value Theorem, there is a number ¢ € [a, 2| such that

fAHY(e) = (f(z) - Tl(x))%



8.26 Theorem: The functions e*, sinz, cosx and (1 4+ x)P are all exactly equal to the
sum of their Taylor series centred at 0 in the interval of convergence.

c.l+1
Proof: First let f(z) = €® and let € R. By Taylor’s Theorem, f(z) — T;(x) = (el—:il)'
for some ¢ between 0 and x, and so
|m|‘ |l+1
ez

e|:z:||x|l-i-1 e|ac||x|l—|—1

W converges by the Ratio Test, we have llgrolo W = 0 by the Diver-

gence Test, so ll_i)m (f(z) = Ti(z)) =0, and so f(z) = lli}m Ti(z) =T(x).

Since

f(l+1)<c) o

(4 1)!
for some ¢ between 0 and x. Since f(!*Y(z) is one of the functions +sinx or + cosz, we
have |f("*D(c)| <1 for all ¢ and so

Now let f(z)=sinz and let z € R. By Taylor’s Theorem, f(z)—T(x) =

‘x’l+1
-T < .
‘f(a;) (:z:)| —(+ 1)
, e . .|zt .
Ll B —_— = he D T
Since (41 converges by the Ratio Test, lliglo (=1 0 by the Divergence Test,

and so we have and f(z) = T'(z) as above.
Let f(z) = cosz. For all z € R we have

x)=cosz = L sinx
f(z) s

i G- K +5vl‘5—7v$ +-)
=1—ga?+ a2t — a5+

which is the sum of its Taylor series, centred at 0.
Finally, let f(x) = (1 + z)P. The Taylor series centred at 0 is

T(z) =1+ px + p(p 1) 2 + p(pflg)!(p*Q)x:s + p(pfl)(pZJ?)(p*S) 2y

and it converges for |z| < 1. leferentiating the power series gives

T’( ) = +10(10 1) +p(p 1)(10 2) 2+p(p 1)(p 2)(p—3) 234

and so
(1+2)T"(z) =

<p+ p(p— 1)>w+ (p(p D 4 pl- 12)'(p—2))x2

( p(p— 12)!(17 2) P(p—l)(p—Q)(p—3)) e ST

3!

%m + p-p(;—l)wQ + p-p(p—31!)(p—2)x3 4o

Thus we have (1+x)T"(x) = pT'(z) with T'(0) = 1. This DE is linear since we can write it
as T'(z) — % T'(x) = 0. An integrating factor is A = ef Tl _ () =(1+az)?

and the solution is T'(z) = (14x)~P / 0dx = b(1+4x)? for some constant b. Since T'(0) = 1
we have b =1 and so T'(z) = (1 + )P = f(x).

10



Applications

8.27 Example: Let f(z) = sin (322). Find the 10*" derivative f19)(0).

Solution: We have

f(z) = sin (3 2?)

= - r° —

We have cjg = 2%5 and so f(lo)(O) =10'cyp = 21505!! = 10 92§ 76 _5.9.7.3=0945.

2
e 2% _ cos2x

8.28 Example: Find lim

220 (tan~tz — In(1 + x))2

Solution: We have

e=27" _ cos 2 _ (1—(22%) + 5 (222)% — -+ ) — (1 — 5 (22)* + L (22)* — - -~
(tan—lx-—hml4—x»2 ((x__lm3+_lx5__”.)__(x__lm3%_lx3__”.)>2
3 5 2 3
(1—2:(;2—1—2x4—---)—(1—2x2+§x4—--~)
(b2 = Jat o)’
4.
:%—%+clx+---—>%asx—>0.

8.29 Example: Approximate the value of \}g so the error is at most 100
Solution: We have
1 —1/2 _ 1 1 (1\2 1 (1\3 | 1 (1\4
o= P=1-(3)+5 ) —5G) taz) -
=1- % + 2212! - 2313' + 2414' -

~1-1, 1 =1- 1_L_@
=l—5+ 2y 233v 1 + 48 — 48

with absolute error £ < 24 o= 38 1> by the Alternating Series Test.

8.30 Example: Approximate the value of y/e so the error is at most 100
Solution: We have
Vem e o1k ()4 E (1) () B AR
=1+ % + 2212! + 2313! + 2414! + 2515! +o
2l it gty =l it it a=2

with absolute error

_ 1 1 1 1 1
E= 5l T 2551 T 3661 T o7 toasgr T

— _1 (L 1 1 1

— 244] (2-5 t+ o265 T 765 T 25765 T )

< 7 (2_15 + 357 + e + g )

_ 1. _ 1 .10 _ < L
T 384 1 ~— 384 9 ~ 1728 100 ?

where we used the Comparison Test and the formula for the sum of a geometric series.

