
MATH 247 Calculus 3, Solutions to Assignment 1

1: Consider the surface given implicitly by x2 + y2 + 1 = yz.

(a) Sketch the level sets z = ±2,±4,±6 and the level set x = 0 for this surface.

Solution: The level set z = c is given by x2 + y2 + 1 = cy, or equivalently x2 +
(
y − c

2

)2
=
(
c
2

)2 − 1. For

c = ±2 this becomes x2 +
(
y − c

2

)2
= 0, so the level set is the single point (x, y) =

(
0, c2
)
. For c = ±4,±6,

the level set is the circle centered at
(
0, c2
)

of radius r =

√(
c
2

)2 − 1. We make a table showing the values of
r then plot the level sets.

The level set x = 0 is given by y2+1 = yz, that is z = y+ 1
y . This is a hyperbola with vertical asymptote

along the z-axis and a slant asymptote along z = y.

c r
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±4

√
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√
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(b) Sketch the surface.

Solution: To sketch the surface, we raise the level sets z = c to the appropriate height and fit them into an
envelope in the shape of the level set x = 0. z

x y

(c) Find an explicit equation for the tangent plane to the surface at the point (2, 1, 6).

Solution: Let g(x, y, z) = x2 + y2 − yz − 1 so the surface is Null(g). We have Dg(x, y, z) =
(
2x, 2y − z,−y

)
so that Dg(2, 1, 6) = (4,−4,−1). The tangent plane at (2, 1, 6) is given by 4(x− 2)− 4(y− 1)− (z − 6) = 0,
or explicitly by z = 4x− 4y + 2.



2: (a) Sketch the curve given parametrically by (x, y) =
(

2
1+t2 ,

2t
1+t2

)
, showing all points at which the tangent

line is horizontal or vertical, then find an implicit equation for the curve.

Solution: We have x′(t) =
−4t

(1 + t2)2
and y′(t) =

2(1 + t2)− (2t)(2t)

(1 + t2)2
=

2− 2t2

(1 + t2)2
. The curve is horizontal

when y′(t) = 0, that is when t = ±1, and vertical when x′(t) = 0, that is at t = 0. We make a table of values
and sketch the curve.

t x y
→ −∞ 0 0
−3 1/5 −3/5
−2 2/5 −4/5
−1 1 −1
− 1

2 8/5 −4/5
0 2 0
1
2 8/5 4/5
1 1 1
2 2/5 4/5
3 1/5 3/5
→∞ 0 0

y

1

x
1 2

From the sketch, it appears that the curve is the circle of radius 1 centred at (1, 0) (with the origin removed),
which has equation (x − 1)2 + y2 = 1, or equivalently x2 + y2 = 2x. Let us verify that this is indeed the

case. Suppose that (x, y) is on the curve, say (x, y) =
(

2
1+y2 ,

2t
1+y2

)
. Then x2 = 4

(1+t2)2 and y2 = 4t2

(1+t2)2 so

that x2 + y2 = 4+4t
(1+t2)2 = 4

1+t2 = 2x. Suppose, conversely, that (x, y) satisfies the equation x2 + y2 = 2x with

x 6= 0. Then for t=y
x we have 2

1+t2 = 2

1+( y
x )

2 = 2x2

x2+y2 = 2x2

2x = x and 2t
1+t2 = 2

1+t2 · t = x · yx = y so that

(x, y) is on the curve. Thus the curve is given implicitly by x2 + y2 = 2x.

(b) Define f : R→ R2 by f(t) =
(
t2 , t

t2+1

)
and define g : R2 → R by g(x, y) = y2(x+ 1)2 − x.

Prove that Range(f) = Null(g), then find an explicit equation for the tangent line to this curve at
(
1
4 ,

2
5

)
.

Solution: Suppose (x, y) ∈ Range(f). Choose t ∈ R so that (x, y) = f(t) =
(
t2 , t

t2+1

)
, that is x = t2 and

y = t
t2+1 . Then g(x, y) = y2(x+ 1)2 − x =

(
t

t2+1

)2(
t2 + 1)2 − t2 = 0, and so (x, y) ∈ Null(g).

