MATH 138 Calculus 2, Solutions to the Exercises for Chapter 7

1: Find the limit of each of the following sequences $\{a_n\}$, if the limit exists.

(a)
$$
a_n = \frac{\sqrt{4n^2 + 3}}{n - \sqrt{n}}
$$

\nSolution: $a_n = \frac{\sqrt{4n^2 + 3}}{n - \sqrt{n}} = \frac{\sqrt{4 + \frac{3}{n^2}}}{1 - \frac{1}{\sqrt{n}}} \longrightarrow \frac{\sqrt{4}}{1} = 2.$
\n(b) $a_n = \frac{(-3)^n}{2^{2n+1}}$
\nSolution: $a_n = \frac{(-3)^n}{2^{2n+1}} = \frac{1}{2}(-\frac{3}{4})^n \longrightarrow 0$ since $|- \frac{3}{4}| < 1.$
\n(a) 2^{2n}

$$
(c) \ a_n = \frac{2}{n!}
$$

Solution: Note that $a_n = \frac{2^{2n}}{n!}$ $\frac{2^{2n}}{n!} = \frac{4^n}{n!}$ $\frac{4^n}{n!} = \frac{4 \cdot 4 \cdot 4 \cdots 4}{1 \cdot 2 \cdot 3 \cdots n}$ $\frac{4 \cdot 4 \cdot 4 \cdot \cdot \cdot \cdot 4}{1 \cdot 2 \cdot 3 \cdot \cdot \cdot n} = \frac{4}{1} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot \left(\frac{4}{5}\right) \left(\frac{4}{5}\right) \left(\frac{4}{6}\right) \cdot \cdot \cdot \left(\frac{4}{n-1}\right) \cdot \frac{4}{n} \leq \frac{4}{1} \cdot \frac{4}{2} \cdot \frac{4}{3} \cdot \frac{4}{n} = \frac{128}{3n},$ since all the terms in brackets are ≤ 1 . Since $0 \leq a_n \leq \frac{128}{3n}$ and $\frac{128}{3n} \longrightarrow 0$, we have $a_n \longrightarrow 0$ by the Squeeze Theorem.

(d)
$$
a_n = \left(\frac{n+1}{n-1}\right)^n.
$$

Solution: $a_n = e^{n \ln \left(\frac{n+1}{n-1}\right)} \longrightarrow e^2$ since $\lim_{n \to \infty}$ $\ln\left(\frac{n+1}{n-1}\right)$ $\frac{\frac{n-1}{1}}{n} = \lim_{n \to \infty}$ $\frac{n-1}{n+1}$ $\frac{(n-1)-(n+1)}{(n-1)^2}$ $\frac{\frac{(n-1)^2-(n+1)}{(n-1)^2}}{-\frac{1}{n^2}} = \lim_{n \to \infty} \frac{2n^2}{n^2 - 1}$ $\frac{2n}{n^2-1} \longrightarrow 2$, where we used l'Hôpital's Rule (treating n as a real variable).

2: (a) Let $a_1 = \frac{4}{3}$ and $a_{n+1} = 5 - \frac{4}{a}$ $\frac{1}{a_n}$ for $n \geq 1$. Determine whether $\{a_n\}$ converges and, if so, find the limit.

Solution: If $\{a_n\}$ does converge, say $a_n \to l$, then we also have $a_{n+1} \to l$, and so taking the limits on both sides of the formula $a_{n+1} = 5 - \frac{4}{a_n}$ gives $l = 5 - \frac{4}{l} \implies l^2 = 5l - 4 \implies l^2 - 5l + 4 = 0 \implies (l-1)(l-4) = 0$. This shows that if the limit exists then it must be equal to 1 or 4.

The first few terms of the sequence are $a_1 = \frac{4}{3}$, $a_2 = 2$ and $a_3 = 3$. Since the terms appear to be increasing, we shall try to prove that $1 \le a_n \le a_{n+1} \le 4$ for all $n \ge 1$. This is true when $n = 1$. Suppose it is true when $n = k$. Then we have $1 \le a_k \le a_{k+1} \le 4 \Longrightarrow 1 \ge \frac{1}{a_k} \ge \frac{1}{a_{k+1}} \ge \frac{1}{4} \Longrightarrow -4 \le -\frac{4}{a_k} \le -\frac{4}{a_{k+1}} \le -1$ $\Rightarrow 1 \leq 5 - \frac{4}{a_k} \leq 5 - \frac{4}{a_{k+1}} \leq 4$, that is $1 \leq a_{k+1} \leq a_{k+2} \leq 4$. Thus, by mathematical induction, we have $1 \leq a_n \leq a_{n+1} \leq 4$ for all $n \geq 1$.

