
MATH 138 Calculus 2, Solutions to the Exercises for Chapter 4
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1: Let f(x) = 2 sin
(
1
2 x−

π
6

)
+ 1 for 0 ≤ x ≤ 4π.

(a) Sketch the graph of y = f(x) and shade the region which lies between the graph and the x-axis with
0 ≤ x ≤ 4π (one part of the region lies above the x-axis and one part lies below).

Solution: We have f(x) = 2 sin
(
1
2

(
x− π

3

))
+ 1, so we can obtain the graph of y = f(x) from the graph

of y = sinx by scaling by a factor of 2, both horizontally and vertically, then by translating π
3 units to the

right and 1 unit upwards.

(b) Find the exact area of the region described in part (a).

Solution: Let A1 be the area of the part that lies above the x-axis and let A2 be the area of the part which
lies below. To find A1 and A2 we need to know the x-intercepts of the graph. A good graph (or table of
values) will show the exact value of the x-intercepts, but they can also be found algebraically as follows. We
have f(x) = 0 ⇐⇒ 2 sin

(
1
2 x−

π
6

)
+ 1 = 0 ⇐⇒ sin

(
1
2 x−

π
6

)
= − 1

2 ⇐⇒
(
1
2 x−

π
6

)
= 7π

6 ,
11π
6 ⇐⇒

1
2 x = 4π

3 , 2π ⇐⇒ x = 8π
3 , 4π. Now we can calculate the areas A1 and A2. By inspection (or by trial and

error), an antiderivative for f(x) is −4 cos
(
1
2 x−

π
6

)
+ x, so we have

A1 =

∫ 8π/3

0

f(x) dx =
[
− 4 cos

(
1
2 x−

π
6

)
+ x
]8π/3
0

=
(
−4 cos

(
7π
6

)
+ 8π

3

)
−
(
−4 cos

(
−π6
))

=
(
2
√

3 + 8π
3

)
+
(
2
√

3
)

= 4
√

3 + 8π
3 , and

A2 =

∫ 4π

8π/3

−f(x) dx =
[
4 cos

(
1
2 x−

π
6

)
− x
]4π
8π/3

=
(
4 cos

(
11π
6

)
− 4π

)
−
(
4 cos

(
7π
6

)
− 8π

3

)
=
(
2
√

3− 4π
)
−
(
− 2
√

3− 8π
3

)
= 4
√

3− 4π
3

The total area of the region is A = A1 +A2 = 8
√

3 + 4π
3 .



2: Find the area of the region bounded by the curves y2 = 2x and y =
x

x− 3
.

Solution: First sketch the two curves. The hyperbola y =
x

x− 3
is shown at right in blue, and the parabola y2 = 2x is in red. We
see that the region in question lies below the hyperbola and above
the bottom half of the parabola, which is given by y = −

√
2x,

with 0 ≤ x ≤ 2. Thus the area is

A =

∫ 2

0

(
x

x− 3

)
−
(
−
√

2x
)
dx

=

∫ 2

0

x− 3 + 3

x− 3
+
√

2x dx

=

∫ 2

0

1 +
3

x− 3
+ (2x)1/2 dx

=
[
x+ 3 ln

∣∣x− 3
∣∣+ 1

3 (2x)3/2
]2
0

=
(
2 + 0 + 8

3

)
−
(
3 ln 3

)
= 14

3 − 3 ln 3 .

3: Find the area of the region bounded by the curves y = sinx and y = 1− 1√
3

sin(2x) between their two points

of intersection with 0 ≤ x ≤ 2π.
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Solution: First we sketch the two curves. The curve y = sinx is shown in blue and the curve y = 1− 1√
3

sin 2x

is shown in red.

The region lies below the curve y = sinx and above the curve y = 1− 1√
3

sin 2x with π
6 ≤ x ≤

π
2 , so the area

is given by

A =

∫ π/2

π/6

sinx−
(
1− 1√

3
sin 2x

)
dx

=

∫ π/2

π/6

sinx+
√
3
3 sin 2x− 1 dx

=
[
− cosx−

√
3
6 cos 2x− x

]π/2
π/6

=
(
0−

√
3
6 (−1)− π

2

)
−
(
−
√
3
2 −

√
3
6 ·

1
2 −

π
6

)
=
√

3
(
1
6 + 1

2 + 1
12

)
− π

(
1
2 −

1
6

)
= 3
√
3

4 −
π
3 .