Suppose that (x, y) ∈ Null(g) so that we have 0 = g(x, y) = y2(x2 + 1)2 − x, that is y2(x+ 1)2 = x. Let

t = y(x + 1). Then we have t2 = y2(x + 1)2 = x and t
t2+1 = y(x+1)

x2+1 = y, so that (x, y) = f(t), and hence

(x, y) ∈ Range(f). We remark that, rather than choosing t = y(x+ 1), we could have chosen t =
√
x when

y ≥ 0 and t = −
√
x when y ≤ 0.

We can find the tangent line either by using either the formula for f or the formula for g. Let us use the
formula for g. We have g(x, y) = x2y2+2xy2+y2−x so that Dg(x, y) =

(
2xy2+2y2−1, 2x2y+4xy+2y

)
and

hence Dg
(
1
4 ,

2
5

)
=
(

2
25 + 8

25−1, 1
20 + 2

5 + 4
5

)
=
(
− 3

5 ,
5
4

)
. The tangent line is given by − 3

5

(
x− 1

4

)
+ 5

4

(
y− 2

5

)
= 0,

that is −12x+ 25y = −7, or explicitly by y = 12
25x+ 7

25 .



3: (a) Find a parametric equation for the tangent line to the curve of intersection of the paraboloid z = 1−x2−y2
with the plane z = 1− 2x at the point (1, 1,−1).

Solution: We provide two solutions. For the first solution, note that the paraboloid is given explicitly by
z = f(x, y) where f(x, y) = 1 − x2 − y2 and we have f(1, 1) = −1. The derivative matrix is Df(x, y) =(
− 2x,−2y

)
, so that Df(1, 1) = (−2,−2), and so the tangent plane at (1, 1,−1) is given explicitly by

z = f(1, 1) +Df(1, 1)

(
x− 1
y − 1

)
= −1 +

(
− 2,−2

)(x− 1
y − 1

)
= −1− 2(x− 1)− 2(y − 1) = −2x− 2y + 3.

The plane z = 1− 2x is, of course, equal to its own tangent plane. The tangent line to the given curve C is
the line of intersection of these two tangent planes, so we solve the two equations z = −2x− 2y+ 3 (1) and
z = 1 − 2x (2). We let x = t, then equation (1) gives z = 1 − 2t and equation (2) gives 2y = 3 − 2x − z =
3− 2t− 1 + 2t = 2 so that y = 1. Thus the tangent line is given parametrically by

(x, y, z) = (t, 1, 1−2t) = (0, 1, 1) + t(1, 0,−2).

For the second solution, we find a parametric equation for the curve C. We have (x, y, z) ∈ C when
z = 1 − x2 − y2 and z = 1 − 2x, that is when 1 − x2 − y2 = 1 − 2x and z = 1 − 2x. and we have
1− x2 − y2 = 1− 2x ⇐⇒ x2 − 2x+ y2 = 0 ⇐⇒ (x− 1)2 + y2 = 1. Thus (x, y, z) ∈ C if and only if (x, y)
lies on the circle (x − 1)2 + y2 = 1 and z = 1 − 2t. The circle (x − 1)2 + y2 = 1 is given parametrically by
(x, y) =

(
1 + sin t, cos t) and we need z = 1− 2x = 1− 2(1 + sin t) = −1− 2 sin t, and so the curve C is given

by
(x, y, z) = α(t) =

(
1 + sin t, cos t,−1− 2 sin t

)
with α(0) = (1, 1,−1). We have α′(t) =

(
cos t,− sin t,−2 cos t

)
so that α′(0) = (1, 0,−2) and so the tangent

line to the curve C at (1, 1,−1) is given by

(x, y, z) = α(0) + t α′(0) = (1, 1,−1) + t (1, 0,−2).

(b) When we consider the function f : C → C given by f(z) = z2 as a function f : R2 → R2, it is given by
f(x, y) =

(
u(x, y), v(x, y)

)
with u(x, y) = x2−y2 and v(x, y) = 2xy. Let A =

{
(x, y)∈R2

∣∣ 1≤x≤2, 0≤y≤x
}

and B =
{

(u, v)∈R2
∣∣ 1≤u≤ 4 , 0≤v≤2

}
. Accurately sketch or describe the sets f(A) and f−1(B).

