1: Let $f(x) = 2 \sin(\frac{1}{2}x - \frac{\pi}{6}) + 1$ for $0 \le x \le 4\pi$.

(a) Sketch the graph of $y = f(x)$ and shade the region which lies between the graph and the x-axis with $0 \le x \le 4\pi$ (one part of the region lies above the x-axis and one part lies below).

Solution: We have $f(x) = 2 \sin(\frac{1}{2}(x - \frac{\pi}{3})) + 1$, so we can obtain the graph of $y = f(x)$ from the graph of $y = \sin x$ by scaling by a factor of 2, both horizontally and vertically, then by translating $\frac{\pi}{3}$ units to the right and 1 unit upwards.

(b) Find the exact area of the region described in part (a).

Solution: Let A_1 be the area of the part that lies above the x-axis and let A_2 be the area of the part which lies below. To find A_1 and A_2 we need to know the x-intercepts of the graph. A good graph (or table of values) will show the exact value of the x-intercepts, but they can also be found algebraically as follows. We have $f(x) = 0 \iff 2\sin\left(\frac{1}{2}x - \frac{\pi}{6}\right) + 1 = 0 \iff \sin\left(\frac{1}{2}x - \frac{\pi}{6}\right) = -\frac{1}{2} \iff \left(\frac{1}{2}x - \frac{\pi}{6}\right) = \frac{7\pi}{6}, \frac{11\pi}{6} \iff \frac{1}{2}x = \frac{4\pi}{3}, 2\pi \iff x = \frac{8\pi}{3}, 4\pi$. Now we can calculate the areas A_1 and A_2 . By inspect error), an antiderivative for $f(x)$ is $-4\cos\left(\frac{1}{2}x - \frac{\pi}{6}\right) + x$, so we have

$$
A_1 = \int_0^{8\pi/3} f(x) dx = \left[-4\cos\left(\frac{1}{2}x - \frac{\pi}{6}\right) + x \right]_0^{8\pi/3} = \left(-4\cos\left(\frac{7\pi}{6}\right) + \frac{8\pi}{3} \right) - \left(-4\cos\left(-\frac{\pi}{6}\right) \right)
$$

\n
$$
= \left(2\sqrt{3} + \frac{8\pi}{3} \right) + \left(2\sqrt{3} \right) = 4\sqrt{3} + \frac{8\pi}{3}, \text{ and}
$$

\n
$$
A_2 = \int_{8\pi/3}^{4\pi} -f(x) dx = \left[4\cos\left(\frac{1}{2}x - \frac{\pi}{6}\right) - x \right]_{8\pi/3}^{4\pi} = \left(4\cos\left(\frac{11\pi}{6}\right) - 4\pi \right) - \left(4\cos\left(\frac{7\pi}{6}\right) - \frac{8\pi}{3} \right)
$$

\n
$$
= \left(2\sqrt{3} - 4\pi \right) - \left(-2\sqrt{3} - \frac{8\pi}{3} \right) = 4\sqrt{3} - \frac{4\pi}{3}
$$

The total area of the region is $A = A_1 + A_2 = 8\sqrt{3} + \frac{4\pi}{3}$.

2: Find the area of the region bounded by the curves $y^2 = 2x$ and $y = \frac{x}{x}$ $\frac{x}{x-3}$ Solution: First sketch the two curves. The hyperbola $y = \frac{x}{x}$ $x - 3$ is shown at right in blue, and the parabola $y^2 = 2x$ is in red. We see that the region in question lies below the hyperbola and above the bottom half of the parabola, which is given by $y = -\sqrt{2x}$, with $0 \leq x \leq 2$. Thus the area is

$$
A = \int_0^2 \left(\frac{x}{x-3}\right) - \left(-\sqrt{2x}\right) dx
$$

=
$$
\int_0^2 \frac{x-3+3}{x-3} + \sqrt{2x} dx
$$

=
$$
\int_0^2 1 + \frac{3}{x-3} + (2x)^{1/2} dx
$$

=
$$
\left[x + 3\ln|x-3| + \frac{1}{3}(2x)^{3/2}\right]_0^2
$$

=
$$
\left(2 + 0 + \frac{8}{3}\right) - \left(3\ln 3\right)
$$

=
$$
\frac{14}{3} - 3\ln 3.
$$

3: Find the area of the region bounded by the curves $y = \sin x$ and $y = 1 - \frac{1}{4}$ $\frac{1}{3}\sin(2x)$ between their two points of intersection with $0 \le x \le 2\pi$.