Since $a_n \le a_{n+1}$ for all $n \ge 1$, the sequence is increasing, and since $a_n \le 4$ for all $n \ge 1$, the sequence is bounded above. Thus the sequence does converge. Since we know the limit must be either 1 or 4, and since the sequence starts at $a_1 = 2$ and increases, the limit must be 4.

(b) Let $a_1 = 2$ and $a_{n+1} =$ √ $3a_n^2 - 3$ for $n \ge 1$. Determine whether $\{a_n\}$ converges and, if so, find the limit. Solution: If $\{a_n\}$ does converge, say $a_n \to l$, then we also have $a_{n+1} \to l$, and so taking the limit on both sides of the formula $a_{n+1} =$ √ $3a_n^2 - 3$ gives $l = \sqrt{ }$ $\overline{3l^2 - 3} \Longrightarrow l^2 = 3l^2 - 3 \Longrightarrow 2l^2 = 3 \Longrightarrow l = \pm \sqrt{\frac{3}{2}}$. Only the positive value is a solution to $l =$ √ $\sqrt{\frac{3}{2}}$. So if the limit exists then it must be $\sqrt{\frac{3}{2}}$.

The first few terms are $a_1 = 2, a_2 =$ √ $9 = 3$ and $a_3 =$ $\sqrt{24} = 2\sqrt{6}$. Since the sequence appears to be increasing, we shall try to prove that $\sqrt{\frac{3}{2}} \le a_n \le a_{n+1}$ for all n. This is true when $n = 1$. Suppose it is true when $n = k$. Then we have $\sqrt{\frac{3}{2}} \le a_k \le a_{k+1} \implies \frac{3}{2} \le a_k^2 \le a_{k+1}^2 \implies \frac{9}{2} \le 3 a_k^2 \le 3 a_{k+1}^2 \implies$ $\frac{3}{2} \leq 3 a_k^2 - 3 \leq 3 a_{k+1}^2 - 3 \implies \sqrt{\frac{3}{2}} \leq \sqrt{3}$ $3a_k^2 - 3 \leq \sqrt{3a_{k+1}^2 - 3}$, that is $\sqrt{\frac{3}{2}} \leq a_{k+1} \leq a_{k+2}$. Thus, by mathematical induction, we have $\sqrt{\frac{3}{2}} \le a_n \le a_{n+1}$ for all $n \ge 1$.

Since the sequence starts at $a_1 = 2$ and increases, the limit cannot possibly be $\sqrt{\frac{3}{2}}$, so the sequence diverges to infinity.

3: (a) Find $\sum_{n=1}^{\infty}$ $n=1$ $1 + 2^n$ $\frac{1}{2^{2n+1}}$, if it exists. Solution: $\sum_{n=1}^{\infty}$ $n=1$ $1 + 2^n$ $\frac{1+2^n}{2^{2n+1}} = \sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{2^{2n+1}} + \sum_{n=1}^{\infty}$ $n=1$ 2^n $\frac{2}{2^{2n+1}} =$ $\frac{1}{8}$ $1 - \frac{1}{4}$ + $\frac{1}{4}$ $1-\frac{1}{2}$ $=\frac{1}{6} + \frac{1}{2} = \frac{2}{3}.$ (b) Find $\sum_{n=1}^{\infty}$ $n=0$ 1 $\frac{1}{n^2+4n+3}$, if it exists. Solution: $\sum_{n=1}^{\infty}$ $n=0$ 1 $\frac{1}{n^2+4n+3} = \sum_{n=0}^{\infty}$ $n=0$ $\frac{1}{2}$ $\frac{2}{n+1}$ – $\frac{1}{2}$ $rac{\frac{1}{2}}{n+3}$. The lth partial sum is $S_l = \frac{1}{2} \sum_{n=0}^{l}$ $n=0$ 1 $\frac{1}{n+1} - \frac{1}{n+1}$ $\frac{1}{n+3}$ =

