
Chapter 8. Power Series

Power Series

8.1 Definition: A power series centred at a is a series of the form∑
n≥0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

for some real numbers cn, where we use the convention that (x− a)0 = 1.

8.2 Example: The geometric series
∑
n≥0

xn is a power series centred at 0. It converges

when |x| < 1 and for all such x the sum of the series is

∞∑
n=0

xn =
1

1− x
.

8.3 Theorem: (The Interval and Radius of Convergence) Let
∑
n≥0

cn(x− a)n be a power

series. Then the set of x ∈ R for which the power series converges is an interval I centred
at a. Indeed there exists a (possibly infinite) number R ∈ [0,∞] such that

(1) if |x− a| < R then
∑
n≥0

cn(x− a)n converges absolutely, and

(2) if |x− a| > R then
∑
n≥0

cn(x− a)n diverges.

Proof: We prove parts (1) and (2) together by showing that for all r > 0, if
∑
cnr

n

converges then
∑
cn(x − a)n converges absolutely for all x ∈ R with |x − a| < r (we can

then take R to be the least upper bound of the set of all such r). Let r > 0. Suppose
that

∑
cnr

n converges. Let x ∈ R with |x − a| < r. Choose s with |x − a| < s < r.
Since

∑
cnr

n converges, we have cnr
n → 0 by the Divergence Test. Choose N > 0 so that

|cnrn| ≤ 1 for all n ≥ N . Then for n ≥ N we have∣∣cn(x− a)n
∣∣ = |cnrn| ·

|x− a|n

rn
≤ |x− a|

n

rn
≤ sn

rn
=
(
s
r

)n
,

and the series
∑(

s
r

)n
converges (its geometric with positive ratio s

r < 1), and so the series∑∣∣cn(x− a)n
∣∣ converges too, by the Comparison Test.

8.4 Definition: The number R in the above theorem is called the radius of convergence
of the power series, and the interval I is called the interval of convergence of the power
series.
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8.5 Example: Find the interval of convergence of the power series
∑
n≥1

(3− 2x)n√
n

.

Solution: First note that this is in fact a power series, since
(3− 2x)n√

n
= (−2)n√

n

(
x− 3

2

)n
,

and so
∑
n≥1

(3− 2x)n√
n

=
∑
n≥0

cn(x − a)n, where c0 = 0, cn = (−2)n√
n

for n ≥ 1 and a = 3
2 .

Now, let an =
(3− 2x)n√

n
. Then∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (3− 2x)n+1

√
n+ 1

√
n

(3− 2x)n

∣∣∣∣ =
√

n
n+1 |3− 2x| −→ |3− 2x| as n→∞.

By the Ratio Test,
∑
an converges when |3 − 2x| < 1 and diverges when |3 − 2x| > 1.

Equivalently, it converges when x ∈ (1, 2) and diverges when x /∈ [1, 2]. When x = 1 so
(3 − 2x) = 1, we have

∑
an =

∑
1√
n

, which diverges (its a p-series), and when x = 2 so

(3− 2x) = −1, we have
∑
an =

∑ (−1)n√
n

which converges by the Alternating Series Test.

Thus the interval of convergence is I = (1, 2 ].

8.6 Note: An argument similar to the one used in the above example, using the Ratio

Test, can be used to show that if lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ exists (finite or infinite) then the radius of

convergence of the power series
∑
cn(x− a)n is equal to

R =
1

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = lim
n→∞

∣∣∣∣ cncn+1

∣∣∣∣ .
Indeed if we let R = lim

n→∞

∣∣∣∣ cncn+1

∣∣∣∣ and write an = cn(x− a)n then we have

|an+1|
|an|

=

∣∣cn+1(x− a)n+1
∣∣∣∣cn(x− a)n

∣∣ =

∣∣∣∣cn+1

cn

∣∣∣∣ |x− a| −→ 1

R
|x− a|

and so by the Ratio Test, if |x − a| < R then
∑
|an| converges while if |x − a| > R then

|an| → ∞ so
∑
an diverges. Thus R must be equal to the radius of convergence.
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Operations on Power Series

8.7 Theorem: (Continuity of Power Series) Suppose that the power series
∑
cn(x− a)n

converges in an interval I. Then the sum f(x) =
∞∑
n=0

cn(x− a)n is continuous in I.