Solution: First we sketch the two curves. The curve $y = \sin x$ is shown in blue and the curve $y = 1 - \frac{1}{\sqrt{2}}$ $\frac{1}{3}$ sin 2x is shown in red.

The region lies below the curve $y = \sin x$ and above the curve $y = 1 - \frac{1}{\sqrt{2}}$ $\frac{\pi}{3}$ sin 2x with $\frac{\pi}{6} \leq x \leq \frac{\pi}{2}$, so the area is given by

$$
A = \int_{\pi/6}^{\pi/2} \sin x - (1 - \frac{1}{\sqrt{3}} \sin 2x) dx
$$

=
$$
\int_{\pi/6}^{\pi/2} \sin x + \frac{\sqrt{3}}{3} \sin 2x - 1 dx
$$

=
$$
\left[-\cos x - \frac{\sqrt{3}}{6} \cos 2x - x \right]_{\pi/6}^{\pi/2}
$$

=
$$
(0 - \frac{\sqrt{3}}{6}(-1) - \frac{\pi}{2}) - \left(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} \cdot \frac{1}{2} - \frac{\pi}{6} \right)
$$

=
$$
\sqrt{3} \left(\frac{1}{6} + \frac{1}{2} + \frac{1}{12} \right) - \pi \left(\frac{1}{2} - \frac{1}{6} \right)
$$

=
$$
\frac{3\sqrt{3}}{4} - \frac{\pi}{3}.
$$

4: A rod of length 3 m lies along the axis with one end at $x = 0$ and the other end at $x = 3$. The linear A rod or length 3 m hes along the axis with one end at $x = 0$ and the other end at $x = 3$. The linear densityat each point, in kg/m , is given by $\rho(x) = \sqrt{1 + 4x - x^2}$. Find the total mass and the average linear density of the rod.

Solution: The total mass is given by $m = \int_0^3$ 0 $\rho(x) dx = \int_0^3$ 0 $\sqrt{1+4x-x^2} dx = \int_0^3$ 0 $\sqrt{5-(x-2)^2} dx$. This integral can be evaluated using the substitution $\sqrt{5} \sin \theta = x - 2$, but it is much easier to notice that the region under the circle $y = \sqrt{5 - (x - 2)^2}$ between $x = 0$ and $x = 3$ can be cut up into a quarter-circle, which has area $\frac{1}{4}\pi(\sqrt{5})^2$, and two triangles, each of area 1. Thus the mass is $m = \int_0^3$ 0 $\sqrt{5-(x-2)^2} dx = 2 + \frac{5\pi}{4}.$ The average density is $\overline{\rho} = \frac{1}{3} m = \frac{2}{3} + \frac{5\pi}{12}$.

5: (a) Let R be the region given by $0 \le y \le 1 - \frac{1}{4}x^2$ and $-2 \le x \le 2$. Find the volume of the solid obtained by revolving R about the x -axis.

Solution: The volume is $V = 2 \int_0^2$ 0 $\pi \left(1 - \frac{1}{4}x^2\right)^2 dx = 2\pi \int_0^2$ 0 $1 - \frac{1}{2}x^2 + \frac{1}{16}x^4 dx = 2\pi \left[x - \frac{1}{6}x^3 + \frac{1}{80}x^5\right]^2$ 0 = $2\pi \left(2-\frac{4}{3}+\frac{2}{5}\right)=\frac{32}{15}\pi.$

(b) Let S be the region given by $\frac{1}{4}x^2 - 1 \le y \le 1 - \frac{1}{4}x^2$ and $0 \le x \le 2$. Find the volume of the solid obtained by revolving S about the y -axis.

Solution: Using cylindrical shells, the volume is given by $V = 2 \int^2$ 0 $2\pi x \left(1 - \frac{1}{4}x^2\right) dx = 4\pi \int_0^2$ 0 $x-\frac{1}{4}x^2 dx =$ $4\pi \left[\frac{1}{2}x^2 - \frac{1}{16}x^4\right]^2$ 0 $= 4\pi(2-1) = 4\pi.$

6: Let R be the (infinitely long) region given by $0 \le y \le \frac{1}{1+y}$ $\frac{1}{1+x^2}$ and $x \ge 0$.

