1: A tank initially contains 500 L of water. Water drains out at a rate r(t) L/min. Some values of r(t) are tabulated below.

t	0	10	20	30	40	50	60
r	1.0	1.4	2.0	2.8	4.0	5.8	8.0

(a) Estimate the amount of water remaining in the tank after one hour by approximating the definite integral $\int_{0}^{60} r(t) dt$ using the midpoint rule on 3 subintervals.

(b) Estimate the amount of water remaining in the tank after one hour by approximating the same integral using the Trapezoidal Rule on 6 subintervals.

- 2: Suppose that |f''(x)| ≤ 1/2 and |f''''(x)| ≤ 2 for all x ∈ [0, 24], and that f(x) has the following table of values. x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 f(x) 4 5 4 3 2 2 2 3 4 5 6 3 2 1 1 2 4 4 4 3 71 1 3 4 7
 (a) Use S₈ to approximate ∫₀²⁴ f(x) dx.
 (b) Find a value of n such that if we estimate ∫₀²⁴ f(x) dx using T_n the error is E ≤ .01.
- **3:** (a) Approximate $\int_0^{2\pi} 4^{\cos x} dx$ using R_6 .

(b) Find a value of n such that if we approximate $\int_0^4 3\sqrt{2x+1} \, dx$ using S_n then the error is $E \leq .0001$.

- 4: Evaluate the following improper integrals.
 - (a) $\int_{0}^{2} x^{3} \ln(x/2) dx$ (b) $F(s) = \int_{0}^{\infty} e^{-st} \sin t dt$, where s > 0.
- 5: Evaluate the following improper integrals.

(a)
$$\int_{2}^{\infty} \frac{dx}{x^{4}\sqrt{x^{2}-4}}$$

(b) $\int_{-\infty}^{\infty} \frac{x(x+1)}{(x^{2}+1)^{2}} dx$