- 1: Consider the surface given implicitly by $x^2 + y^2 + 1 = yz$.
 - (a) Sketch the level sets $z = \pm 2, \pm 4, \pm 6$ and the level set x = 0 for this surface.
 - (b) Sketch the surface.
 - (c) Find an explicit equation for the tangent plane to the surface at the point (2, 1, 6).
- **2:** (a) Sketch the curve given parametrically by $(x, y) = \left(\frac{2}{1+t^2}, \frac{2t}{1+t^2}\right)$, showing all points at which the tangent line is horizontal or vertical, then find an implicit equation for the curve.

(b) Define $f : \mathbb{R} \to \mathbb{R}^2$ by $f(t) = (t^2, \frac{t}{t^2+1})$ and define $g : \mathbb{R}^2 \to \mathbb{R}$ by $g(x, y) = y^2(x+1)^2 - x$.

Prove that $\operatorname{Range}(f) = \operatorname{Null}(g)$, then find an explicit equation for the tangent line to this curve at $(\frac{1}{4}, \frac{2}{5})$.

3: (a) Find a parametric equation for the tangent line to the curve of intersection of the paraboloid $z = 1 - x^2 - y^2$ with the plane z = 1 - 2x at the point (1, 1, -1).

(b) When we consider the function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2$ as a function $f: \mathbb{R}^2 \to \mathbb{R}^2$, it is given by f(x,y) = (u(x,y), v(x,y)) with $u(x,y) = x^2 - y^2$ and v(x,y) = 2xy. Let $A = \{(x,y) \in \mathbb{R}^2 \mid 1 \le x \le 2, 0 \le y \le x\}$ and $B = \{(u,v) \in \mathbb{R}^2 \mid 1 \le u \le 4, 0 \le v \le 2\}$. Accurately sketch or describe the sets f(A) and $f^{-1}(B)$.

4: (a) Find an implicit equation, of the form ax + by + cz = d, for the tangent plane to the parametric surface $(x, y, z) = f(s, t) = (s - t^2, \frac{s}{t}, \sqrt{st})$ at the point where (s, t) = (4, 1).

(b) Let C be the set of all $(u, v, w) \in \mathbb{R}^3$ such that the polynomial $f(x) = x^3 + ux^2 + vx + w$ has a triple real root, and let S be the set of all $(u, v, w) \in \mathbb{R}^3$ such that the polynomial. $f(x) = x^3 + ux^2 + vx + w$ has a multiple real root (that is a double or triple real root). Find a parametric equation for C and find a parametric equation and an implicit equation for S. As an optional additional exercise (not to be marked), use computer software to display the curve C and the surface S.