(a) Find the volume of the solid obtained by revolving R about the x-axis.

Solution: The volume is given by $V = \int_{0}^{\infty}$ $x=0$ $\pi \frac{1}{\sqrt{1-\frac{1}{2}}}$ $\frac{1}{(1+x^2)^2} dx$. We let $\tan \theta = x$ so sec $\theta =$ √ $\overline{1+x^2}$ and $\sec^2 \theta \, d\theta = dx$, and then we obtain $V = \int^{\pi/2}$ $_{\theta=0}$ $\pi \frac{\sec^2 \theta \, d\theta}{4.0}$ $\frac{\sec^2\theta\,d\theta}{\sec^4\theta} = \pi\int_0^{\pi/2}$ 0 $\cos^2 \theta \, d\theta = \pi \int^{\pi/2}$ 0 $\frac{1}{2} + \frac{1}{2} \cos 2\theta \ d\theta =$ $\pi \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta\right]^{\pi/2}$ 0 $=\frac{\pi^2}{4}$ $\frac{1}{4}$.

(b) Find the volume of the solid obtained by revolving R about the y-axis.

Solution: Using cylindrical shells, the volume is $V = \int_{0}^{\infty}$ $x=0$ $2\pi x - \frac{1}{1}$ $\frac{1}{1+x^2} dx$. Let $u = 1+x^2$ so that $du = 2x dx$, and then $V = \pi \int_{0}^{\infty}$ $u=1$ 1 $\frac{1}{u} du = \pi \left[\ln u \right]_1^{\infty}$ $_1 = \infty$

- 7: Find the volume of the solid which is obtained by revolving the disc $(x-1)^2 + y^2 \le 1$ about the y-axis.
	- Solution: Using cylindrical shells, the volume is $V = 2 \int_0^2$ $x=0$ $2\pi x\sqrt{1-(x-1)^2}$ dx. Let $\sin\theta = x-1$ so that $\cos \theta = \sqrt{1 - (x - 1)^2}$ and $\cos \theta d\theta = dx$. Then we have $V = 4\pi \int_0^{\pi/2}$ $\theta = -\pi/2$ $(\sin \theta + 1) \cos \theta \cos \theta d\theta =$ $4\pi \int^{\pi/2}$ $-\pi/2$ $\sin \theta \cos^2 \theta + \cos^2 \theta \ d\theta = 4\pi \int^{\pi/2}$ $-\pi/2$ $\sin \theta \cos^2 \theta + \frac{1}{2} + \frac{1}{2} \cos 2\theta \ d\theta = 4\pi \left[-\frac{1}{3} \cos^3 \theta + \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]^{\pi/2}$ $-\pi/2$ = $4\pi \left(\frac{\pi}{4} + \frac{\pi}{4} \right) = 2\pi^2.$
- 8: A circular hole of radius 1 is bored through the center of a wooden ball of radius 2. Find the volume of the remaining portion of the ball.

Solution: We provide two solutions. For the first solution, we note that the remaining portion of the ball is in the shape of the solid obtained by revolving the region given by $1 \le y \le \sqrt{4-x^2}$ and $-\sqrt{3} \le x \le \sqrt{3}$ about the x-axis. The cross-section at x is shaped like an annulus (that is a circular disc with a smaller circular hole the x-axis. The cross-section at x is shaped like an annulus (that is a circular disc with a smaller circular hole
in the center) with outer radius $\sqrt{4-x^2}$ and inner radius 1. The cross-sectional area is $A(x) = \pi(4-x^2) \pi(3-x^2)$. The volume is $V=2$ $\sqrt{3}$ 0 $\pi(3-x^2) dx = 2\pi \left[3x - \frac{1}{3}x^3\right]$ √ 3 $=2\pi$ (3 √ 3 − √ $\overline{3})=4\pi$ √ 3.