11



8.31 Example: Approximate the value of In2 so the error is at most %
Solution: We provide two solutions. For both solutions, we use the fundtion
f@)=In(l14+2z)=z—L1a*+ 23— 2% + -

For the first solution, we put in x = 1 to get

with absolute error £ < =5 by the Alternatmg Series Test. It would be cumbersome to add
up the 49 terms 1n the above alternating sum, so we provide a second solution in which
we put in x = —5. We have

2 3 4
1n2=—1n1=—f(—%):—(—%)+%(—%) SR D -
1l 1 1

2 22

~ 1

with absolute error

1 1 1 1
E_525+6-26+W+8.28+
1 1 1 1
§5.25+5.26+5.27+5.28+

1
_ 525 _ 2 1
T 1_ 17 5257 80
2

by the Comparison Test and the formula for the sum of a geometric series.
8.32 Example: Approximate the value of 10%/3 so the error is at most 106
Solution: We use the function

f) = (1 oy =1+ B0 2 WEDED o, DEDEDED oy

We have
1023 = (84223 =4(1+ 1)*° =47 (2)
=41+ OINOE INGE)]

_ 8 81 814 _ 8147 | |

=4+ 12-1! 122.2! + 123. 3' 124~4! +

N —_ R
4‘*’121'_1222l 4+ 6_36

with absolute error £ < 18231, ;‘)‘, = 32 1 by the Alternating Series Test.

12



8.33 Example: Approximate the value of 7 so the error is at most %
Solution: We provide two solutions. For both solutions we use the function
fl@)=tan e =z—Lta3+ 15— L1274+
For the first solution, we put in x = 1 to get
7T:4.1:4f(1):4(1_l+l_l+...) g4(1_l+l_l+...+ﬁ)

with absolute error £ < by the Alternating Series Test. It would be cumbersome to

201
add up the 100 terms in the alternating sum, so we provide a second solution in which we
put in x = \/Lg We have
—-6. T — Ay 6L _ 1 1 1 1 __ ...
T=06 6 _Gf(\/g)_ <\/§ 3.\/§3+5.\/§5 7.\/§7+9.\/§9 )
:2\/§<1_%+ 5-%52 _%'1' 9-134 _>
~2V/3 (1 L 5}32> = 823

with absolute error £ < %; = 21‘8/3 by the Alternating Series Test. We remark that in

order to make this approximation, we must first approximate /3.

8.34 Example: Approximate the value of sin (100) so the error is at most

1000
Solution: We use the function
fl@)=sinz=2— 25+ 25—
We put in z = 10° = {5 to get
in(109) = f () = %5 -5 (%) + 3 (&) - =5
with absolute error £ < 3}, (%)3 by the Alternating Series Test. We remark that in order

to make this approximation, we must first approximate 7.

1
8.35 Example: Approximate the value of / =2 4z so the error is at most 100
0

Solution: We have

with absolute error E <

13



sinx

V2
8.36 Example: Approximate the value of / dx so the error is at most 5—10.
0

T

(=2)"
(2n)! "

8.37 Example: Find the exact value of the sum Z
n=0

Solution: We have

oo _9)n 0 1 n\/i?ﬂ

n=0

n— 2
(=3)"

o.@]
8.38 Example: Find the exact value of the sum Z
n=1

Solution: Note first that

oo

n—2 n =2
N Dl T Tk

=1

The second sum on the right is geometric with first term —% and ratio —%, so we have

2 _ _ 1
n 1 2"
Z(—3) 141

n=1

[SSIN)

To find the first sum on the right, we begin with the fact that for |z| < 1 we have

=l+z+22+2°+2 4+

1—2z
Differentiate both sides to get

1

Multiply both sides by = to get

ﬁ=x+2x2+3x3+4m4+

Thus we obtain the formula

an” = T forall lz] < 1.
n=1 (1_

x)?

Put in x = —% to get
o

=3)" 1+

Wl

Sl

)2

Wl

n=1

Thus we have

e

_|_

N[+
_
Sl

o

n = 2
ETRPIIE i

n=1

Z (_3)n - Z



8.39 Example: Find the exact value of the sum Z 2:5-8 n "(3” +2)
"0 o n
Solution: We have
iQ 58 (3n+2):2§:(§)(§)(%—1)' - (B52) 8
n=0 5l — n! 5
o~ (03) (25 (£5) - (757)
=2y %3 . 5. (-

15



