
MATH 138 Calculus 2, Solutions to the Exercises for Chapter 7

1: Find the limit of each of the following sequences {an}, if the limit exists.

(a) an =

√
4n2 + 3

n−
√
n

Solution: an =

√
4n2 + 3

n−
√
n

=

√
4 + 3

n2

1− 1√
n

−→
√

4

1
= 2.

(b) an =
(−3)n

22n+1

Solution: an =
(−3)n

22n+1
= 1

2

(
− 3

4

)n −→ 0 since
∣∣− 3

4

∣∣ < 1.

(c) an =
22n

n!

Solution: Note that an =
22n

n!
=

4n

n!
=

4 · 4 · 4 · · · 4
1 · 2 · 3 · · ·n

= 4
1 ·

4
2 ·

4
3 ·
(
4
4

) (
4
5

) (
4
6

)
· · ·
(

4
n−1

)
· 4n ≤

4
1 ·

4
2 ·

4
3 ·

4
n = 128

3n ,

since all the terms in brackets are ≤ 1. Since 0 ≤ an ≤ 128
3n and 128

3n −→ 0, we have an −→ 0 by the Squeeze
Theorem.

(d) an =

(
n + 1

n− 1

)n

.

Solution: an = e
n ln
(

n+1
n−1

)
−→ e2 since lim

n→∞

ln
(
n+1
n−1

)
1
n

= lim
n→∞

n−1
n+1

(n−1)−(n+1)
(n−1)2

− 1
n2

= lim
n→∞

2n2

n2 − 1
−→ 2, where

we used l’Hôpital’s Rule (treating n as a real variable).



2: (a) Let a1 = 4
3 and an+1 = 5− 4

an
for n ≥ 1. Determine whether {an} converges and, if so, find the limit.

Solution: If {an} does converge, say an → l, then we also have an+1 → l, and so taking the limits on both
sides of the formula an+1 = 5− 4

an
gives l = 5− 4

l =⇒ l2 = 5l− 4 =⇒ l2 − 5l + 4 = 0 =⇒ (l− 1)(l− 4) = 0.
This shows that if the limit exists then it must be equal to 1 or 4.

The first few terms of the sequence are a1 = 4
3 , a2 = 2 and a3 = 3. Since the terms appear to be

increasing, we shall try to prove that 1 ≤ an ≤ an+1 ≤ 4 for all n ≥ 1. This is true when n = 1. Suppose it
is true when n = k. Then we have 1 ≤ ak ≤ ak+1 ≤ 4 =⇒ 1 ≥ 1

ak
≥ 1

ak+1
≥ 1

4 =⇒ −4 ≤ − 4
ak
≤ − 4

ak+1
≤ −1

=⇒ 1 ≤ 5 − 4
ak
≤ 5 − 4

ak+1
≤ 4, that is 1 ≤ ak+1 ≤ ak+2 ≤ 4. Thus, by mathematical induction, we have

1 ≤ an ≤ an+1 ≤ 4 for all n ≥ 1.
Since an ≤ an+1 for all n ≥ 1, the sequence is increasing, and since an ≤ 4 for all n ≥ 1, the sequence is

bounded above. Thus the sequence does converge. Since we know the limit must be either 1 or 4, and since
the sequence starts at a1 = 2 and increases, the limit must be 4.

(b) Let a1 =2 and an+1 =
√

3an2 − 3 for n≥1. Determine whether {an} converges and, if so, find the limit.

Solution: If {an} does converge, say an → l, then we also have an+1 → l, and so taking the limit on both

sides of the formula an+1 =
√

3an2 − 3 gives l =
√

3l2 − 3 =⇒ l2 = 3l2 − 3 =⇒ 2l2 = 3 =⇒ l = ±
√

3
2 . Only

the positive value is a solution to l =
√

3l2 − 3, so if the limit exists then it must be
√

3
2 .