Proof: We omit the proof

8.8 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series∑
an(x− a)n and

∑
bn(x− a)n both converge in the interval I. Then

∑
(an + bn)(x− a)n

and
∑

(an − bn)(x− a)n both converge in I, and for all x ∈ I we have( ∞∑
n=0

an(x− a)n

)
±

( ∞∑
n=0

bn(x− a)n

)
=
∞∑
n=0

(an ± bn)(x− a)n .

Proof: This follows from Linearity.

8.9 Theorem: (Multiplication of Power Series) Suppose the power series
∑
an(x − a)n

and
∑
bn(x − a)n both converge in an open interval I with a ∈ I. Let cn =

n∑
k=0

akbn−k.

Then
∑
cn(x− a)n converges in I and for all x ∈ I we have

∞∑
n=0

cn(x− a)n =

( ∞∑
n=0

an(x− a)n

)( ∞∑
n=0

bn(x− a)n

)
.

Proof: This follows from the Multiplication of Series Theorem, since the power series
converge absolutely in I.

8.10 Theorem: (Division of Power Series) Suppose that
∑
an(x− a)n and

∑
bn(x− a)n

both converge in an open interval I with a ∈ I, and that b0 6= 0. Define cn by

c0 = a0
b0

, and for n > 0, cn = an
b0
− bnc0

b0
− bn−1c1

b0
− · · · − b1cn−1

b0
.

Then there is an open interval J with a ∈ J such that
∑
cn(x − a)n converges in J and

for all x ∈ J ,

∞∑
n=0

cn(x− a)n =

∞∑
n=0

an(x− a)n

∞∑
n=0

bn(x− a)n
.

Proof: We omit the proof.
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8.11 Theorem: (Composition of Power Series) Let f(x) =
∞∑
n=0

an(x − a)n in an open

interval I with a ∈ I, and let g(y) =
∞∑
m=0

bm(y − b)m in an open interval J with b ∈ J

and with a0 ∈ J . Let K be an open interval with a ∈ K such that f(K) ⊂ J . For
each m ≥ 0, let cn,m be the coefficients, found by multiplying power series, such that
∞∑
n=0

cn,m(x−a)n = bn

( ∞∑
n=0

an(x−a)n− b
)m

. Then
∑
m≥0

cn,m converges for all m ≥ 0, and

for all x ∈ K,
∑
n≥0

( ∞∑
m=0

cn,m

)
(x− a)n converges and

∞∑
n=0

( ∞∑
m=0

cn,m

)
(x− a)n = g

(
f(x)

)
.

Proof: We omit the proof.

8.12 Theorem: (Integration of Power Series) Supoose that
∑
cn(x − a)n converges in

the interval I. Then for all x ∈ I, the sum f(x) =

∞∑
n=0

cn(x− a)n is integrable on [a, x] (or

[x, a]) and ∫ x

a

∞∑
n=0

cn(t− a)n dt =
∞∑
n=0

∫ x

a

cn(t− a)n dt =
∞∑
n=0

cn
n+ 1

(x− a)n+1 .

Proof: We omit the proof

8.13 Theorem: (Differentiation of Power Series) Suppose that
∑
cn(x − a)n converges

in the open interval I. Then the sum f(x) =
∞∑
n=0

cn(x− a)n is differentiable in I and

f ′(x) =

∞∑
n=1

n cn(x− a)n−1 .

Proof: We omit the proof
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8.14 Example: Find a power series centred at 0 whose sum is f(x) =
1

x2 + 3x+ 2
, and

find its interval of convergence.

Solution: We have

f(x) =
1

(x+ 1)(x+ 2)
=

1

x+ 1
− 1

x+ 2
=

1

1 + x
−

1
2

1 + x
2

=

∞∑
n=0

(−x)n −
∞∑
n=0

1
2

(
−x2
)n

=

∞∑
n=0

(−1)nxn −
∞∑
n=0

(−1)n
2n+1 x

n

=

∞∑
n=0

(−1)n
(
1− 1

2n+1

)
xn .

