- 1: (a) Find the exact value of $\cos\left(\frac{\pi}{5}\right)$. Express your answer in terms of integers and radicals. Hint: let $\theta = \frac{\pi}{5}$ and consider a triangle with angles θ , 2θ and 2θ cut into two triangles, one with angles θ , θ and 3θ , and the other with angles θ , 2θ and 2θ .
 - (b) Find the area of a regular decagon with sides of length 1 (a decagon has 10 sides).
- **2:** Let A be the rectangle-based cone with its base vertices at $(\pm 2, \pm 1, 0)$ and with its top vertex at (0, 3, 4), and let B be the rectangle-based cone with the same base but with its top vertex at (0, -3, 4). Find the volume and the surface area of the solid $A \cup B$.
- **3:** Let R be the radius of the Earth $(R \cong 6,000 \text{ km})$.

(a) A satellite orbits the Earth at a distance 2R from the Earth's center. Let A be the set of points on the Earth's surface from which the satellite is visible (at some instant in time). Find the area of A.

(b) Let B be the portion of the Earth's surface which lies between 30° and 60° latitude and between 30° and 60° longitude. Find the area of B.

4: (a) Let A be the ball of radius 2 centered at (1, 0, 0) and let B be the ball of radius 2 centered at (-1, 0, 0). Find the volume of the solid $A \cap B$.

(b) A cylindrical hole is bored through the centre of a solid spherical ball. Let A be the portion of the ball which remains. Let h be the height of the cylindrical face of A. Find the volume of A in terms of h (somewhat surprisingly, the final answer involves neither the radius of the sphere, nor the radius of the hole).

5: (a) Let A be the solid torus obtained by revolving the disc $(x-R)^2 + y^2 \le r^2$ about the y-axis. Find the volume and the surface area of A. (Hint: slice A into pieces which can be reassembled to form a cylinder).

(b) Let B be the paraboloidal solid which is obtained by revolving the region given by $0 \le x \le 1$ and $x^2 \le y \le 1$ about the y-axis. Find the volume of B. (Hint: slice B horizontally into n thin discs each of thickness $\frac{1}{n}$, find the approximate volume of each disc by treating it as a cylinder, add these volumes and take the limit as $n \to \infty$).