Power Series

8.1 Definition: A power series centred at a is a series of the form

$$
\sum_{n\geq 0} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots
$$

for some real numbers c_n , where we use the convention that $(x - a)^0 = 1$.

8.2 Example: The geometric series \sum $n\geq 0$ x^n is a power series centred at 0. It converges when $|x|$ < 1 and for all such x the sum of the series is

$$
\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \, .
$$

8.3 Theorem: (The Interval and Radius of Convergence) Let \sum $n\geq 0$ $c_n(x-a)^n$ be a power

series. Then the set of $x \in \mathbb{R}$ for which the power series converges is an interval I centred at a. Indeed there exists a (possibly infinite) number $R \in [0,\infty]$ such that

(1) if
$$
|x - a| < R
$$
 then $\sum_{n\geq 0} c_n (x - a)^n$ converges absolutely, and
(2) if $|x - a| > R$ then $\sum_{n\geq 0} c_n (x - a)^n$ diverges.

Proof: We prove parts (1) and (2) together by showing that for all $r > 0$, if $\sum c_n r^n$ converges then $\sum c_n(x - a)^n$ converges absolutely for all $x \in R$ with $|x - a| < r$ (we can then take R to be the least upper bound of the set of all such r). Let $r > 0$. Suppose that $\sum c_n r^n$ converges. Let $x \in \mathbb{R}$ with $|x - a| < r$. Choose s with $|x - a| < s < r$. Since $\sum c_n r^n$ converges, we have $c_n r^n \to 0$ by the Divergence Test. Choose $N > 0$ so that $|c_n r^n| \leq 1$ for all $n \geq N$. Then for $n \geq N$ we have

$$
|c_n(x-a)^n| = |c_n r^n| \cdot \frac{|x-a|^n}{r^n} \le \frac{|x-a|^n}{r^n} \le \frac{s^n}{r^n} = \left(\frac{s}{r}\right)^n
$$

and the series $\sum_{n=1}^{\infty}$ $\frac{s}{r}$)ⁿ converges (its geometric with positive ratio $\frac{s}{r}$ < 1), and so the series $\sum |c_n(x-a)^n|$ converges too, by the Comparison Test.

8.4 Definition: The number R in the above theorem is called the **radius of convergence** of the power series, and the interval I is called the **interval of convergence** of the power series.

8.5 Example: Find the interval of convergence of the power series \sum $n\geq 1$ $(3-2x)^n$ √ \overline{n} .

Solution: First note that this is in fact a power series, since $\frac{(3-2x)^n}{\sqrt{n}}$ √ \overline{n} $=\frac{(-2)^n}{\sqrt{n}}(x-\frac{3}{2})$ $\frac{3}{2}$ $\Big)^n$, and so \sum $n\geq 1$ $(3-2x)^n$ √ \overline{n} $=$ \sum $n\geq 0$ $c_n(x-a)^n$, where $c_0 = 0$, $c_n = \frac{(-2)^n}{\sqrt{n}}$ for $n \ge 1$ and $a = \frac{3}{2}$ $\frac{3}{2}$. Now, let $a_n =$ $(3-2x)^n$ √ \overline{n} . Then a_{n+1} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ = $(3-2x)^{n+1}$ √ √ \overline{n} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $=\sqrt{\frac{n}{n+1}}$ $|3-2x| \longrightarrow |3-2x|$ as $n \to \infty$.

By the Ratio Test, $\sum a_n$ converges when $|3 - 2x| < 1$ and diverges when $|3 - 2x| > 1$. Equivalently, it converges when $x \in (1,2)$ and diverges when $x \notin [1,2]$. When $x = 1$ so $(3-2x) = 1$, we have $\sum a_n = \sum \frac{1}{\sqrt{n}}$ $\frac{1}{n}$, which diverges (its a *p*-series), and when $x = 2$ so $(3-2x) = -1$, we have $\sum a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ which converges by the Alternating Series Test. Thus the interval of convergence is $I = (1, 2)$.

8.6 Note: An argument similar to the one used in the above example, using the Ratio Test, can be used to show that if $\lim_{n\to\infty}$ $\begin{array}{c} \hline \end{array}$ c_{n+1} \overline{c}_n exists (finite or infinite) then the radius of convergence of the power series $\sum c_n(x-a)^n$ is equal to

$$
R = \frac{1}{\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|} = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|.
$$

Indeed if we let $R = \lim_{n \to \infty}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \overline{c}_n c_{n+1} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ and write $a_n = c_n(x - a)^n$ then we have

 a_n

 $n+1$

 $(3-2x)^n$

$$
\frac{|a_{n+1}|}{|a_n|} = \frac{|c_{n+1}(x-a)^{n+1}|}{|c_n(x-a)^n|} = \left|\frac{c_{n+1}}{c_n}\right| |x-a| \longrightarrow \frac{1}{R} |x-a|
$$

and so by the Ratio Test, if $|x - a| < R$ then $\sum |a_n|$ converges while if $|x - a| > R$ then $|a_n| \to \infty$ so $\sum a_n$ diverges. Thus R must be equal to the radius of convergence.

Operations on Power Series

8.7 Theorem: (Continuity of Power Series) Suppose that the power series $\sum c_n(x-a)^n$ converges in an interval I. Then the sum $f(x) = \sum_{n=0}^{\infty}$ $n=0$ $c_n(x-a)^n$ is continuous in I.