 $\frac{1}{2}\left(\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\cdots+\left(\frac{1}{l-2}+\frac{1}{l}\right)+\left(\frac{1}{l-1}-\frac{1}{l+1}\right)+\left(\frac{1}{l}-\frac{1}{l+2}\right)+\left(\frac{1}{l+1}-\frac{1}{l+3}\right)\right)=$ $\frac{1}{2}(1+\frac{1}{2}-\frac{1}{l+2}-\frac{1}{l+3}) \rightarrow \frac{1}{2}(1+\frac{1}{2}) = \frac{3}{4}$ as $l \rightarrow \infty$. Thus the sum is $\frac{3}{4}$.

(c) A hypothetical ball bounces as follows: when it is in the air, it has a constant downwards acceleration of $g = 10$; when it bounces, it rebounds instantaneously; whenever it drops from a height h, it rebounds to a height of $\frac{3}{4}h$. This ball is dropped from an initial height $h = 5$ and allowed to bounce indefinitely. Find the total distance travelled by the ball, and determine how long it takes for the ball to come to rest.

Solution: More generally, if the ball is dropped form an initial height h , then it falls a distance h , rebounds and climbs a distance $\frac{3}{4}h$ and falls the same distance $\frac{3}{4}h$, then rebounds and climbs $(\frac{3}{4})^2h$ and falls the same distance, then rebounds and climbs $\left(\frac{3}{4}\right)^3 h$ and falls the same distance, and so on. The total distance travelled is

$$
d = h + 2\left(\frac{3}{4}\right)h + 2\left(\frac{3}{4}\right)^2h + 2\left(\frac{3}{4}\right)^3h + \dots = h\left(1 + 2\left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 + 2\left(\frac{3}{4}\right)^3 + \dots\right) = h\left(1 + \frac{2\cdot\frac{3}{4}}{1 - \frac{3}{4}}\right) = 7h.
$$

When the initial height is $h = 5$, the total distance is $d = 35$.

Since the acceleration is $a = -g$, when the ball is dropped at $t = 0$ from an initial height $x(0) = h$ with an initial speed $v(0) = x'(0) = 0$, the velocity is $v(t) = \int g dt = -gt + v(0) = -gt$, and the position is $x(t) = \int -gt \, dt = -\frac{1}{2}gt^2 + x(0) = h - \frac{1}{2}gt^2$. The ball lands when $x(t) = 0$, that is when $\frac{1}{2}gt^2 = h$, or $t = \sqrt{\frac{2h}{g}}$. Thus the time taken for the ball to drop to the ground from a height of h is equal to $\sqrt{\frac{2h}{g}}$. Similarly, it takes the same amount of time from the moment the ball rebounds off the ground until the moment it reached a maximum height of h. Thus the total amount of time until the ball comes to rest is

$$
t = \sqrt{\frac{2h}{g}} + 2\sqrt{\frac{2 \cdot \frac{3}{4}h}{g}} + 2\sqrt{\frac{2(\frac{3}{4})^2 h}{g}} + 2\sqrt{\frac{2(\frac{3}{4})^3 h}{g}} + \cdots
$$

\n
$$
= \sqrt{\frac{2h}{g}} \left(1 + 2\left(\sqrt{\frac{3}{4}}\right) + 2\left(\sqrt{\frac{3}{4}}\right)^2 + 2\left(\sqrt{\frac{3}{4}}\right)^3 + \cdots\right)
$$

\n
$$
= \sqrt{\frac{2h}{g}} \left(1 + \frac{2\sqrt{\frac{3}{4}}}{1 - \sqrt{\frac{3}{4}}}\right) = \sqrt{\frac{2h}{g}} \left(1 + \frac{2\sqrt{3}}{2 - \sqrt{3}}\right)
$$

\n
$$
= \sqrt{\frac{2h}{g}} \left(1 + \frac{2\sqrt{3}}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}}\right) = \sqrt{\frac{2h}{g}} \left(1 + 4\sqrt{3} + 6\right)
$$

\n
$$
= \sqrt{\frac{2h}{g}} \left(7 + 4\sqrt{3}\right)
$$

When $h = 5$ and $g = 10$, the total time taken is $t = 7 + 4\sqrt{3}$.