For the second solution, we note that the remaining portion of the ball is in the shape of the solid obtained by revolving the region given by − $^{\rm e}$, remaining portu $\frac{4-x^2}{3} \leq y \leq \sqrt{2}$ $\overline{4-x^2}$ and $1 \leq x \leq 2$ about the y-axis, so using cylindrical shells, the volume is $V = 2 \int_0^2$ $x=1$ $2\pi x\sqrt{4-x^2}$ dx. Letting $u=4-x^2$ so that $du=-2x dx$ we obtain $V = \int_0^0$ $u=3$ $-2\pi\sqrt{u} \, du = -2\pi \left[\frac{2}{3} u^{3/2}\right]^0$ 3 $=-2\pi (-2)$ √ $\overline{3})=4\pi$ √ 3.

- 9: Find the arclength of the curve $y = e^x$ with $0 \le x \le \ln 2$.
	- Solution: We have $y' = e^x$ so that arclength is $L = \int^{\ln 2}$ $x=0$ $\sqrt{1 + e^{2x}} dx$. Let $u = \sqrt{2}$ $\overline{1+e^{2x}}$ so that $u^2 = 1+e^{2x}$ and $2u du = 2e^{2x} dx$, so $dx = \frac{u}{2}$ $\frac{u}{e^{2x}} du = \frac{u}{u^2}$ $\frac{u}{u^2-1}$ du. Then we obtain $L = \int$ √ 5 $u=\sqrt{2}$ $u^2 du$ $\frac{u^2 du}{u^2-1} = \int$ √ 5 $\sqrt{2}$ $1+\frac{1}{2}$ $\frac{1}{u^2-1} du =$ Z √ 5 $\sqrt{2}$ 1 + $\frac{1}{2}$ $\frac{2}{u-1}$ – $\frac{1}{2}$ $\frac{\frac{1}{2}}{u+1} du = \left[u + \frac{1}{2} \ln \right]$ $u-1$ $u+1$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $1^{\sqrt{5}}$ √ $\sqrt{2}$ = $\sqrt{5} + \frac{1}{2} \ln \left(\frac{\sqrt{5}-1}{\sqrt{5}+1} \right) -$ √ $\overline{2} - \frac{1}{2} \ln \left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right)$.
- 10: Find the arclength of the portion of the parabola $y = x^2$ with $0 \le x \le 1$. Solution: We have $y' = 2x$ so $\sqrt{1 + (y')^2} = \sqrt{2x}$ $\frac{1}{1+4x^2}$. Let $\tan \theta = 2x$, sec $\theta = \sqrt{2}$ $\overline{1+4x^2}$, $\sec^2 \theta d\theta = 2 dx$. Then the arclength is $L = \int_0^1$ 0 $\sqrt{1+4x^2} dx = \int_0^1$ $x=0$ $\frac{1}{2}\sec^3\theta \,d\theta = \left[\frac{1}{4}\sec\theta\tan\theta + \frac{1}{4}\ln|\sec\theta + \tan\theta|\right]_x^1$ $x=0$ $\frac{1}{2}x$ √ $\frac{1+4x^2}{1+4x^2} + \frac{1}{4}\ln\left|2x\right| +$ √ $\sqrt{1+4x^2}$ $\int_0^1 = \frac{\sqrt{5}}{2} + \frac{1}{4} \ln(2 + \sqrt{5}).$ 0
- 11: Find the area of the surface which is obtained by revolving the portion of the cubic curve $y = x^3$ with $0 \leq x \leq 1$ about the *y*-axis. Solution: We have $y' = 3x^2$ so $\sqrt{1 + (y')^2} = \sqrt{2}$ $\overline{1+9x^4}$. Let $\tan \theta = 3x^2$ so that $\sec \theta =$ √ $1+9x^4$ and $\sec^2 \theta \, d\theta = 6x \, dx$. Then the surface area is $A = \int_0^1$ 0 $2\pi x \sqrt{1+9x^4} dx = \frac{\pi}{3}$ \int_0^1 $x=0$ $\sec^3 \theta \, d\theta = \frac{\pi}{3} \Big[\frac{1}{2} \sec \theta \tan \theta +$ $\frac{1}{2} \ln |\sec \theta + \tan \theta|$ $\Big]_{x=0}^{1} = \frac{\pi}{6} \Big[3x^2 \sqrt{\frac{9x^2}{6}} \Big]$ $\frac{36}{1+9x^4} + \ln |3x^2 + \sqrt{3}$ $\sqrt{1+9x^4}$ \vert ¹ $\frac{\pi}{6} = \frac{\pi}{6} (3$ $\sqrt{10} + \ln(3 + \sqrt{10})$.