Proof: We omit the proof

8.8 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in the interval I. Then $\sum (a_n+b_n)(x-a)^n$ and $\sum (a_n - b_n)(x - a)^n$ both converge in *I*, and for all $x \in I$ we have

$$
\left(\sum_{n=0}^{\infty} a_n (x-a)^n\right) \pm \left(\sum_{n=0}^{\infty} b_n (x-a)^n\right) = \sum_{n=0}^{\infty} (a_n \pm b_n) (x-a)^n.
$$

Proof: This follows from Linearity.

8.9 Theorem: (Multiplication of Power Series) Suppose the power series $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in an open interval I with $a \in I$. Let $c_n = \sum_{n=1}^{\infty}$ $k=0$ $a_k b_{n-k}$. Then $\sum c_n(x-a)^n$ converges in I and for all $x \in I$ we have

$$
\sum_{n=0}^{\infty} c_n (x-a)^n = \left(\sum_{n=0}^{\infty} a_n (x-a)^n\right) \left(\sum_{n=0}^{\infty} b_n (x-a)^n\right).
$$

Proof: This follows from the Multiplication of Series Theorem, since the power series converge absolutely in I.

8.10 Theorem: (Division of Power Series) Suppose that $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in an open interval I with $a \in I$, and that $b_0 \neq 0$. Define c_n by

$$
c_0 = \frac{a_0}{b_0}
$$
, and for $n > 0$, $c_n = \frac{a_n}{b_0} - \frac{b_n c_0}{b_0} - \frac{b_{n-1} c_1}{b_0} - \cdots - \frac{b_1 c_{n-1}}{b_0}$.

Then there is an open interval J with $a \in J$ such that $\sum c_n(x-a)^n$ converges in J and for all $x \in J$,

$$
\sum_{n=0}^{\infty} c_n (x-a)^n = \frac{\sum_{n=0}^{\infty} a_n (x-a)^n}{\sum_{n=0}^{\infty} b_n (x-a)^n}.
$$

Proof: We omit the proof.

8.11 Theorem: (Composition of Power Series) Let $f(x) = \sum_{n=0}^{\infty}$ $n=0$ $a_n(x-a)^n$ in an open

interval I with $a \in I$, and let $g(y) = \sum_{n=1}^{\infty}$ $m=0$ $b_m(y-b)^m$ in an open interval J with $b \in J$ and with $a_0 \in J$. Let K be an open interval with $a \in K$ such that $f(K) \subset J$. For each $m \geq 0$, let $c_{n,m}$ be the coefficients, found by multiplying power series, such that \sum^{∞} $n=0$ $c_{n,m}(x-a)^n = b_n \left(\sum_{m=1}^{\infty} \right)$ $n=0$ $a_n(x-a)^n - b$ \setminus^m . Then Σ $m \geq 0$ $c_{n,m}$ converges for all $m \geq 0$, and for all $x \in K$, \sum $n\geq 0$ $\left(\begin{array}{c}\infty\\ \sum\end{array}\right)$ $m=0$ $(c_{n,m})(x-a)^n$ converges and \sum^{∞} $\left(\begin{array}{c}\infty\\ \sum\end{array}\right)$ $(c_{n,m})(x-a)^n = g(f(x)).$

Proof: We omit the proof.

 $n=0$

 $m=0$

8.12 Theorem: (Integration of Power Series) Supoose that $\sum c_n(x-a)^n$ converges in the interval I. Then for all $x \in I$, the sum $f(x) = \sum_{n=1}^{\infty}$ $n=0$ $c_n(x-a)^n$ is integrable on [a, x] (or $[x, a]$ and

$$
\int_{a}^{x} \sum_{n=0}^{\infty} c_n (t-a)^n dt = \sum_{n=0}^{\infty} \int_{a}^{x} c_n (t-a)^n dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1}.
$$

Proof: We omit the proof

8.13 Theorem: (Differentiation of Power Series) Suppose that $\sum c_n(x-a)^n$ converges in the open interval I. Then the sum $f(x) = \sum_{n=0}^{\infty}$ $n=0$ $c_n(x-a)^n$ is differentiable in I and

$$
f'(x) = \sum_{n=1}^{\infty} n c_n (x - a)^{n-1}.
$$

Proof: We omit the proof

8.14 Example: Find a power series centred at 0 whose sum is $f(x) = \frac{1}{x+2}$ $\frac{1}{x^2+3x+2}$, and find its interval of convergence.

Solution: We have

$$
f(x) = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{1+x} - \frac{\frac{1}{2}}{1+\frac{x}{2}}
$$

=
$$
\sum_{n=0}^{\infty} (-x)^n - \sum_{n=0}^{\infty} \frac{1}{2} \left(-\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} (-1)^n x^n - \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n
$$

=
$$
\sum_{n=0}^{\infty} (-1)^n \left(1 - \frac{1}{2^{n+1}}\right) x^n.
$$

Since $\sum_{n=1}^{\infty}$ $n=0$ $(-x)^n$ converges if and only if $|x| < 1$ and $\sum_{n=1}^{\infty}$ $n=0$ 1 $rac{1}{2}$ $\left(-\frac{x}{2}\right)$ $\left(\frac{x}{2}\right)^n$ converges when $|x| < 2$, it follows from Linearity the the sum of these two series converges if and only if $|x| < 1$.