4: Determine which of the following series converge.

(a)
$$
\sum \frac{n^2 + 4n}{\sqrt{n^5 - 2n + 1}}
$$

Solution: Let $a_n = \frac{n^2 + 4n}{\sqrt{n^5 - 2n + 1}}$ and let $b_n = \frac{n^2}{\sqrt{n}}$ $rac{u^2}{n^5} = \frac{1}{\sqrt{n}}$. Then $\lim_{n \to \infty} \frac{a_n}{b_n}$ $\frac{b_n}{b_n} = 1$, and $\sum b_n$ diverges, and so $\sum a_n$ diverges too, by the Limit Comparison Test.

(b)
$$
\sum \frac{n^4}{2^n}
$$

Solution: Let $a_n = \frac{n^4}{2n}$ $rac{n^4}{2^n}$. Then $\lim_{n\to\infty} \frac{a_n}{a_{n+1}}$ $\frac{a_n}{a_{n+1}} = \lim_{n \to \infty}$ $(n+1)^4$ 2^{n+1} 2^n $\frac{2}{n^4} = \frac{1}{2} < 1$, so $\sum a_n$ converges by the Ratio Test.

$$
(c) \sum \frac{1}{n (\ln n)^2}
$$

Solution: Let $a_n = \frac{1}{n}$ $\frac{1}{n(\ln n)^2}$, and let $f(x) = \frac{1}{x(\ln x)^2}$ so that $a_n = f(n)$. Note that $f(x)$ is decreasing for $x \geq 1$ and, setting $u = \ln x$ so $du = \frac{dx}{dx}$ $\frac{dx}{x}$, we have \int_{e}^{∞} e $\int f(x) dx = \int^{\infty}$ e 1 $\frac{1}{x(\ln x)^2} dx = \int_1^\infty$ 1 1 $\frac{1}{u^2} du = \left[-\frac{1}{u} \right]_1^{\infty}$ $_1 = 1,$ and so $\sum a_n$ converges by the Integral Test.

(d)
$$
\sum \frac{n^n}{n!}
$$

Solution: Let $a_n = \frac{n^n}{n!}$ $\frac{n^n}{n!}$. Then $\lim_{n\to\infty}\frac{a_n}{a_{n+1}}$ $\frac{a_n}{a_{n+1}} = \lim_{n \to \infty}$ $(n+1)^{n+1}$ $(n+1)!$ n! $\frac{n!}{n^n} = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)$ n $\bigg\}^n = e > 1$, so $\sum a_n$ diverges by the Ratio Test.

(e)
$$
\sum \frac{\ln n}{\sqrt{n}}
$$

Solution: For $n \ge e$ we have $\ln n \ge 1$ so $\frac{\ln n}{\sqrt{n}} \ge \frac{1}{\sqrt{n}}$. But $\sum \frac{1}{\sqrt{n}}$ diverges, and so $\sum \frac{\ln n}{\sqrt{n}}$ diverges too, by the Comparison Test.

5: For each of the following series, determine whether it converges absolutely, converges conditionally, or diverges.

(a)
$$
\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+2}
$$

Solution: Let $a_n = \frac{(-1)^n \sqrt{n}}{n-1}$ $\frac{1}{n+2}$. Then $|a_n|=$ \sqrt{n} $\frac{\sqrt{n}}{n+2}$. Since the sequence $\{|a_n|\}$ decreases to 0, $\sum a_n$ converges by tha A.S.T. On the other hand, if we let $b_n = \frac{\sqrt{n}}{n}$ √ $\sqrt{n} = \frac{1}{\sqrt{n}}$, then we have $\frac{|a_n|}{b_n} \longrightarrow 1$ and $\sum b_n$ diverges (it is a p-series with $p = \frac{1}{2}$, and so $\sum |a_n|$ diverges too, by the L.C.T. Thus $\sum a_n$ converges conditionally.

(b) $\sum (-1)^n e^{1/n}$

Solution: $\lim_{n \to \infty} e^{1/n} = 1$, since $\frac{1}{n} \to 0$, and so $\sum (-1)^n e^{1/n}$ diverges by the N^{th} -Term Test.