Since
∞∑
n=0

(−x)n converges if and only if |x| < 1 and
∞∑
n=0

1
2

(
−x2
)n

converges when |x| < 2,

it follows from Linearity the the sum of these two series converges if and only if |x| < 1.

8.15 Example: Find a power series centred at −4 whose sum is f(x) =
1

x2 + 3x+ 2
, and

find its interval of convergence.

Solution: We have

f(x) =
1

(x+ 1)(x+ 2)
=

1

x+ 1
− 1

x+ 2
=

1

(x+ 4)− 3
− 1

(x+ 4)− 2

=
− 1

3

1− x+4
3

+
1
2

1− x+4
2

=
∞∑
n=0

− 1
3

(
x+4
3

)n
+
∞∑
n=0

1
2

(
x+4
2

)n
=

∞∑
n=0

(
1

2n+1 − 1
3n+1

)
(x+ 4)n .

Since
∞∑
n=0

− 1
3

(
x+4
3

)n
converges when |x+ 4| < 3 and

∞∑
n=0

1
2

(
x+4
2

)n
converges if and only if

|x+ 4| < 2, it follows that their sum converges if and only if |x+ 4| < 2.

8.16 Example: Find a power series centred at 0 whose sum is f(x) =
1

(1− x)2
.

Solution: We provide three solutions. For the first solution, we multiply two power series.
For |x| < 1 we have

f(x) =
1

1− x
· 1

1− x
=
(
1 + x+ x2 + x3 + · · ·

)(
1 + x+ x2 + x3 + · · ·

)
= 1 + (1 + 1)x+ (1 + 1 + 1)x2 + (1 + 1 + 1 + 1)x3 + · · ·
= 1 + 2x+ 3x2 + 4x3 + · · ·

=
∞∑
n=0

(n+ 1)xn .
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For the second solution, we note that f(x) =
1

1− 2x+ x2
and we use long division.

1 + 2x+ 3x2 + 4x3 + 5x4 + · · ·
1− 2x+ x2

)
1 + 0x+ 0x2 + 0x3 + 0x4 − · · ·
1− 2x+ x2

2x− x2
2x− 4x2 + 2x3

3x2 − 2x3

3x2 − 6x3 + 3x4

4x3 − 8x4 + · · ·
4x3 − 8x4 + · · ·

5x4 + · · ·

For the third solution, we note that

∫
1

(1− x)2
=

1

1− x
and we use differentiation.

1

1− x
= 1 + x2 + x3 + x4 + x5 + · · ·

d

dx

(
1

1− x

)
=

d

dx

(
1 + x+ x2 + x3 + x4 + x5 + · · ·

)
1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · .

8.17 Example: Find a power series centred at 0 whose sum is ln(1 + x).

Solution: For |x| < 1 we have

1

1 + x
= 1− x+ x2 − x3 + · · ·

ln(1 + x) =

∫
1− x+ x2 − x3 + + · · · dx

= c+ x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · ·
Putting in x = 0 gives 0 = c, and so

ln(1 + x) =
∞∑
n=1

(−1)n+1

n xn = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · · .

8.18 Example: Find a power series centred at 0 whose sum is f(x) = tan−1 x.

Solution: For |x| < 1 we have

1

1 + x2
= 1− x2 + x4 − x6 + · · ·

tan−1 x =

∫
1− x2 + x4 − x6 + · · · dx

= c+ x− 1
3 x

3 + 1
5 x

5 − 1
7 x

7 + · · ·
Putting in x = 0 gives 0 = c, and so

tan−1 x =
∞∑
n=0

(−1)n

(2n+ 1)
x2n+1 = x− 1

3 x
3 + 1

5 x
5 − 1

7 x
7 + · · ·
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Taylor Series

8.19 Theorem: Suppose that f(x) =

∞∑
n=0

cn(x − a)n in an open interval I centred at a.