8.15 Example: Find a power series centred at -4 whose sum is $f(x) = \frac{1}{x+2}$ $\frac{1}{x^2+3x+2}$, and find its interval of convergence.

Solution: We have

$$
f(x) = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{(x+4)-3} - \frac{1}{(x+4)-2}
$$

=
$$
\frac{-\frac{1}{3}}{1-\frac{x+4}{3}} + \frac{\frac{1}{2}}{1-\frac{x+4}{2}} = \sum_{n=0}^{\infty} -\frac{1}{3} \left(\frac{x+4}{3}\right)^n + \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{x+4}{2}\right)^n
$$

=
$$
\sum_{n=0}^{\infty} \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}}\right) (x+4)^n.
$$

Since $\sum_{n=1}^{\infty}$ $n=0$ $-\frac{1}{3}$ $rac{1}{3}(\frac{x+4}{3})$ $\left(\frac{+4}{3}\right)^n$ converges when $|x+4| < 3$ and \sum^{∞} $n=0$ 1 $rac{1}{2}(\frac{x+4}{2})$ $\frac{+4}{2}$ ⁿ converges if and only if $|x+4| < 2$, it follows that their sum converges if and only if $|x+4| < 2$.

8.16 Example: Find a power series centred at 0 whose sum is $f(x) = \frac{1}{x+1}$ $\frac{1}{(1-x)^2}$.

Solution: We provide three solutions. For the first solution, we multiply two power series. For $|x| < 1$ we have

$$
f(x) = \frac{1}{1-x} \cdot \frac{1}{1-x}
$$

= $(1+x+x^2+x^3+\cdots)(1+x+x^2+x^3+\cdots)$
= $1+(1+1)x+(1+1+1)x^2+(1+1+1+1)x^3+\cdots$
= $1+2x+3x^2+4x^3+\cdots$
= $\sum_{n=0}^{\infty} (n+1)x^n$.

For the second solution, we note that $f(x) = \frac{1}{1-x^2}$ $\frac{1}{1-2x+x^2}$ and we use long division.

$$
1 - 2x + x^{2} \quad \overline{\smash)1 + 2x + 3x^{2} + 4x^{3} + 5x^{4} + \cdots}
$$
\n
$$
\underline{1 - 2x + x^{2}} \quad \underline{2x - x^{2}}
$$
\n
$$
\underline{2x - 4x^{2} + 2x^{3}}
$$
\n
$$
\underline{3x^{2} - 2x^{3}}
$$
\n
$$
\underline{3x^{2} - 6x^{3} + 3x^{4}}
$$
\n
$$
\underline{4x^{3} - 8x^{4} + \cdots}
$$
\n
$$
\underline{4x^{3} - 8x^{4} + \cdots}
$$
\n
$$
\underline{5x^{4} + \cdots}
$$

For the third solution, we note that $\int \frac{1}{1 + x^2}$ $\frac{1}{(1-x)^2} =$ $1 - x$ and we use differentiation.

$$
\frac{1}{1-x} = 1 + x^2 + x^3 + x^4 + x^5 + \cdots
$$

$$
\frac{d}{dx} \left(\frac{1}{1-x}\right) = \frac{d}{dx} \left(1 + x + x^2 + x^3 + x^4 + x^5 + \cdots\right)
$$

$$
\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots
$$

8.17 Example: Find a power series centred at 0 whose sum is $\ln(1+x)$. Solution: For $|x| < 1$ we have

$$
\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots
$$

$$
\ln(1+x) = \int 1 - x + x^2 - x^3 + \cdots dx
$$

$$
= c + x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots
$$

Putting in $x = 0$ gives $0 = c$, and so

$$
\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots
$$

8.18 Example: Find a power series centred at 0 whose sum is $f(x) = \tan^{-1} x$. Solution: For $|x| < 1$ we have

$$
\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots
$$

$$
\tan^{-1} x = \int 1 - x^2 + x^4 - x^6 + \cdots dx
$$

$$
= c + x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots
$$

 \cdot \cdot

Putting in $x = 0$ gives $0 = c$, and so

$$
\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} x^{2n+1} = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots
$$

Taylor Series

8.19 Theorem: Suppose that $f(x) = \sum_{n=0}^{\infty}$ $n=0$ $c_n(x-a)^n$ in an open interval I centred at a. Then f is infinitely differentiable at a and for all $n \geq 0$ we have

$$
c_n = \frac{f^{(n)}(a)}{n!},
$$

where $f^{(n)}(a)$ denotes the nth derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all $x \in I$, we have

$$
f'(x) = \sum_{n=1}^{\infty} n c_n (x - a)^{n-1}
$$

\n
$$
f''(x) = \sum_{n=2}^{\infty} n(n-1) c_n (x - a)^{n-2}
$$

\n
$$
f'''(x) = \sum_{n=3}^{\infty} n(n-1)(n-2) c_n (x - a)^{n-3},
$$

and in general

$$
f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1) c_n (x-a)^{n-k}
$$

and so $f(a) = c_0$, $f'(a) = c_1$, $f''(a) = 2 \cdot 1 c_2$ and $f'''(a) = 3 \cdot 2 \cdot 1 c_3$, and in general $f^{(n)}(a) = n! c_n$