(c)
$$
\sum \frac{(-1)^n}{\ln n}
$$

Solution: For $n > 1$, $\left\{\frac{1}{\ln n}\right\}$ is decreasing, and $\lim_{n \to \infty} \frac{1}{\ln n} = 0$, and so $\sum \frac{(-1)^n}{\ln n}$ converges by the Alternating Series Test. On the other hand, $\frac{1}{\ln n} > \frac{1}{n}$, and $\sum \frac{1}{n}$ diverges, so $\sum \frac{1}{\ln n}$ diverges too, by the Comparison Test. Thus $\sum \frac{(-1)^n}{\ln n}$ is conditionally convergent.

(d)
$$
\sum_{n=0}^{\infty} \frac{(-2)^n}{n!}
$$

Solution: Let $a_n = \frac{(-2)^n}{n!}$ $\frac{(-2)^n}{n!}$. Then a_{n+1} a_n $= \frac{2^{n+1}}{(n+1)}$ $(n+1)!$ n! $\frac{n!}{2^n} = \frac{2}{n+1}$ $\frac{2}{n+1} \longrightarrow 0$ < 1, and so $\sum a_n$ converges absolutely by the R.T.

$$
(e) \sum \frac{n}{(-2)^n}
$$

Solution: Let $a_n = \frac{n}{\sqrt{2}}$ $\frac{n}{(-2)^n}$. Then $\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}$ $\frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{n+1}{2^{n+1}}$ 2^{n+1} 2^n $\frac{2}{n} = \frac{1}{2}$, so $\sum |a_n|$ converges by the Ratio Test. Thus $\sum_{n=1}^{\infty} \frac{n}{(-2)^n}$ is absolutely convergent.

6: (a) Estimate the sum $\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n$ $\frac{(-1)}{2^n+2}$ so that the absolute error is at most $\frac{1}{30}$.

Solution: Let $a_n = \frac{(-1)^n}{2n+1}$ $\frac{(-1)^n}{2^n+2}$. Then $|a_n| = \frac{1}{2^n-1}$ $\frac{1}{2^{n}+2}$ so $\{|a_n|\}$ is decreasing with $\lim_{n\to\infty}|a_n| = 0$. By the Alternating Series Test, if we approximate $S = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n$ by the partial sum $S_l = \sum_{n=1}^l$ $\sum_{n=1}$ a_n then the absolute error is

$$
E_l = |S - S_l| = \left| \sum_{n=l+1}^{\infty} a_n \right| \le |a_{l+1}| = \frac{1}{2^{l+1} + 2}.
$$

We have $\frac{1}{2^{l+1}+2} \leq \frac{1}{30} \iff 2^{l+1}+2 \geq 30 \iff 2^{l+1} \geq 28 \iff l+1 \geq 5 \iff l \geq 4$, so to get $E_l \leq \frac{1}{30}$ we can take $l = 4$. Finally, note that $S_4 = \sum_{l=1}^{4}$ $n=0$ $(-1)^n$ $\frac{(-1)}{2^n+2} = \frac{1}{3} - \frac{1}{4} + \frac{1}{6} - \frac{1}{10} + \frac{1}{18} = \frac{37}{180}.$

(b) Estimate the sum $\sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^3 + n}$ so that the absolute error is at most $\frac{1}{16}$.

Solution: Let $a_n = \frac{1}{n^3}$ $\frac{1}{n^3 + n}$. If we approximate $S = \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ by the partial sum $S_l = \sum_{n=1}^l$ $\sum_{n=1}$ a_n then by the Comparison Test (since $\frac{1}{n^3 + n} \leq \frac{1}{n^3}$ $\frac{1}{n^3}$ for all $n \ge 1$) and the Integral Test (since $f(x) = \frac{1}{x^3}$ is decreasing for $x > 0$, the (absolute) error is

$$
E_l = S - S_l = \sum_{n=l+1}^{\infty} \frac{1}{n^3 + n} \le \sum_{n=l+1}^{\infty} \frac{1}{n^3} \le \int_l^{\infty} \frac{1}{x^3} dx = \left[-\frac{1}{2x^2} \right]_l^{\infty} = \frac{1}{2l^2} - \lim_{x \to \infty} \frac{1}{2x^2} = \frac{1}{2l^2}.
$$