Then f is infinitely differentiable at a and for all n ≥ 0 we have

cn =
f (n)(a)

n!
,

where f (n)(a) denotes the nth derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all
x ∈ I, we have

f ′(x) =

∞∑
n=1

n cn(x− a)n−1

f ′′(x) =
∞∑
n=2

n(n− 1) cn(x− a)n−2

f ′′′(x) =
∞∑
n=3

n(n− 1)(n− 2) cn(x− a)n−3 ,

and in general

f (k)(x) =
∞∑
n=k

n(n− 1) · · · (n− k + 1) cn(x− a)n−k

and so f(a) = c0, f ′(a) = c1, f ′′(a) = 2 · 1 c2 and f ′′′(a) = 3 · 2 · 1 c3, and in general

f (n)(a) = n! cn

8.20 Definition: Given a function f(x) whose derivatives of all order exist at x = a, we
define the Taylor series of f(x) centred at a to be the power series

T (x) =
∑
n≥0

cn(x− a)n where cn =
f (n)(a)

n!

and we define the lth Taylor Polynomial of f(x) centred at a to be the lth partial sum

Tl(x) =

l∑
n=0

cn(x− a)n where cn =
f (n)(a)

n!

8.21 Example: Find the Taylor series centred at 0 for f(x) = ex.

Solution: We have f (n)(x) = ex for all n, so f (n)(0) = 1 and cn = 1
n! for all n ≥ 0. Thus

the Taylor series is

T (x) =
∞∑
n=0

1
n! x

n = 1 + x+ 1
2!x

2 = 1
3!x

3 + 1
4!x

4 + · · · .
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8.22 Example: Find the Taylor series centred at 0 for f(x) = sinx.

Solution: We have f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f ′′′′(x) = sinx and so
on, so that in general f (2n)(x) = (−1)n sinx and f (2n+1)(x) = (−1)n cosx. It follows that

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n, so we have c2n = 0 and c2n+1 = (−1)n
(2n+1)! . Thus

T (x) =

∞∑
n=0

(−1)n
(2n+1)!x

2n+1 = x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · .

8.23 Example: Find the Taylor series centred at 0 for f(x) = cosx.

Solution: We have f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, f ′′′′(x) = cosx and so
on, so that in general f (2n)(x) = (−1)n cosx and f (2n+1)(x) = (−1)n+1 sinx. It follows

that f (2n)(0) = (−1)n and f (2n+1)(0) = 0, so we have c2n = (−1)n
(2n)! and c2n+1 = 0. Thus

T (x) =
∞∑
n=0

(−1)n
(2n)! x

2n = 1− 1
2!x

2 + 1
4!x

4 − 1
5!x

6 + · · · .

8.24 Example: Find the Taylor series centred at 0 for f(x) = (1 + x)p where p ∈ R.

Solution: f ′(x) = p(1+x)p−1, f ′′(x) = p(p−1)(1+x)p−2, f ′′′(x) = p(p−1)(p−2)(1+x)p−3,
and in general

f (n)(x) = p(p− 1)(p− 2) · · · (p− n+ 1)(1 + x)p−n ,

so f(0) = 1, f ′(0) = p, f ′′(0) = p(p−1), and in general f (n)(0) = p(p−1)(p−2) · · · (p−n+1),

and so we have cn = p(p−1)(p−2)···(p−n+1)
n! . Thus the Taylor series is

T (x) =
∞∑
n=0

(
p
n

)
xn = 1 + px+ p(p−1)

2! x2 + p(p−1)(p−2)
3! x3 + p(p−1)(p−2)(p−3)

4! x4 + · · ·

where we use the notation(
p
0

)
= 1 , and for n ≥ 1,

(
p
n

)
= p(p−1)(p−2)···(p−n+1)

n!
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8.25 Theorem: (Taylor) Let f(x) be infinitely differentiable in an open interval I with
a ∈ I. Let Tl(x) be the lth Taylor polynomial for f(x) centred at a. Then for all x ∈ I
there exists a number c between a and x such that

f(x)− Tl(x) =
f (l+1)(c)

(l + 1)!
(x− a)l+1 .