The first few terms are a1 = 2, a2 =
√

9 = 3 and a3 =
√

24 = 2
√

6. Since the sequence appears to be

increasing, we shall try to prove that
√

3
2 ≤ an ≤ an+1 for all n. This is true when n = 1. Suppose it is

true when n = k. Then we have
√

3
2 ≤ ak ≤ ak+1 =⇒ 3

2 ≤ ak
2 ≤ ak+1

2 =⇒ 9
2 ≤ 3 ak

2 ≤ 3 ak+1
2 =⇒

3
2 ≤ 3 ak

2 − 3 ≤ 3 ak+1
2 − 3 =⇒

√
3
2 ≤
√

3 ak2 − 3 ≤
√

3 ak+1
2 − 3, that is

√
3
2 ≤ ak+1 ≤ ak+2. Thus, by

mathematical induction, we have
√

3
2 ≤ an ≤ an+1 for all n ≥ 1.

Since the sequence starts at a1 = 2 and increases, the limit cannot possibly be
√

3
2 , so the sequence

diverges to infinity.



3: (a) Find

∞∑
n=1

1 + 2n

22n+1
, if it exists.

Solution:

∞∑
n=1

1 + 2n

22n+1
=

∞∑
n=1

1

22n+1
+

∞∑
n=1

2n

22n+1
=

1
8

1− 1
4

+
1
4

1− 1
2

= 1
6 + 1

2 = 2
3 .

(b) Find

∞∑
n=0

1

n2 + 4n + 3
, if it exists.

Solution:

∞∑
n=0

1

n2 + 4n + 3
=

∞∑
n=0

1
2

n + 1
−

1
2

n + 3
. The lth partial sum is Sl = 1

2

l∑
n=0

1

n + 1
− 1

n + 3
=

1
2

((
1
1 −

1
3

)
+
(
1
2 −

1
4

)
+
(
1
3 −

1
5

)
+
(
1
4 −

1
6

)
+ · · · +

(
1

l−2 + 1
l

)
+
(

1
l−1 −

1
l+1

)
+
(
1
l −

1
l+2

)
+
(

1
l+1 −

1
l+3

))
=

1
2

(
1 + 1

2 −
1

l+2 −
1

l+3

)
→ 1

2

(
1 + 1

2

)
= 3

4 as l→∞. Thus the sum is 3
4 .

(c) A hypothetical ball bounces as follows: when it is in the air, it has a constant downwards acceleration of
g = 10; when it bounces, it rebounds instantaneously; whenever it drops from a height h, it rebounds to a
height of 3

4h. This ball is dropped from an initial height h = 5 and allowed to bounce indefinitely. Find the
total distance travelled by the ball, and determine how long it takes for the ball to come to rest.

Solution: More generally, if the ball is dropped form an initial height h, then it falls a distance h, rebounds

and climbs a distance 3
4h and falls the same distance 3

4h, then rebounds and climbs
(
3
4

)2
h and falls the

same distance, then rebounds and climbs
(
3
4

)3
h and falls the same distance, and so on. The total distance

travelled is

d = h + 2
(
3
4

)
h + 2

(
3
4

)2
h + 2

(
3
4

)3
h + · · · = h

(
1 + 2

(
3
4

)
+
(
3
4

)2
+ 2
(
3
4

)3
+ · · ·

)
= h

(
1 +

2· 34
1− 3

4

)
= 7h .

When the initial height is h = 5, the total distance is d = 35.
Since the acceleration is a = −g, when the ball is dropped at t = 0 from an initial height x(0) = h with

an initial speed v(0) = x′(0) = 0, the velocity is v(t) =
∫
g dt = −gt + v(0) = −gt, and the position is

x(t) =
∫
−gt dt = − 1

2gt
2 + x(0) = h − 1

2gt
2. The ball lands when x(t) = 0, that is when 1

2gt
2 = h, or

t =
√

2h
g . Thus the time taken for the ball to drop to the ground from a height of h is equal to

√
2h
g .