4: A rod of length 3 m lies along the axis with one end at x = 0 and the other end at x = 3. The linear
densityat each point, in kg/m, is given by ρ(x) =

√
1 + 4x− x2. Find the total mass and the average linear

density of the rod.

Solution: The total mass is given by m =

∫ 3

0

ρ(x) dx =

∫ 3

0

√
1 + 4x− x2 dx =

∫ 3

0

√
5− (x− 2)2 dx. This

integral can be evaluated using the substitution
√

5 sin θ = x − 2, but it is much easier to notice that the
region under the circle y =

√
5− (x− 2)2 between x = 0 and x = 3 can be cut up into a quarter-circle, which

has area 1
4π
(√

5
)2

, and two triangles, each of area 1. Thus the mass is m =

∫ 3

0

√
5− (x− 2)2 dx = 2 + 5π

4 .

The average density is ρ = 1
3 m = 2

3 + 5π
12 .

5: (a) Let R be the region given by 0 ≤ y ≤ 1 − 1
4 x

2 and −2 ≤ x ≤ 2. Find the volume of the solid obtained
by revolving R about the x-axis.

Solution: The volume is V = 2

∫ 2

0

π
(
1− 1

4 x
2
)2
dx = 2π

∫ 2

0

1− 1
2 x

2 + 1
16 x

4 dx = 2π

[
x− 1

6 x
3 + 1

80 x
5

]2
0

=

2π
(
2− 4

3 + 2
5

)
= 32

15 π.

(b) Let S be the region given by 1
4 x

2 − 1 ≤ y ≤ 1 − 1
4 x

2 and 0 ≤ x ≤ 2. Find the volume of the solid
obtained by revolving S about the y-axis.

Solution: Using cylindrical shells, the volume is given by V = 2

∫ 2

0

2πx
(
1− 1

4 x
2
)
dx = 4π

∫ 2

0

x− 1
4 x

2 dx =

4π

[
1
2 x

2 − 1
16 x

4

]2
0

= 4π(2− 1) = 4π.

6: Let R be the (infinitely long) region given by 0 ≤ y ≤ 1

1 + x2
and x ≥ 0.

(a) Find the volume of the solid obtained by revolving R about the x-axis.

Solution: The volume is given by V =

∫ ∞
x=0

π
1

(1 + x2)2
dx. We let tan θ = x so sec θ =

√
1 + x2 and

sec2 θ dθ = dx, and then we obtain V =

∫ π/2

θ=0

π
sec2 θ dθ

sec4 θ
= π

∫ π/2

0

cos2 θ dθ = π

∫ π/2

0

1
2 + 1

2 cos 2θ dθ =

π

[
1
2 θ + 1

4 sin 2θ

]π/2
0

= π2

4 .

(b) Find the volume of the solid obtained by revolving R about the y-axis.

Solution: Using cylindrical shells, the volume is V =

∫ ∞
x=0

2π x
1

1 + x2
dx. Let u = 1+x2 so that du = 2x dx,

and then V = π

∫ ∞
u=1

1

u
du = π

[
lnu
]∞
1

=∞



7: Find the volume of the solid which is obtained by revolving the disc (x− 1)2 + y2 ≤ 1 about the y-axis.

Solution: Using cylindrical shells, the volume is V = 2

∫ 2

x=0

2π x
√

1− (x− 1)2 dx. Let sin θ = x − 1

so that cos θ =
√

1− (x− 1)2 and cos θ dθ = dx. Then we have V = 4π

∫ π/2

θ=−π/2
(sin θ + 1) cos θ cos θ dθ =

4π

∫ π/2

−π/2
sin θ cos2 θ+cos2 θ dθ = 4π

∫ π/2

−π/2
sin θ cos2 θ+ 1

2 + 1
2 cos 2θ dθ = 4π

[
− 1

3 cos3 θ+ 1
2 θ+ 1

4 sin 2θ

]π/2
−π/2

=

4π
(
π
4 + π

4

)
= 2π2.