Proof: When x = a both sides of the above equation are 0. Suppose that x > a (the
case that x < a is similar). Since f (l+1) is differentiable and hence continuous, by the
Extreme Value Theorem it attains its maximum and minimum values, say M and m.
Since m ≤ f (l+1)(t) ≤M for all t ∈ I, we have∫ t1

a

mdt ≤
∫ t1

a

f (l+1)(t) dt ≤
∫ t1

a

M dt

that is
m(t1 − a) ≤ f (l)(t1)− f (l)(a) ≤M(t1 − a)

for all t1 > a in I. Integrating each term with respect to t1 from a to t2, we get

1
2m(t2 − a)2 ≤ f (l−1)(t2)− f (l)(a)(t2 − a) ≤ 1

2M(tt − a)2

for all t2 > a in I. Integrating with respect to t2 from a to t3 gives

1
3!m(t3 − a)3 ≤ f (l−2)(t3)− f (l−2)(a)− 1

2f
(l)(a)(t3 − a)3 ≤ 1

3!M(t3 − a)3

for all t3 > a in I. Repeating this procedure eventually gives

1
(l+1)!m(tl+1 − a)l+1 ≤ f(tl+1)− Tl(tl+1) ≤ 1

(l+1)!M(tl+1 − a)l+1

for all tl+1 > a in I. In particular 1
(l+1)!m(x− a)l+1 ≤ f(x)− Tl(x) ≤ 1

(l+1)!M(x− a)l+1,
so

m ≤
(
f(x)− Tl(x)

) (l+1)!
(x−a)l+1 ≤M .

By the Intermediate Value Theorem, there is a number c ∈ [a, x] such that

f (l+1)(c) =
(
f(x)− Tl(x)

) (l + 1)!

(x− a)l+1

.
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8.26 Theorem: The functions ex, sinx, cosx and (1 + x)p are all exactly equal to the
sum of their Taylor series centred at 0 in the interval of convergence.

Proof: First let f(x) = ex and let x ∈ R. By Taylor’s Theorem, f(x) − Tl(x) =
ecxl+1

(l + 1)!
for some c between 0 and x, and so∣∣f(x)− Tl(x)

∣∣ ≤ e|x||x|l+1

(l + 1)!
.

Since
∑ e|x||x|l+1

(l + 1)!
converges by the Ratio Test, we have lim

l→∞

e|x||x|l+1

(l + 1)!
= 0 by the Diver-

gence Test, so lim
l→∞

(
f(x)− Tl(x)

)
= 0, and so f(x) = lim

l→∞
Tl(x) = T (x).

Now let f(x)= sinx and let x ∈ R. By Taylor’s Theorem, f(x)−T (x) =
f (l+1)(c)xl+1

(l + 1)!
for some c between 0 and x. Since f (l+1)(x) is one of the functions ± sinx or ± cosx, we
have

∣∣f (l+1)(c)
∣∣ ≤ 1 for all c and so∣∣f(x)− T (x)

∣∣ ≤ |x|l+1

(l + 1)!
.

Since
∑ |x|l+1

(l + 1)!
converges by the Ratio Test, lim

l→∞

|x|l+1

(l + 1)!
= 0 by the Divergence Test,

and so we have and f(x) = T (x) as above.
Let f(x) = cosx. For all x ∈ R we have

f(x) = cosx = d
dx sinx

= d
dx

(
x− 1

3! x
3 + 1

5! x
5 − 1

7! x
7 + · · ·

)
= 1− 1

2! x
2 + 1

4! x
4 − 1

6! x
6 + · · ·

which is the sum of its Taylor series, centred at 0.
Finally, let f(x) = (1 + x)p. The Taylor series centred at 0 is

T (x) = 1 + px+ p(p−1)
2! x2 + p(p−1)(p−2)

3! x3 + p(p−1)(p−2)(p−3)
4! x4 + · · ·

and it converges for |x| < 1. Differentiating the power series gives

T ′(x) = p+ p(p−1)
1! x+ p(p−1)(p−2)

2! x2 + p(p−1)(p−2)(p−3)
3! x3 + · · ·

and so

(1 + x)T ′(x) = p+
(
p+ p(p−1)

1!