Similarly, it takes the same amount of time from the moment the ball rebounds off the ground until the
moment it reached a maximum height of h. Thus the total amount of time until the ball comes to rest is

t =
√

2h
g + 2

√
2· 34h
g + 2

√
2( 3

4 )
2
h

g + 2

√
2( 3

4 )
3
h

g + · · ·

=
√

2h
g

(
1 + 2

(√
3
4

)
+ 2

(√
3
4

)2
+ 2

(√
3
4

)3
+ · · ·

)
=
√

2h
g

(
1 +

2
√

3
4

1−
√

3
4

)
=
√

2h
g

(
1 + 2

√
3

2−
√
3

)
=
√

2h
g

(
1 + 2

√
3

2−
√
3
· 2+

√
3

2+
√
3

)
=
√

2h
g

(
1 + 4

√
3 + 6

)
=
√

2h
g

(
7 + 4

√
3
)

When h = 5 and g = 10, the total time taken is t = 7 + 4
√

3.



4: Determine which of the following series converge.

(a)
∑ n2 + 4n√

n5 − 2n + 1

Solution: Let an =
n2 + 4n√
n5 − 2n + 1

and let bn =
n2

√
n5

=
1√
n

. Then lim
n→∞

an
bn

= 1, and
∑

bn diverges, and so∑
an diverges too, by the Limit Comparison Test.

(b)
∑ n4

2n

Solution: Let an =
n4

2n
. Then lim

n→∞

an
an+1

= lim
n→∞

(n + 1)4

2n+1

2n

n4
= 1

2 < 1, so
∑

an converges by the Ratio Test.

(c)
∑ 1

n (lnn)2

Solution: Let an =
1

n(lnn)2
, and let f(x) =

1

x(lnx)2
so that an = f(n). Note that f(x) is decreasing for

x ≥ 1 and, setting u = lnx so du =
dx

x
, we have

∫ ∞
e

f(x) dx =

∫ ∞
e

1

x(lnx)2
dx =

∫ ∞
1

1

u2
du =

[
− 1

u

]∞
1

= 1,

and so
∑

an converges by the Integral Test.

(d)
∑ nn

n!

Solution: Let an =
nn

n!
. Then lim

n→∞

an
an+1

= lim
n→∞

(n + 1)n+1

(n + 1)!

n!

nn
= lim

n→∞

(
n + 1

n

)n

= e > 1, so
∑

an

diverges by the Ratio Test.

(e)
∑ lnn√

n

Solution: For n ≥ e we have lnn ≥ 1 so
lnn√
n
≥ 1√

n
. But

∑ 1√
n

diverges, and so
∑ lnn√

n
diverges too, by

the Comparison Test.



5: For each of the following series, determine whether it converges absolutely, converges conditionally, or di-
verges.

(a)

∞∑
n=1

(−1)n
√
n

n + 2

Solution: Let an =
(−1)n

√
n

n + 2
. Then |an| =

√
n

n + 2
. Since the sequence

{
|an|

}
decreases to 0,

∑
an converges

by tha A.S.T. On the other hand, if we let bn =

√
n

n
=

1√
n

, then we have
|an|
bn
−→ 1 and

∑
bn diverges

(
it

is a p-series with p = 1
2

)
, and so

∑
|an| diverges too, by the L.C.T. Thus

∑
an converges conditionally.

(b)
∑

(−1)ne1/n

Solution: lim
n→∞

e1/n = 1, since 1
n → 0, and so

∑
(−1)ne1/n diverges by the N th-Term Test.

(c)
∑ (−1)n

lnn

Solution: For n > 1,
{

1
lnn

}
is decreasing, and lim

n→∞
1

lnn = 0, and so
∑ (−1)n

lnn converges by the Alternating

Series Test. On the other hand, 1
lnn > 1

n , and
∑

1
n diverges, so

∑
1

lnn diverges too, by the Comparison

Test. Thus
∑ (−1)n

lnn is conditionally convergent.

(d)

∞∑
n=0

(−2)n

n!