8: A circular hole of radius 1 is bored through the center of a wooden ball of radius 2. Find the volume of the
remaining portion of the ball.

Solution: We provide two solutions. For the first solution, we note that the remaining portion of the ball is in
the shape of the solid obtained by revolving the region given by 1 ≤ y ≤

√
4− x2 and −

√
3 ≤ x ≤

√
3 about

the x-axis. The cross-section at x is shaped like an annulus (that is a circular disc with a smaller circular hole
in the center) with outer radius

√
4− x2 and inner radius 1. The cross-sectional area is A(x) = π(4−x2)−π =

π(3− x2). The volume is V = 2

∫ √3

0

π(3− x2) dx = 2π

[
3x− 1

3 x
3

]√3

0

= 2π
(
3
√

3−
√

3
)

= 4π
√

3.

For the second solution, we note that the remaining portion of the ball is in the shape of the solid
obtained by revolving the region given by −

√
4− x2 ≤ y ≤

√
4− x2 and 1 ≤ x ≤ 2 about the y-axis, so

using cylindrical shells, the volume is V = 2

∫ 2

x=1

2π x
√

4− x2 dx. Letting u = 4− x2 so that du = −2x dx

we obtain V =

∫ 0

u=3

−2π
√
u du = −2π

[
2
3 u

3/2

]0
3

= −2π
(
−2
√

3
)

= 4π
√

3.

9: Find the arclength of the curve y = ex with 0 ≤ x ≤ ln 2.

Solution: We have y′ = ex so that arclength is L =

∫ ln 2

x=0

√
1 + e2x dx. Let u =

√
1 + e2x so that u2 = 1+e2x

and 2u du = 2e2x dx, so dx =
u

e2x
du =

u

u2 − 1
du. Then we obtain L =

∫ √5

u=
√
2

u2 du

u2 − 1
=

∫ √5

√
2

1+
1

u2 − 1
du =∫ √5

√
2

1 +
1
2

u− 1
−

1
2

u+ 1
du =

[
u+ 1

2 ln

∣∣∣∣u− 1

u+ 1

∣∣∣∣ ]
√
5

√
2

=
√

5 + 1
2 ln

(√
5−1√
5+1

)
−
√

2− 1
2 ln

(√
2−1√
2+1

)
.

10: Find the arclength of the portion of the parabola y = x2 with 0 ≤ x ≤ 1.

Solution: We have y′ = 2x so
√

1 + (y′)2 =
√

1 + 4x2. Let tan θ = 2x, sec θ =
√

1 + 4x2, sec2 θ dθ = 2 dx.

Then the arclength is L =

∫ 1

0

√
1 + 4x2 dx =

∫ 1

x=0

1
2 sec3 θ dθ =

[
1
4 sec θ tan θ + 1

4 ln | sec θ + tan θ|
]1
x=0

=[
1
2x
√

1 + 4x2 + 1
4 ln

∣∣2x+
√

1 + 4x2
∣∣]1

0
=
√
5
2 + 1

4 ln(2 +
√

5).

11: Find the area of the surface which is obtained by revolving the portion of the cubic curve y = x3 with
0 ≤ x ≤ 1 about the y-axis.

Solution: We have y′ = 3x2 so
√

1 + (y′)2 =
√

1 + 9x4. Let tan θ = 3x2 so that sec θ =
√

1 + 9x4 and

sec2 θ dθ = 6x dx. Then the surface area is A =

∫ 1

0

2πx
√

1 + 9x4 dx = π
3

∫ 1

x=0

sec3 θ dθ = π
3

[
1
2 sec θ tan θ +

1
2 ln

∣∣ sec θ + tan θ
∣∣]1
x=0

= π
6

[
3x2
√

1 + 9x4 + ln
∣∣3x2 +

√
1 + 9x4

∣∣]1
0

= π
6

(
3
√

10 + ln(3 +
√

10)
)
.