)
x+

(
p(p−1)

1! + p(p−1)(p−2)
2!

)
x2

+
(
p(p−1)(p−2)

2! − p(p−1)(p−2)(p−3)
3!

)
x3 + · · ·

= p+ p·p
1! x+ p·p(p−1)

2! x2 + p·p(p−1)(p−2)
3! x3 + · · ·

= p T (x) .

Thus we have (1 +x)T ′(x) = pT (x) with T (0) = 1. This DE is linear since we can write it

as T ′(x)− p
1+xT (x) = 0. An integrating factor is λ = e

∫
− p

1+x dx = e
−p ln(1+x)

= (1 + x)−p

and the solution is T (x) = (1+x)−p
∫

0 dx = b(1+x)p for some constant b. Since T (0) = 1

we have b = 1 and so T (x) = (1 + x)p = f(x).
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Applications

8.27 Example: Let f(x) = sin
(
1
2x

2
)
. Find the 10th derivative f (10)(0).

Solution: We have

f(x) = sin
(
1
2 x

2
)

=
(
1
2 x

2
)
− 1

3!

(
1
2 x

2
)3

+ 1
5!

(
1
2 x

2
)5 − · · ·

= 1
2 x

2 − 1
23 3! x

6 + 1
25 5! x

10 − · · ·

We have c10 = 1
25 5! and so f (10)(0) = 10! c10 = 10!

25 5! = 10·9·8·7·6
25 = 5 · 9 · 7 · 3 = 945 .

8.28 Example: Find lim
x→0

e−2x
2 − cos 2x(

tan−1 x− ln(1 + x)
)2

Solution: We have

e−2x
2 − cos 2x(

tan−1 x− ln(1 + x)
)2 =

(
1− (2x2) + 1

2! (2x
2)2 − · · ·

)
−
(
1− 1

2! (2x)2 + 1
4! (2x)4 − · · ·

)((
x− 1

3x
3 + 1

5x
5 − · · ·

)
−
(
x− 1

2x
3 + 1

3x
3 − · · ·

))2
=

(
1− 2x2 + 2x4 − · · ·

)
−
(
1− 2x2 + 2

3x
4 − · · ·

)(
1
2x

2 − 2
3x

3 + · · ·
)2

=
4
3x

4 + · · ·
1
4x

4 + · · ·
= 1

3 + c1x+ · · · −→ 1
3 as x→ 0 .

8.29 Example: Approximate the value of 1√
e

so the error is at most 1
100 .

Solution: We have

1√
e

= e−1/2 = 1−
(
1
2

)
+ 1

2!

(
1
2

)2 − 1
3!

(
1
2

)3
+ 1

4!

(
1
2

)4 − · · ·
= 1− 1

2 + 1
22 2! −

1
23 3! + 1

24 4! − · · ·
∼= 1− 1

2 + 1
22 2! −

1
23 3! = 1− 1

2 + 1
8 −

1
48 = 29

48

with absolute error E ≤ 1
24 4! = 1

384 , by the Alternating Series Test.

8.30 Example: Approximate the value of
√
e so the error is at most 1

100 .

Solution: We have
√
e = e1/2 = 1 +

(
1
2

)
+ 1

2!

(
1
2

)2
+ 1

3!

(
1
2

)3
+ 1

4!

(
1
2

)4
+ 1

5!

(
1
2

)5
+ · · ·

= 1 + 1
2 + 1

22 2! + 1
23 3! + 1

24 4! + 1
25 5! + · · ·

∼= 1 + 1
2 + 1

22 2! + 1
23 3! = 1 + 1

2 + 1
8 + 1

48 = 79
48

with absolute error

E = 1
24 4! + 1

25 5! + 1
26 6! + 1

27 7! + 1
28 8! + · · ·

= 1
24 4!

(
1
2·5 + 1

22·6·5 + 1
23·7·6·5 + 1

24·8·7·6·5 + · · ·
)

≤ 1
24 4!