8.20 Definition: Given a function $f(x)$ whose derivatives of all order exist at $x = a$, we define the **Taylor series** of $f(x)$ centred at a to be the power series

$$
T(x) = \sum_{n \ge 0} c_n (x - a)^n \quad \text{where } c_n = \frac{f^{(n)}(a)}{n!}
$$

and we define the l^{th} Taylor Polynomial of $f(x)$ centred at a to be the l^{th} partial sum

$$
T_l(x) = \sum_{n=0}^{l} c_n (x - a)^n
$$
 where $c_n = \frac{f^{(n)}(a)}{n!}$

8.21 Example: Find the Taylor series centred at 0 for $f(x) = e^x$.

Solution: We have $f^{(n)}(x) = e^x$ for all n, so $f^{(n)}(0) = 1$ and $c_n = \frac{1}{n}$ $\frac{1}{n!}$ for all $n \geq 0$. Thus the Taylor series is

$$
T(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 = \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \cdots
$$

8.22 Example: Find the Taylor series centred at 0 for $f(x) = \sin x$.

Solution: We have $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, $f'''(x) = \sin x$ and so on, so that in general $f^{(2n)}(x) = (-1)^n \sin x$ and $f^{(2n+1)}(x) = (-1)^n \cos x$. It follows that $f^{(2n)}(0) = 0$ and $f^{(2n+1)}(0) = (-1)^n$, so we have $c_{2n} = 0$ and $c_{2n+1} = \frac{(-1)^n}{(2n+1)!}$. Thus

$$
T(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots
$$

8.23 Example: Find the Taylor series centred at 0 for $f(x) = \cos x$.

Solution: We have $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f'''(x) = \sin x$, $f'''(x) = \cos x$ and so on, so that in general $f^{(2n)}(x) = (-1)^n \cos x$ and $f^{(2n+1)}(x) = (-1)^{n+1} \sin x$. It follows that $f^{(2n)}(0) = (-1)^n$ and $f^{(2n+1)}(0) = 0$, so we have $c_{2n} = \frac{(-1)^n}{(2n)!}$ and $c_{2n+1} = 0$. Thus

$$
T(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{5!}x^6 + \cdots
$$

8.24 Example: Find the Taylor series centred at 0 for $f(x) = (1+x)^p$ where $p \in \mathbb{R}$. Solution: $f'(x) = p(1+x)^{p-1}$, $f''(x) = p(p-1)(1+x)^{p-2}$, $f'''(x) = p(p-1)(p-2)(1+x)^{p-3}$, and in general

$$
f^{(n)}(x) = p(p-1)(p-2)\cdots(p-n+1)(1+x)^{p-n},
$$

so $f(0) = 1, f'(0) = p, f''(0) = p(p-1)$, and in general $f^{(n)}(0) = p(p-1)(p-2) \cdots (p-n+1)$, and so we have $c_n = \frac{p(p-1)(p-2)\cdots(p-n+1)}{n!}$ $\frac{2\cdots(p-n+1)}{n!}$. Thus the Taylor series is

$$
T(x) = \sum_{n=0}^{\infty} {p \choose n} x^n = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \frac{p(p-1)(p-2)(p-3)}{4!}x^4 + \cdots
$$

where we use the notation

$$
\binom{p}{0}=1
$$
 , and for $n\geq 1$, $\binom{p}{n}=\frac{p(p-1)(p-2)\cdots(p-n+1)}{n!}$

8.25 Theorem: (Taylor) Let $f(x)$ be infinitely differentiable in an open interval I with $a \in I$. Let $T_l(x)$ be the lth Taylor polynomial for $f(x)$ centred at a. Then for all $x \in I$ there exists a number c between a and x such that

$$
f(x) - Tl(x) = \frac{f^{(l+1)}(c)}{(l+1)!}(x-a)^{l+1}.
$$

Proof: When $x = a$ both sides of the above equation are 0. Suppose that $x > a$ (the case that $x < a$ is similar). Since $f^{(l+1)}$ is differentiable and hence continuous, by the Extreme Value Theorem it attains its maximum and minimum values, say M and m . Since $m \le f^{(l+1)}(t) \le M$ for all $t \in I$, we have

$$
\int_{a}^{t_1} m dt \le \int_{a}^{t_1} f^{(l+1)}(t) dt \le \int_{a}^{t_1} M dt
$$

that is

.

$$
m(t_1 - a) \le f^{(l)}(t_1) - f^{(l)}(a) \le M(t_1 - a)
$$

for all $t_1 > a$ in I. Integrating each term with respect to t_1 from a to t_2 , we get

$$
\frac{1}{2}m(t_2 - a)^2 \le f^{(l-1)}(t_2) - f^{(l)}(a)(t_2 - a) \le \frac{1}{2}M(t_t - a)^2
$$

for all $t_2 > a$ in I. Integrating with respect to t_2 from a to t_3 gives

$$
\frac{1}{3!}m(t_3-a)^3 \le f^{(l-2)}(t_3) - f^{(l-2)}(a) - \frac{1}{2}f^{(l)}(a)(t_3-a)^3 \le \frac{1}{3!}M(t_3-a)^3
$$

for all $t_3 > a$ in *I*. Repeating this procedure eventually gives

$$
\frac{1}{(l+1)!}m(t_{l+1}-a)^{l+1} \le f(t_{l+1}) - T_l(t_{l+1}) \le \frac{1}{(l+1)!}M(t_{l+1}-a)^{l+1}
$$