Solution: Let an =
(−2)n

n!
. Then

∣∣∣∣an+1

an

∣∣∣∣ =
2n+1

(n + 1)!

n!

2n
=

2

n + 1
−→ 0 < 1, and so

∑
an converges

absolutely by the R.T.

(e)
∑ n

(−2)n

Solution: Let an =
n

(−2)n
. Then lim

n→∞

|an+1|
|an|

= lim
n→∞

n + 1

2n+1

2n

n
= 1

2 , so
∑
|an| converges by the Ratio Test.

Thus
∑ n

(−2)n
is absolutely convergent.



6: (a) Estimate the sum

∞∑
n=0

(−1)n

2n + 2
so that the absolute error is at most 1

30 .

Solution: Let an =
(−1)n

2n + 2
. Then |an| =

1

2n + 2
so
{
|an|

}
is decreasing with lim

n→∞
|an| = 0. By the

Alternating Series Test, if we approximate S =
∞∑

n=0
an by the partial sum Sl =

l∑
n=1

an then the absolute

error is

El =
∣∣S − Sl

∣∣ =

∣∣∣∣∣ ∞∑n=l+1

an

∣∣∣∣∣ ≤ |al+1| =
1

2l+1 + 2
.

We have
1

2l+1 + 2
≤ 1

30 ⇐⇒ 2l+1 + 2 ≥ 30 ⇐⇒ 2l+1 ≥ 28 ⇐⇒ l + 1 ≥ 5 ⇐⇒ l ≥ 4, so to get El ≤ 1
30

we can take l = 4. Finally, note that S4 =

4∑
n=0

(−1)n

2n + 2
= 1

3 −
1
4 + 1

6 −
1
10 + 1

18 = 37
180 .

(b) Estimate the sum

∞∑
n=1

1

n3 + n
so that the absolute error is at most 1

16 .

Solution: Let an =
1

n3 + n
. If we approximate S =

∞∑
n=1

an by the partial sum Sl =
l∑

n=1
an then by the

Comparison Test (since
1

n3 + n
≤ 1

n3
for all n ≥ 1) and the Integral Test (since f(x) =

1

x3
is decreasing for

x > 0), the (absolute) error is

El = S − Sl =

∞∑
n=l+1

1

n3 + n
≤

∞∑
n=l+1

1

n3
≤
∫ ∞
l

1

x3
dx =

[
− 1

2x2

]∞
l

=
1

2l2
− lim

x→∞

1

2x2
=

1

2l2
.

We have
1

2l2
≤ 1

16 ⇐⇒ 2l2 ≥ 16 ⇐⇒ l2 ≥ 8 ⇐⇒ l ≥ 3, so to get El ≤ 1
16 we can take l = 3. Finally,

note that S3 =

∞∑
n=1

1

n3 + n
= 1

2 + 1
10 + 1

30 = 19
30 .

(c) Estimate the sum

∞∑
n=2

n− 1

n!
so that the absolute error is at most 1

100 .

Solution: If we approximate S =

∞∑
n=2

n− 1

n!
by the partial sum Sl =

l∑
n=2

n− 1

n!
then, by the Comparison

Test, the (absolute) error is

El = S − Sl =

∞∑
n=l+1

n− 1

n!

= l
(l+1)! + l+1

(l+2)! + l+2
(l+3)! + l+3

(l+4)! + · · ·

= l
l+1 ·

1
l! + l+1

l+2 ·
1

(l+1)! + l+2
l+3 ·

1
(l+2)! + l+3

l+4 ·
1

(l+3)! + · · ·

≤ 1
l! + 1

(l+1)! + 1
(l+2)! + 1

(l+3)! + · · ·

= 1
l!

(
1 + 1

(l+1) + 1
(l+1)(l+2) + 1

(l+1)(l+2)(l+3) + · · ·
)

≤ 1
l!

(
1 + 1

(l+1) + 1
(l+1)2 + 1

(l+1)3 + · · ·
)

= 1
l! ·

1
1− 1

l+1

= 1
l! ·

l+1
l .