(
1
2·5 + 1

2252 + 1
2353 + 1

2454 + · · ·
)

= 1
384 ·

1

1− 1
10

= 1
384 ·

10
9 = 5

1728 <
1

100 ,

where we used the Comparison Test and the formula for the sum of a geometric series.
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8.31 Example: Approximate the value of ln 2 so the error is at most 1
50

Solution: We provide two solutions. For both solutions, we use the fundtion

f(x) = ln(1 + x) = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · ·

For the first solution, we put in x = 1 to get

ln 2 = f(1) = 1− 1
2 + 1

3 −
1
4 + · · ·

∼= 1− 1
2 + 1

3 −
1
4 + · · ·+ 1

49

with absolute error E ≤ 1
50 by the Alternating Series Test. It would be cumbersome to add

up the 49 terms in the above alternating sum, so we provide a second solution in which
we put in x = − 1

2 . We have

ln 2 = − ln 1
2 = −f

(
− 1

2

)
= −

(
− 1

2

)
+ 1

2

(
− 1

2

)2 − 1
3

(
− 1

2

)3
+ 1

4

(
− 1

2

)4 − · · ·
= 1

2 + 1
2·22 + 1

3·23 + 1
4·24 + 1

5·25 + 1
6·26 + · · ·

∼= 1
2 + 1

2·22 + 1
3·23 + 1

4·24 = 1
2 + 1

8 + 1
24 + 1

64 = 131
192

with absolute error
E = 1

5·25 + 1
6·26 + 1

7·27 + 1
8·28 + · · ·

≤ 1
5·25 + 1

5·26 + 1
5·27 + 1

5·28 + · · ·

=
1

5·25

1− 1
2

= 2
5·25 = 1

80

by the Comparison Test and the formula for the sum of a geometric series.

8.32 Example: Approximate the value of 102/3 so the error is at most 1
100 .

Solution: We use the function

f(x) = (1 + x)2/3 = 1 +
( 2

3 )
1! x

( 2
3 )(− 1

3 )
2! x2 +

( 2
3 )(− 1

3 )(− 4
3 )

3! x3 +
( 2

3 )(− 1
3 )(− 4

3 )(− 7
3 )

4! x4 + · · ·

We have

102/3 = (8 + 2)2/3 = 4
(
1 + 1

4

)2/3
= 4 f

(
1
4

)
= 4
(

1 +
( 2

3 )
4·1! +

( 2
3 )(− 1

3 )
42·2! +

( 2
3 )(− 1

3 )(− 4
3 )

43·3! +
( 2

3 )(− 1
3 )(− 4

3 )(− 7
3 )

44·4! + · · ·
)

= 4 + 8
12·1! −

8·1
122·2! + 8·1·4

123·3! −
8·1·4·7
124·4! + · · ·

∼= 4 + 8
12·1! −

8·1
122·2! = 4 + 2

3 −
1
36 = 167

36

with absolute error E ≤ 8·1·4
123·3! = 1

324 by the Alternating Series Test.
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8.33 Example: Approximate the value of π so the error is at most 1
50 .

Solution: We provide two solutions. For both solutions we use the function

f(x) = tan−1 x = x− 1
3 x

3 + 1
5 x

5 − 1
7 x

7 + · · ·

For the first solution, we put in x = 1 to get

π = 4 · π4 = 4f(1) = 4
(
1− 1

3 + 1
5 −

1
7 + · · ·

) ∼= 4
(
1− 1

3 + 1
5 −

1
7 + · · ·+ 1

399

)
with absolute error E ≤ 4

201 by the Alternating Series Test. It would be cumbersome to
add up the 100 terms in the alternating sum, so we provide a second solution in which we
put in x = 1√

3
. We have

π = 6 · π6 = 6f
(

1√
3

)
= 6
(

1√
3
− 1

3·
√
3

3 + 1

5·
√
3

5 − 1

7·
√
3

7 + 1

9·
√
3

9 − · · ·
)

= 2
√

3
(

1− 1
3·3 + 1

5·32 −
1

7·33 + 1
9·34 − · · ·

)
∼= 2
√

3
(

1− 1
3·3 + 1

5·32

)
= 82

√
3

45

with absolute error E ≤ 2
√
3

7·33 = 2
√
3

189 by the Alternating Series Test. We remark that in

order to make this approximation, we must first approximate
√

3.