for all $t_{l+1} > a$ in *I*. In particular $\frac{1}{(l+1)!}m(x-a)^{l+1} \le f(x) - T_l(x) \le \frac{1}{(l+1)!}M(x-a)^{l+1}$, so

$$
m \le (f(x) - T_l(x)) \frac{(l+1)!}{(x-a)^{l+1}} \le M.
$$

By the Intermediate Value Theorem, there is a number $c \in [a, x]$ such that

$$
f^{(l+1)}(c) = (f(x) - T_l(x)) \frac{(l+1)!}{(x-a)^{l+1}}
$$

8.26 Theorem: The functions e^x , $\sin x$, $\cos x$ and $(1 + x)^p$ are all exactly equal to the sum of their Taylor series centred at 0 in the interval of convergence.

Proof: First let $f(x) = e^x$ and let $x \in \mathbb{R}$. By Taylor's Theorem, $f(x) - T_l(x) = \frac{e^c x^{l+1}}{(l+1)!}$ $(l + 1)!$ for some c between 0 and x , and so

$$
|f(x) - T_l(x)| \leq \frac{e^{|x|} |x|^{l+1}}{(l+1)!}.
$$

Since $\sum \frac{e^{|x|} |x|^{l+1}}{(l+1)!}$ $\frac{|\omega|}{(l + 1)!}$ converges by the Ratio Test, we have $\lim_{l \to \infty}$ $e^{|x|} |x|^{l+1}$ $\frac{|w|}{(l + 1)!} = 0$ by the Divergence Test, so $\lim_{l \to \infty}$ $f(x) - T_l(x) = 0$, and so $f(x) = \lim_{l \to \infty} T_l(x) = T(x)$.

Now let $f(x) = \sin x$ and let $x \in \mathbb{R}$. By Taylor's Theorem, $f(x) - T(x) = \frac{f^{(l+1)}(c) x^{l+1}}{(l+1)!}$ $(l + 1)!$ for some c between 0 and x. Since $f^{(l+1)}(x)$ is one of the functions $\pm \sin x$ or $\pm \cos x$, we have $|f^{(l+1)}(c)| \leq 1$ for all c and so

$$
|f(x) - T(x)| \le \frac{|x|^{l+1}}{(l+1)!}
$$
.

Since $\sum \frac{|x|^{l+1}}{(l+1)}$ $\frac{|w|}{(l + 1)!}$ converges by the Ratio Test, $\lim_{l \to \infty}$ $|x|^{l+1}$ $\frac{|v|}{(l + 1)!} = 0$ by the Divergence Test, and so we have and $f(x) = T(x)$ as above.

Let $f(x) = \cos x$. For all $x \in \mathbb{R}$ we have

$$
f(x) = \cos x = \frac{d}{dx} \sin x
$$

= $\frac{d}{dx} (x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots)$
= $1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \cdots$

which is the sum of its Taylor series, centred at 0.

Finally, let $f(x) = (1+x)^p$. The Taylor series centred at 0 is

$$
T(x) = 1 + px + \frac{p(p-1)}{2!}x^{2} + \frac{p(p-1)(p-2)}{3!}x^{3} + \frac{p(p-1)(p-2)(p-3)}{4!}x^{4} + \cdots
$$

and it converges for $|x| < 1$. Differentiating the power series gives

$$
T'(x) = p + \frac{p(p-1)}{1!}x + \frac{p(p-1)(p-2)}{2!}x^2 + \frac{p(p-1)(p-2)(p-3)}{3!}x^3 + \cdots
$$

and so

$$
(1+x)T'(x) = p + \left(p + \frac{p(p-1)}{1!}\right)x + \left(\frac{p(p-1)}{1!} + \frac{p(p-1)(p-2)}{2!}\right)x^2
$$

$$
+ \left(\frac{p(p-1)(p-2)}{2!} - \frac{p(p-1)(p-2)(p-3)}{3!}\right)x^3 + \cdots
$$

$$
= p + \frac{p\cdot p}{1!}x + \frac{p\cdot p(p-1)}{2!}x^2 + \frac{p\cdot p(p-1)(p-2)}{3!}x^3 + \cdots
$$

$$
= pT(x).
$$

Thus we have $(1+x)T'(x) = pT(x)$ with $T(0) = 1$. This DE is linear since we can write it as $T'(x) - \frac{p}{1+x}$ $\frac{p}{1+x}T(x) = 0$. An integrating factor is $\lambda = e^{\int -\frac{p}{1+x} dx} = e^{-p\ln(1+x)} = (1+x)^{-p}$ and the solution is $T(x) = (1+x)^{-p} \int_0^x 0 \, dx = b(1+x)^p$ for some constant b. Since $T(0) = 1$ we have $b = 1$ and so $T(x) = (1 + x)^p = f(x)$.