To get El ≤ 1
100 we can choose l so that l+1

l·l! ≤
1

100 . By trial and error, we find that the smallest such value

is l = 5. Finally note that S5 =

5∑
n=2

n− 1

n!
= 1

2 + 2
6 + 3

24 + 4
120 = 119

120 .

We remark that in fact Sl = 1− 1
l! for all l ≥ 2 so the exact value of the sum is S = lim

l→∞
Sl = 1.



7: Determine, with proof, which of the following statements are true.

(a) If
∑

an converges then
∑

cos(an) diverges.

Solution: This is TRUE. Suppose that
∑

an converges. Then an → 0 and so cos(an) → 1, and hence∑
cos(an) diverges by the NTT.

(b) If an ≥ 0 for all n and
∑

an converges then
∑

an
2 converges.

Solution: This is TRUE. Suppose that an ≥ 0 for all n and
∑

an converges. Then an → 0 and so for large
values of n we have an ≤ 1. But when an ≤ 1 we have an

2 ≤ an, and so
∑

an
2 converges , by the CT.

(c) If lim
n→∞

an
bn

= 1 then
(∑

an converges ⇐⇒
∑

bn converges
)
.

Solution: This is false. For a counterexample, let a2n = 1√
n

and a2n+1 = − 1√
n

for all n ≥ 1, so we have

{an} =
{

1,−1, 1√
2
,− 1√

2
, 1√

3
,− 1√

3
, · · ·

}
, and let b2n =

(
1 + 1√

n

)
a2n =

(
1√
n

+ 1
n

)
and b2n+1 = a2n+1 =

− 1√
n

. Note that
∑

an converges by the A.S.T. Also, we have
a2n+1

b2n+1
= 1 for all n and

a2n
b2n

=
1

1 + 1√
n

→ 1

as n→∞, and so
an
bn
→ 1 as n→∞. But

∑
bn diverges, since, writing Sl for the lth partial sum of

∞∑
n=1

bn,

we have S2l+1 =
l∑

n=1
(a2n + a2n+1) =

l∑
n=1

((
1√
n

+ 1
n

)
− 1√

n

)
=

l∑
n=1

1
n →∞ as l→∞.

(d) If f(x) is non-negative and continuous and

∫ ∞
1

f(x) dx converges then

∞∑
n=1

f(n) converges.

Solution: This is false, and we provide a counterexample. Let

g1(x) =


2x− 1 if 1

2 ≤ x ≤ 1,

3− 2x if 1 ≤ x ≤ 3
2 ,

0 otherwise,

g2(x) =


4x− 7 if 7

4 ≤ x ≤ 2,

9− 4x if 2 ≤ x ≤ 9
4 ,

0 otherwise,

g3(x) =


8x− 23 if 23

8 ≤ x ≤ 3,

25− 8x if 3 ≤ x ≤ 25
8 ,

0 otherwise,

and in general, for k ≥ 1 let

gk(x) =


2kx− k2k + 1 if k − 1

2k
≤ x ≤ k,

k2k + 1− 2kx if k ≤ x ≤ k + 1
2k
,

0 otherwise.

Then

∫ ∞
0

g1(x) dx = 1
2 ,

∫ ∞
0

g2(x) dx = 1
4 ,

∫ ∞
0

g3(x) dx = 1
8 , and in general

∫ ∞
0

gk(x) dx =
1

2k
. Now let

g(x) = gk(x) when x ∈
[
k − 1

2k
, k + 1

2k

]
and let g(x) = 0 otherwise. The graph of g(x) is shown below.

Then g(x) is nonnegative and continuous, and

∫ ∞
1

g(x) dx converges, indeed

∫ ∞
0

g(x) dx = 1
2+ 1

4+ 1
8+· · · = 1.

On the other hand we have g(n) = 1 for all integers n ≥ 1, so

∞∑
n=1

g(n) =∞.