Solution: Let us find the image of A. Consider the boundary. The line segment in the xy-plane from
(1, 0) to (2, 0) is given by (x, y) = α(t) = (t, 0) with 1 ≤ t ≤ 2, and it is mapped by f to the curve
(u, v) = f(α(t)) = f(t, 0) = (t2, 0) with 1 ≤ t ≤ 2, which is the line segment in the uv-plane from (1, 0)
to (4, 0). The line segment in the xy-plane from (1, 1) to (2, 2) is given by (x, y) = β(t) = (t, t) with
1 ≤ t ≤ 2, and it is mapped by f to the curve (u, v) = f(β(t)) = f(t, t) = (0, 2t2) with 1 ≤ t ≤ 2, which
is the line segment in the uv-plane from (0, 2) to (0, 8). When a > 0, the line segment in the xy-plane
from (a, 0) to (a, a) is given by (x, y) = γa(t) = (a, t) with 0 ≤ t ≤ a, and it is mapped by f to the
curve (u, v) = f(γa(t)) = f(a, t) = (a2 − t2, 2at) with 0 ≤ t ≤ a. When (u, v) = (a2 − t2, 2at), we have
v2 = 4a2t2 = 4a2(a2 − u) so that (u, v) lies on the parabola u = a2 − 1

4a2 v
2, which is the parabola in

the uv-plane with vertex at (a2, 0) and opens to the left passing through the points (0,±2a2): the curve
(u, v) = f(γa(t)) = (a2 − t2, 2at) with 0 ≤ t ≤ a follows this parabola from (a2, 0) to (0, 2a2). Thus
f(A) is the region in the first quadrant of the uv-plane between two parabolas given by u ≥ 0, v ≥ 0,
1− 1

4v
2 ≤ u ≤ 4− 1

16v
2.

Let us find f−1(B). For (u, v) = f(x, y) = (x2 − y2, 2xy), we have 1 ≤ u ≤ 4 ⇐⇒ 1 ≤ x2 − y2 ≤ 4
and we have 0 ≤ x ≤ 2 ⇐⇒ 0 ≤ 2xy ≤ 2 ⇐⇒ 0 ≤ xy ≤ 1. The curves x2 − y2 = 1 and x2 − y2 = 4 are
hyperbolas (centred at (0, 0) with asymptotes y = ±x), and we have 1 ≤ x2 − y2 ≤ 4 when (x, y) lies in the
region between the two hyperbolas: the set of such points (x, y) is the union of two connected regions; the

region between the two right branches of the hyperbolas is given by
√

1 + y2 ≤ x ≤
√

4 + y2, and the region

between the two left branches is given by −
√

4 + y2 ≤ x ≤ −
√

1 + y2. The curve xy = 0 is the union of the
two axes and the curve xy = 1 is a hyperbola (centred at (0, 0) with asymptotes along the axes), and the
set of points (x, y) such that 0 ≤ xy ≤ 1 is the union of two regions: the region in the first quadrant below
y = 1

x , and the region in the third quadrant above y = 1
x . Thus the inverse image f−1(B) is the union of

two connected regions: one in the right half-plane x > 0 given by 0 ≤ y ≤ 1
x and

√
1 + y2 ≤ x ≤

√
4 + y2,

and the other in the left half-plane x < 0 given by 1
x ≤ y ≤ 0 and −

√
4 + y2 ≤ x ≤

√
1 + y2.



4: (a) Find an implicit equation, of the form ax+ by + cz = d, for the tangent plane to the parametric surface
(x, y, z) = f(s, t) =

(
s− t2 , s

t ,
√
s t
)

at the point where (s, t) = (4, 1).