Applications

8.27 Example: Let $f(x) = \sin(\frac{1}{2})$ $\frac{1}{2}x^2$). Find the 10th derivative $f^{(10)}(0)$. Solution: We have

$$
f(x) = \sin\left(\frac{1}{2}x^2\right)
$$

= $\left(\frac{1}{2}x^2\right) - \frac{1}{3!}\left(\frac{1}{2}x^2\right)^3 + \frac{1}{5!}\left(\frac{1}{2}x^2\right)^5 - \cdots$
= $\frac{1}{2}x^2 - \frac{1}{2^3 3!}x^6 + \frac{1}{2^5 5!}x^{10} - \cdots$

We have $c_{10} = \frac{1}{2^5}$ $\frac{1}{2^5 5!}$ and so $f^{(10)}(0) = 10! c_{10} = \frac{10!}{2^5 5}$ $\frac{10!}{2^5 5!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{2^5}$ $\frac{3.8 \cdot 7 \cdot 6}{2^5} = 5 \cdot 9 \cdot 7 \cdot 3 = 945$.

8.28 Example: Find $\lim_{x\to 0}$ $e^{-2x^2} - \cos 2x$ $(\tan^{-1} x - \ln(1+x))^2$

Solution: We have

$$
\frac{e^{-2x^2} - \cos 2x}{\left(\tan^{-1} x - \ln(1+x)\right)^2} = \frac{\left(1 - (2x^2) + \frac{1}{2!}(2x^2)^2 - \cdots\right) - \left(1 - \frac{1}{2!}(2x)^2 + \frac{1}{4!}(2x)^4 - \cdots\right)}{\left(\left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \cdots\right) - \left(x - \frac{1}{2}x^3 + \frac{1}{3}x^3 - \cdots\right)\right)^2}
$$

$$
= \frac{\left(1 - 2x^2 + 2x^4 - \cdots\right) - \left(1 - 2x^2 + \frac{2}{3}x^4 - \cdots\right)}{\left(\frac{1}{2}x^2 - \frac{2}{3}x^3 + \cdots\right)^2}
$$

$$
= \frac{\frac{4}{3}x^4 + \cdots}{\frac{1}{4}x^4 + \cdots} = \frac{1}{3} + c_1x + \cdots \longrightarrow \frac{1}{3} \text{ as } x \to 0.
$$

8.29 Example: Approximate the value of $\frac{1}{\sqrt{2}}$ $\frac{1}{e}$ so the error is at most $\frac{1}{100}$. Solution: We have

$$
\frac{1}{\sqrt{e}} = e^{-1/2} = 1 - \left(\frac{1}{2}\right) + \frac{1}{2!} \left(\frac{1}{2}\right)^2 - \frac{1}{3!} \left(\frac{1}{2}\right)^3 + \frac{1}{4!} \left(\frac{1}{2}\right)^4 - \dots
$$

$$
= 1 - \frac{1}{2} + \frac{1}{2^2 2!} - \frac{1}{2^3 3!} + \frac{1}{2^4 4!} - \dots
$$

$$
\approx 1 - \frac{1}{2} + \frac{1}{2^2 2!} - \frac{1}{2^3 3!} = 1 - \frac{1}{2} + \frac{1}{8} - \frac{1}{48} = \frac{29}{48}
$$

with absolute error $E \leq \frac{1}{2^4}$ $\frac{1}{2^4 4!} = \frac{1}{384}$, by the Alternating Series Test. **8.30 Example:** Approximate the value of \sqrt{e} so the error is at most $\frac{1}{100}$. Solution: We have

$$
\sqrt{e} = e^{1/2} = 1 + \left(\frac{1}{2}\right) + \frac{1}{2!} \left(\frac{1}{2}\right)^2 + \frac{1}{3!} \left(\frac{1}{2}\right)^3 + \frac{1}{4!} \left(\frac{1}{2}\right)^4 + \frac{1}{5!} \left(\frac{1}{2}\right)^5 + \cdots
$$

= $1 + \frac{1}{2} + \frac{1}{2^2 2!} + \frac{1}{2^3 3!} + \frac{1}{2^4 4!} + \frac{1}{2^5 5!} + \cdots$
 $\approx 1 + \frac{1}{2} + \frac{1}{2^2 2!} + \frac{1}{2^3 3!} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{48} = \frac{79}{48}$

with absolute error

$$
E = \frac{1}{2^4 4!} + \frac{1}{2^5 5!} + \frac{1}{2^6 6!} + \frac{1}{2^7 7!} + \frac{1}{2^8 8!} + \cdots
$$

\n
$$
= \frac{1}{2^4 4!} \left(\frac{1}{2 \cdot 5} + \frac{1}{2^2 \cdot 6 \cdot 5} + \frac{1}{2^3 \cdot 7 \cdot 6 \cdot 5} + \frac{1}{2^4 \cdot 8 \cdot 7 \cdot 6 \cdot 5} + \cdots \right)
$$

\n
$$
\leq \frac{1}{2^4 4!} \left(\frac{1}{2 \cdot 5} + \frac{1}{2^2 5^2} + \frac{1}{2^3 5^3} + \frac{1}{2^4 5^4} + \cdots \right)
$$

\n
$$
= \frac{1}{384} \cdot \frac{1}{1 - \frac{1}{10}} = \frac{1}{384} \cdot \frac{10}{9} = \frac{5}{1728} < \frac{1}{100},
$$

where we used the Comparison Test and the formula for the sum of a geometric series.

