- 1: (a) Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(1-4x)^n}{n 2^n}.$ (b) Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2-3x)^n}{n+\sqrt{n}}.$ (c) Find the set of all values of x such that the series $\sum_{n=1}^{\infty} \frac{(x^2+x-1)^n}{n}$ converges.
- **2:** (a) Find the Taylor Polynomial of degree 5 centred at 0 for $f(x) = \frac{e^x}{1+x}$.
 - (b) Find the Taylor Polynomial of degree 5 centred at 0 for $f(x) = (1 + 2x)^{3/2} \sin x$.
 - (c) Find the Taylor polynomial of degree 4, centred at 0, for $f(x) = \frac{\ln(1+x)}{\tan^{-1}x}$.

3: (a) Find the Taylor series centred at 0 for $f(x) = \frac{-4}{x^2 + 2x - 3}$, and find the radius of convergence. (b) Find the Taylor series centred at -1 for $f(x) = \frac{-4}{x^2 + 2x - 3}$, and find the radius of convergence.

- (c) Find the Taylor series centred at 0 for $f(x) = \sin x \cos x$.
- (d) Find the Taylor series centred at $\frac{\pi}{4}$ for $f(x) = \sin x \cos x$.
- 4: (a) Approximate $(1300)^{2/3}$ so that the absolute error is at most $\frac{1}{200}$.
 - (b) Approximate $\ln(4/5)$ so that the absolute error is at most $\frac{1}{100}$.
 - (c) Approximate $\int_0^{1/5} \frac{\ln(1+x)}{x} dx$ so that the absolute error is at most $\frac{1}{1000}$.
- 5: (a) Let $f(x) = \cos^2\left(\frac{x^2}{4\sqrt{3}}\right)$. Find the twelfth derivative $f^{(12)}(0)$. (b) Evaluate $\lim_{x \to 0} \frac{\sin x \tan^{-1} x - x^2}{\cos(x^2) - 1}$.
 - (c) Evaluate $\sum_{n=0}^{\infty} \frac{(-2)^n}{(2n)!}$. (d) Evaluate $\sum_{n=0}^{\infty} \frac{n}{(n+1)!}$.
- 6: (a) Let $c_n = 1$ when n is even and $c_n = 2$ when n is odd. Find the function f(x) whose Taylor series centred at 0 is equal to $\sum_{n=0}^{\infty} c_n x^n$.

(b) Let $f(x) = x^3 + x + 1$. Note that f(x) is increasing with f(0) = 1. Let $g(x) = f^{-1}(x)$, Find the Taylor polynomial of degree 6 centred at 1 for g(x).

(c) Find the Taylor polynomial of degree 5 centred at 0 for the solution to the IVP $\frac{1}{2}y'' + y' - 3y = x + 1$ with y(0) = 1 and y'(0) = 2.