Solution: We have f(4, 1) =
(
3, 4, 2) and

Df(s, t) =

 1 −2t
1
t − s

t2√
t

2
√
s

√
s

2
√
t

 Df(4, 1) =

 1 −2
1 −4
1
4 1


so the tangent plane is the plane through p = (3, 4, 2) in the direction of the vectors u =

(
1, 1, 14

)
and

v = (−2,−4, 1). The plane has normal vector w = u × v =
(
2,− 3

2 ,−2
)
, so the equation is of the form

2x − 3
2y − 2z = c. We can put in (x, y, z) = (3, 4, 2) to get c = 2 · 3 − 3

2 · 4 − 2 · 2 = −4, so the plane has
equation 2x− 3

2y − 2z = −4.

(b) Let C be the set of all (u, v, w) ∈ R3 such that the polynomial f(x) = x3 + ux2 + vx + w has a triple
real root, and let S be the set of all (u, v, w) ∈ R3 such that the polynomial. f(x) = x3 + ux2 + vx + w
has a multiple real root (that is a double or triple real root). Find a parametric equation for C and find a
parametric equation and an implicit equation for S. As an optional additional exercise (not to be marked),
use computer software to display the curve C and the surface S.

Solution: The monic polynomial with triple root t is (x − t)3 = x3 − 3t x2 + 3t2 x − t3, so C is the twisted
cubic curve given parametrically by

(u, v, w) = α(t) = (−3t, 3t2,−t3).

The monic polynomial with double root s and additional root t (possibly with s = t) is the polynomial
(x− s)2(x− t) = x3 − (2s+ t)x2 + (2st+ s2)x− s2t, so S is given parametrically by

(u, v, w) = σ(s, t) = (−(2s+ t), s(s+ 2t),−s2t).

We can eliminate the parameters s and t, for example as follows. From u = −(2s − t) we obtain t =
−(u + 2s). Then v = s(s + 2t) = s(s − 2u − 4s) = −s(2u + 3s) and w = −s2t = s2(u + 2s), so we have
3w + 2sv = s2(3u+ 6s)− s2(4u+ 6s) = −s2u, hence 9w + 6sv − uv = −3s2u+ su(2u+ 3s) = 2su2 so that

6sv−2su2 = uv−9w. Thus when 3v 6= u2 we have s = uv−9w
2(3v−u2) and t = −2s−u = −uv−9w

3v−u2 −u = 9w−4uv+u3

3v−u2 .

Note that 3v = u2 ⇐⇒ 3(2st+s2) = (−2s−t)2 ⇐⇒ 6st+3s2 = 4s2+4st+t2 ⇐⇒ (s−t)2 = 0 ⇐⇒ s = t.

Conversely, when s = uv−9w
2(3v−u2) and t = 9w−4uv+u3

3v−u2 , a routine calculation shows that we have u+(2s+ t) = 0,

v−s(s+2t) = 9(27w2+4v3+4u3w−18uvw−u2v2)
4(3v−u2)2 and w+s2t = (27−u3)(27w2+4v3+4u3w−18uvw−u2v2)

4(3v−u2)3 . So it appears

that S = Null(g) where
g(u, v, w) = 27w2 + 4v3 + 4u3w − 18uvw − u2v2.

We outline how this can be verified: When (u, v, w) = σ(s, t), a routine calculation shows that g(u, v, w) = 0,
and this shows that Range(σ) ⊆ Null(g). When g(u, v, w) = 0 with 3v 6= u2, the above calculations show

that we can choose s = uv−9w
2(3v−u2) and t = 9w−4uv+u3

3v−u2 to obtain (u, v, w) = σ(s, t). Finally, when g(u, v) = 0

with 3v = u2, we can choose s = t = − 1
3u to get u = −3t and v = 1

3u
2 = 3t2 and 0 = g(u, v, w) =

27w2 + 4(3t2)3 − 4(3t)3(3t2) + 18(3t)(3t2)w− (3t)2(3t2)2 = 27(w2 + 2t3 + t6) = 27(w+ t3)2 so that w = −t3
giving (u, v, w) = (−3t, 3t2,−t3) = σ(t, t) = σ(s, t). This shows that Null(g) ⊆ Range(σ).

We remark that S is a surface which has a cusp (or a fold) along the twisted cubic curve C.