8.31 Example: Approximate the value of $\ln 2$ so the error is at most $\frac{1}{50}$

Solution: We provide two solutions. For both solutions, we use the fundtion

$$
f(x) = \ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots
$$

For the first solution, we put in $x = 1$ to get

$$
\ln 2 = f(1) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots
$$

\n
$$
\approx 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{49}
$$

with absolute error $E \leq \frac{1}{50}$ by the Alternating Series Test. It would be cumbersome to add up the 49 terms in the above alternating sum, so we provide a second solution in which we put in $x = -\frac{1}{2}$ $\frac{1}{2}$. We have

$$
\ln 2 = -\ln \frac{1}{2} = -f\left(-\frac{1}{2}\right) = -\left(-\frac{1}{2}\right) + \frac{1}{2}\left(-\frac{1}{2}\right)^2 - \frac{1}{3}\left(-\frac{1}{2}\right)^3 + \frac{1}{4}\left(-\frac{1}{2}\right)^4 - \cdots
$$

\n
$$
= \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} + \frac{1}{5 \cdot 2^5} + \frac{1}{6 \cdot 2^6} + \cdots
$$

\n
$$
\approx \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} = \frac{1}{2} + \frac{1}{8} + \frac{1}{24} + \frac{1}{64} = \frac{131}{192}
$$

with absolute error

$$
E = \frac{1}{5 \cdot 2^5} + \frac{1}{6 \cdot 2^6} + \frac{1}{7 \cdot 2^7} + \frac{1}{8 \cdot 2^8} + \cdots
$$

\n
$$
\leq \frac{1}{5 \cdot 2^5} + \frac{1}{5 \cdot 2^6} + \frac{1}{5 \cdot 2^7} + \frac{1}{5 \cdot 2^8} + \cdots
$$

\n
$$
= \frac{\frac{1}{5 \cdot 2^5}}{1 - \frac{1}{2}} = \frac{2}{5 \cdot 2^5} = \frac{1}{80}
$$

by the Comparison Test and the formula for the sum of a geometric series.

8.32 Example: Approximate the value of $10^{2/3}$ so the error is at most $\frac{1}{100}$.

Solution: We use the function

$$
f(x) = (1+x)^{2/3} = 1 + \frac{\left(\frac{2}{3}\right)}{1!} x \frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)}{2!} x^2 + \frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{3!} x^3 + \frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{4!} x^4 + \cdots
$$

We have

$$
10^{2/3} = (8+2)^{2/3} = 4\left(1+\frac{1}{4}\right)^{2/3} = 4 f\left(\frac{1}{4}\right)
$$

= $4\left(1+\frac{\left(\frac{2}{3}\right)}{4\cdot 1!}+\frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)}{4^{2}\cdot 2!}+\frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{4^{3}\cdot 3!}+\frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{4^{4}\cdot 4!}+\cdots\right)$
= $4+\frac{8}{12\cdot 1!} - \frac{8\cdot 1}{12^{2}\cdot 2!} + \frac{8\cdot 1\cdot 4}{12^{3}\cdot 3!} - \frac{8\cdot 1\cdot 4\cdot 7}{12^{4}\cdot 4!}+\cdots$
 $\approx 4+\frac{8}{12\cdot 1!} - \frac{8\cdot 1}{12^{2}\cdot 2!} = 4+\frac{2}{3} - \frac{1}{36} = \frac{167}{36}$

with absolute error $E \leq \frac{8 \cdot 1 \cdot 4}{12^3 \cdot 3!} = \frac{1}{324}$ by the Alternating Series Test.

8.33 Example: Approximate the value of π so the error is at most $\frac{1}{50}$.

Solution: We provide two solutions. For both solutions we use the function

$$
f(x) = \tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots
$$

For the first solution, we put in $x = 1$ to get

$$
\pi = 4 \cdot \frac{\pi}{4} = 4f(1) = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots\right) \approx 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{1}{399}\right)
$$

with absolute error $E \leq \frac{4}{201}$ by the Alternating Series Test. It would be cumbersome to add up the 100 terms in the alternating sum, so we provide a second solution in which we put in $x=\frac{1}{\sqrt{2}}$ $\frac{1}{3}$. We have

$$
\pi = 6 \cdot \frac{\pi}{6} = 6f\left(\frac{1}{\sqrt{3}}\right) = 6\left(\frac{1}{\sqrt{3}} - \frac{1}{3\cdot\sqrt{3}} + \frac{1}{5\cdot\sqrt{3}} - \frac{1}{7\cdot\sqrt{3}} + \frac{1}{9\cdot\sqrt{3}} - \cdots\right)
$$

= $2\sqrt{3}\left(1 - \frac{1}{3\cdot3} + \frac{1}{5\cdot3^2} - \frac{1}{7\cdot3^3} + \frac{1}{9\cdot3^4} - \cdots\right)$
 $\approx 2\sqrt{3}\left(1 - \frac{1}{3\cdot3} + \frac{1}{5\cdot3^2}\right) = \frac{82\sqrt{3}}{45}$

with absolute error $E \n\t\leq \frac{2\sqrt{3}}{7.33}$ $\frac{2\sqrt{3}}{7\cdot3^3} = \frac{2\sqrt{3}}{189}$ by the Alternating Series Test. We remark that in with absolute error $E \ge \frac{7}{7 \cdot 3^3} - \frac{1}{189}$ by the Alternating Series Torder to make this approximation, we must first approximate $\sqrt{3}$.