We have $\frac{1}{2l^2} \leq \frac{1}{16} \iff 2l^2 \geq 16 \iff l^2 \geq 8 \iff l \geq 3$, so to get $E_l \leq \frac{1}{16}$ we can take $l = 3$. Finally, note that $S_3 = \sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^3 + n} = \frac{1}{2} + \frac{1}{10} + \frac{1}{30} = \frac{19}{30}.$

(c) Estimate the sum $\sum_{n=1}^{\infty}$ $n=2$ $n-1$ $\frac{n!}{n!}$ so that the absolute error is at most $\frac{1}{100}$.

Solution: If we approximate $S = \sum_{n=1}^{\infty}$ $n=2$ $n-1$ $\frac{-1}{n!}$ by the partial sum $S_l = \sum_{i=0}^{l}$ $n=2$ $n-1$ $\frac{1}{n!}$ then, by the Comparison Test, the (absolute) error is

$$
E_{l} = S - S_{l} = \sum_{n=l+1}^{\infty} \frac{n-1}{n!}
$$

\n
$$
= \frac{l}{(l+1)!} + \frac{l+1}{(l+2)!} + \frac{l+2}{(l+3)!} + \frac{l+3}{(l+4)!} + \cdots
$$

\n
$$
= \frac{l}{l+1} \cdot \frac{1}{l!} + \frac{l+1}{l+2} \cdot \frac{1}{(l+1)!} + \frac{l+2}{l+3} \cdot \frac{1}{(l+2)!} + \frac{l+3}{l+4} \cdot \frac{1}{(l+3)!} + \cdots
$$

\n
$$
\leq \frac{1}{l!} + \frac{1}{(l+1)!} + \frac{1}{(l+2)!} + \frac{1}{(l+3)!} + \cdots
$$

\n
$$
= \frac{1}{l!} \left(1 + \frac{1}{(l+1)} + \frac{1}{(l+1)(l+2)} + \frac{1}{(l+1)(l+2)(l+3)} + \cdots \right)
$$

\n
$$
\leq \frac{1}{l!} \left(1 + \frac{1}{(l+1)} + \frac{1}{(l+1)^{2}} + \frac{1}{(l+1)^{3}} + \cdots \right)
$$

\n
$$
= \frac{1}{l!} \cdot \frac{1}{1 - \frac{1}{l+1}} = \frac{1}{l!} \cdot \frac{l+1}{l}.
$$

To get $E_l \leq \frac{1}{100}$ we can choose l so that $\frac{l+1}{l \cdot l!} \leq \frac{1}{100}$. By trial and error, we find that the smallest such value is $l = 5$. Finally note that $S_5 = \sum_{l=1}^{5}$ $n=2$ $n-1$ $\frac{-1}{n!} = \frac{1}{2} + \frac{2}{6} + \frac{3}{24} + \frac{4}{120} = \frac{119}{120}.$

We remark that in fact $S_l = 1 - \frac{1}{l!}$ for all $l \geq 2$ so the exact value of the sum is $S = \lim_{l \to \infty} S_l = 1$.

7: Determine, with proof, which of the following statements are true.

(a) If $\sum a_n$ converges then $\sum \cos(a_n)$ diverges.

Solution: This is TRUE. Suppose that $\sum a_n$ converges. Then $a_n \to 0$ and so $\cos(a_n) \to 1$, and hence \sum cos (a_n) diverges by the NTT.

(b) If $a_n \geq 0$ for all n and $\sum a_n$ converges then $\sum a_n^2$ converges.

Solution: This is TRUE. Suppose that $a_n \geq 0$ for all n and $\sum a_n$ converges. Then $a_n \to 0$ and so for large values of *n* we have $a_n \leq 1$. But when $a_n \leq 1$ we have $a_n^2 \leq a_n$, and so $\sum a_n^2$ converges, by the CT.

(c) If $\lim_{n\to\infty}\frac{a_n}{b_n}$ $\frac{a_n}{b_n} = 1$ then $\left(\sum a_n \text{ converges} \iff \sum b_n \text{ converges}\right)$.