8.34 Example: Approximate the value of sin
(
10◦
)

so the error is at most 1
1000 .

Solution: We use the function

f(x) = sinx = x− 1
3! x

3 + 1
5! x

5 − · · ·

We put in x = 10◦ = π
18 to get

sin(10◦) = f
(
π
18

)
= π

18 −
1
3!

(
π
18

)3
+ 1

5!

(
π
18

)5 − · · · ∼= π
18

with absolute error E ≤ 1
3!

(
π
18

)3
by the Alternating Series Test. We remark that in order

to make this approximation, we must first approximate π.

8.35 Example: Approximate the value of

∫ 1

0

e−x
2

dx so the error is at most 1
100 .

Solution: We have∫ 1

0

e−x
2

dx =

∫ 1

0

(
1− x2 + 1

2! x
4 − 1

3! x
6 + 1

4! x
8 − · · ·

)
dx

=
[
x− 1

3 x
3 + 1

5·2! x
5 − 1

7·3! x
7 + 1

9·4! x
9 − · · ·

]1
0

= 1− 1
3 + 1

5·2! −
1

7·3! + 1
9·4! − · · ·

∼= 1− 1
3 + 1

5·2! −
1

7·3! = 26
35

with absolute error E ≤ 1
9·4! = 1

216 by the Alternating Series Test.
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8.36 Example: Approximate the value of

∫ √2

0

sinx

x
dx so the error is at most 1

50 .

8.37 Example: Find the exact value of the sum

∞∑
n=0

(−2)n

(2n)!
.

Solution: We have
∞∑
n=0

(−2)n

(2n)!
=
∞∑
n=0

(−1)n
√

2
2n

(2n)!
= cos(

√
2) .

8.38 Example: Find the exact value of the sum

∞∑
n=1

n− 2

(−3)n
.

Solution: Note first that
∞∑
n=1

n− 2

(−3)n
=

∞∑
n=1

n

(−3)n
−
∞∑
n=1

2

(−3)n
.

The second sum on the right is geometric with first term − 2
3 and ratio − 1

3 , so we have∑
n=1

2

(−3)n
=
− 2

3

1 + 1
3

= − 1
2 .

To find the first sum on the right, we begin with the fact that for |x| < 1 we have

1

1− x
= 1 + x+ x2 + x3 + x4 + · · ·

Differentiate both sides to get

1

(1− x)2
= 1 + 2x+ 3x3 + 4x3 + · · ·

Multiply both sides by x to get

x

(1− x)2
= x+ 2x2 + 3x3 + 4x4 + · · ·

Thus we obtain the formula
∞∑
n=1

nxn =
x

(1− x)2
for all |x| < 1 .

Put in x = − 1
3 to get

∞∑
n=1

n

(−3)n
=

− 1
3(

1 + 1
3

)2 = − 3
16 .

Thus we have
∞∑
n=1

n

(−3)n
=
∞∑
n=1

n

(−3)n
−
∞∑
n=1

2

(−3)n
= − 3

16 + 1
2 = 5

16 .
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8.39 Example: Find the exact value of the sum
∞∑
n=0

2 · 5 · 8 · · · · · (3n+ 2)

5n n!
.

Solution: We have
∞∑
n=0

2 · 5 · 8 · · · · · (3n+ 2)

5n n!
= 2

∞∑
n=0

(
5
3

) (
8
3

) (
11
3

)
· · ·
(
3n+2

3

)
n!

· 3n

5n

= 2

∞∑
n=0

(
− 5

3

) (
− 8

3

) (
− 11

3

)
· · ·
(
− 3n+2

3

)
n!

·
(
− 3

5

)n
= 2

(
1− 3

5

)−5/3
= 2 ·

(
5
2

)5/3
.
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