8.34 Example: Approximate the value of $\sin(10^{\circ})$ so the error is at most $\frac{1}{1000}$. Solution: We use the function

$$
f(x) = \sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \cdots
$$

We put in $x = 10^{\circ} = \frac{\pi}{18}$ to get

$$
\sin(10^{\circ}) = f\left(\frac{\pi}{18}\right) = \frac{\pi}{18} - \frac{1}{3!} \left(\frac{\pi}{18}\right)^3 + \frac{1}{5!} \left(\frac{\pi}{18}\right)^5 - \dots \approx \frac{\pi}{18}
$$

with absolute error $E \le \frac{1}{3!} \left(\frac{\pi}{18}\right)^3$ by the Alternating Series Test. We remark that in order to make this approximation, we must first approximate π .

8.35 Example: Approximate the value of \int_1^1 0 $e^{-x^2} dx$ so the error is at most $\frac{1}{100}$.

Solution: We have

$$
\int_0^1 e^{-x^2} dx = \int_0^1 \left(1 - x^2 + \frac{1}{2!} x^4 - \frac{1}{3!} x^6 + \frac{1}{4!} x^8 - \cdots \right) dx
$$

= $\left[x - \frac{1}{3} x^3 + \frac{1}{5 \cdot 2!} x^5 - \frac{1}{7 \cdot 3!} x^7 + \frac{1}{9 \cdot 4!} x^9 - \cdots \right]_0^1$
= $1 - \frac{1}{3} + \frac{1}{5 \cdot 2!} - \frac{1}{7 \cdot 3!} + \frac{1}{9 \cdot 4!} - \cdots$
 $\approx 1 - \frac{1}{3} + \frac{1}{5 \cdot 2!} - \frac{1}{7 \cdot 3!} = \frac{26}{35}$

with absolute error $E \le \frac{1}{9 \cdot 4!} = \frac{1}{216}$ by the Alternating Series Test.

8.36 Example: Approximate the value of \int $\sqrt{2}$ 0 $\sin x$ \boldsymbol{x} dx so the error is at most $\frac{1}{50}$.

8.37 Example: Find the exact value of the sum $\sum_{n=1}^{\infty}$ $n=0$ $(-2)^n$ $\frac{(2n)!}{(2n)!}$.

Solution: We have

$$
\sum_{n=0}^{\infty} \frac{(-2)^n}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{2}^{2n}}{(2n)!} = \cos(\sqrt{2}).
$$

8.38 Example: Find the exact value of the sum $\sum_{n=1}^{\infty}$ $n=1$ $n-2$ $\frac{n}{(-3)^n}$.

Solution: Note first that

$$
\sum_{n=1}^{\infty} \frac{n-2}{(-3)^n} = \sum_{n=1}^{\infty} \frac{n}{(-3)^n} - \sum_{n=1}^{\infty} \frac{2}{(-3)^n}.
$$

The second sum on the right is geometric with first term $-\frac{2}{3}$ $\frac{2}{3}$ and ratio $-\frac{1}{3}$ $\frac{1}{3}$, so we have

$$
\sum_{n=1}^{\infty} \frac{2}{(-3)^n} = \frac{-\frac{2}{3}}{1 + \frac{1}{3}} = -\frac{1}{2}.
$$

To find the first sum on the right, we begin with the fact that for $|x| < 1$ we have

$$
\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots
$$

Differentiate both sides to get

$$
\frac{1}{(1-x)^2} = 1 + 2x + 3x^3 + 4x^3 + \dots
$$

Multiply both sides by x to get

$$
\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \dots
$$

Thus we obtain the formula

$$
\sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2} \text{ for all } |x| < 1 \, .
$$

Put in $x=-\frac{1}{3}$ $\frac{1}{3}$ to get

$$
\sum_{n=1}^{\infty} \frac{n}{(-3)^n} = \frac{-\frac{1}{3}}{\left(1 + \frac{1}{3}\right)^2} = -\frac{3}{16}.
$$

Thus we have

$$
\sum_{n=1}^{\infty} \frac{n}{(-3)^n} = \sum_{n=1}^{\infty} \frac{n}{(-3)^n} - \sum_{n=1}^{\infty} \frac{2}{(-3)^n} = -\frac{3}{16} + \frac{1}{2} = \frac{5}{16}.
$$

8.39 Example: Find the exact value of the sum $\sum_{n=1}^{\infty}$ $n=0$ $2\cdot 5\cdot 8\cdot \dots\cdot (3n+2)$ $\frac{(3n+2)}{5^n n!}$.

Solution: We have

$$
\sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)}{5^n n!} = 2 \sum_{n=0}^{\infty} \frac{\left(\frac{5}{3}\right) \left(\frac{8}{3}\right) \left(\frac{11}{3}\right) \dots \left(\frac{3n+2}{3}\right)}{n!} \cdot \frac{3^n}{5^n}
$$

$$
= 2 \sum_{n=0}^{\infty} \frac{\left(-\frac{5}{3}\right) \left(-\frac{8}{3}\right) \left(-\frac{11}{3}\right) \dots \left(-\frac{3n+2}{3}\right)}{n!} \cdot \left(-\frac{3}{5}\right)^n
$$

$$
= 2 \left(1 - \frac{3}{5}\right)^{-5/3} = 2 \cdot \left(\frac{5}{2}\right)^{5/3}.
$$