Solution: This is false. For a counterexample, let $a_{2n} = \frac{1}{\sqrt{n}}$ and $a_{2n+1} = -\frac{1}{\sqrt{n}}$ for all $n \ge 1$, so we have ${a_n} = \{1, -1, \frac{1}{\sqrt{2}}\}$ $\frac{1}{2}, -\frac{1}{\sqrt{2}}$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{3}, -\frac{1}{\sqrt{2}}$ $\frac{1}{3}, \dots$, and let $b_{2n} = \left(1 + \frac{1}{\sqrt{n}}\right) a_{2n} = \left(\frac{1}{\sqrt{n}} + \frac{1}{n}\right)$ and $b_{2n+1} = a_{2n+1} =$ $-\frac{1}{\sqrt{n}}$. Note that $\sum a_n$ converges by the A.S.T. Also, we have $\frac{a_{2n+1}}{b_{2n+1}} = 1$ for all n and $\frac{a_{2n}}{b_{2n}} = \frac{1}{1+n}$ $1+\frac{1}{\sqrt{n}}$ \rightarrow 1 as $n \to \infty$, and so $\frac{a_n}{b_n} \to 1$ as $n \to \infty$. But $\sum b_n$ diverges, since, writing S_l for the l^{th} partial sum of $\sum_{n=1}^{\infty} b_n$, we have $S_{2l+1} = \sum_{l=1}^{l}$ $\sum_{n=1}^{l} (a_{2n} + a_{2n+1}) = \sum_{n=1}^{l}$ $n=1$ $\left(\left(\frac{1}{\sqrt{n}}+\frac{1}{n}\right)-\frac{1}{\sqrt{n}}\right)=\sum_{n=1}^{\infty}$ $n=1$ $\frac{1}{n} \to \infty$ as $l \to \infty$.

(d) If $f(x)$ is non-negative and continuous and $\int_{-\infty}^{\infty}$ 1 $f(x) dx$ converges then $\sum_{n=0}^{\infty}$ $n=1$ $f(n)$ converges.

Solution: This is false, and we provide a counterexample. Let

$$
g_1(x) = \begin{cases} 2x - 1 \text{ if } \frac{1}{2} \le x \le 1, \\ 3 - 2x \text{ if } 1 \le x \le \frac{3}{2}, \\ 0 \text{ otherwise,} \end{cases} \quad g_2(x) = \begin{cases} 4x - 7 \text{ if } \frac{7}{4} \le x \le 2, \\ 9 - 4x \text{ if } 2 \le x \le \frac{9}{4}, \\ 0 \text{ otherwise,} \end{cases} \quad g_3(x) = \begin{cases} 8x - 23 \text{ if } \frac{23}{8} \le x \le 3, \\ 25 - 8x \text{ if } 3 \le x \le \frac{25}{8}, \\ 0 \text{ otherwise,} \end{cases}
$$

and in general, for $k \geq 1$ let

$$
g_k(x) = \begin{cases} 2^k x - k2^k + 1 \text{ if } k - \frac{1}{2^k} \le x \le k, \\ k2^k + 1 - 2^k x \text{ if } k \le x \le k + \frac{1}{2^k}, \\ 0 \text{ otherwise.} \end{cases}
$$

Then \int^{∞} $\int_0^\infty g_1(x) \, dx = \frac{1}{2}, \, \int_0^\infty$ $\int_0^\infty g_2(x) dx = \frac{1}{4}, \int_0^\infty$ $\int_0^\infty g_3(x) dx = \frac{1}{8}$, and in general \int_0^∞ $\int_0^\infty g_k(x)\,dx = \frac{1}{2^k}$ $\frac{1}{2^k}$. Now let $g(x) = g_k(x)$ when $x \in \left[k - \frac{1}{2^k}, k + \frac{1}{2^k}\right]$ and let $g(x) = 0$ otherwise. The graph of $g(x)$ is shown below.

Then $g(x)$ is nonnegative and continuous, and $\int_{-\infty}^{\infty}$ 1 $g(x) dx$ converges, indeed $\int_{-\infty}^{\infty}$ 0 $g(x) dx = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 1.$ On the other hand we have $g(n) = 1$ for all integers $n \geq 1$, so $\sum_{n=1}^{\infty}$ $n=1$ $g(n) = \infty$.