1: Read Theorem 4.20 (the Chain Rule) and Definition 4.24 (the directional derivative), then solve the following.

(a) Let $(u, v) = g(z) = (\sqrt{z-1}, 5 \ln z)$, where $z = f(x, y) = 4x^2 - 8xy + 5y^2$. Use the Chain Rule to find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ at the point (2, 1) (this is Exercise 4.21).

(b) Let $(x, y) = f(r, \theta) = (r \cos \theta, r \sin \theta)$, let z = g(x, y) and let $z = h(r, \theta) = g(f(r, \theta))$. Suppose that $h(r, \theta) = r^2 e^{\sqrt{3}(\theta - \frac{\pi}{6})}$. Find $Dg(\sqrt{3}, 1)$ (this is Exercise 4.22).

(c) Let $f(x, y, z) = x \sin(y^2 - 2xz)$ and let $\alpha(t) = (\sqrt{t}, \frac{1}{2}t, e^{(t-4)/4})$. Find the rate of change of f as we move along the curve $\alpha(t)$ when t = 4 (this is Exercise 4.25).

2: Read Theorem 4.26 then solve the following.

(a) Consider the surface z = f(x, y) where $f(x, y) = \frac{4}{2 + x^4 + x^2 + y^2}$. An ant walks counterclockwise around the curve of intersection of the above surface z = f(x, y) with the cylinder $(x - 2)^2 + y^2 = 5$. Find the value of $\tan \theta$, where θ is the angle (from the horizontal) at which the ant is ascending when it is at the point $(1, 2, \frac{1}{2})$.

(b) Consider the surface z = f(x, y) where $f(x, y) = \frac{6x}{1 + x^2 + y^2}$. Show that any circle which passes through the points (1, 0) and (-1, 0) is a curve of steepest descent, that is for any point (x, y) on any circle C through the two points (-1, 0) and (1, 0), the slope of C at (x, y) is equal to the slope of the gradient vector $\nabla f(x, y)$.

- **3:** (a) Find $\iint_D y e^x dA$ where D is the region in \mathbb{R}^2 bounded by y = 0, y = x and x + y = 2. (b) Find $\iint_D \frac{x}{\sqrt{1 + x^2 + y^2}} dA$ where $D = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le \frac{1}{2}x^2\}$. (c) Find $\iiint_D z \, dV$ where $D = \{(x, y, z) \mid 0 \le x, 0 \le y \le \sqrt{x^2 + z^2}, 0 \le z \le \sqrt{1 - x^2}\}$. **4:** (a) Find $\iint_D \cos(3x^2 + y^2) \, dA$ where $D = \{(x, y) \mid x^2 + \frac{1}{3}y^2 \le 1\}$. (b) Find $\iint_D e^{(y-x)/(y+x)} \, dA$ where D is the quadrilateral with vertices at (1, 1), (2, 0), (4, 0), (2, 2). (c) Find $\iiint_D (x - y)z \, dV$ where $D = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 4, z \ge \sqrt{x^2 + y^2}, x \ge 0\}$.
- 5: Read Note 7.23, then solve the following.

(a) Find the total charge in the region $D = \left\{ (x, y, z) \middle| \sqrt{\frac{1}{3}(x^2 + y^2)} \le z \le \sqrt{4 - x^2 - y^2} \right\}$ where the charge density (charge per unit volume) is given by $f(x, y, z) = x^2$.

(b) Find the mass of the sphere $x^2 + y^2 + z^2 = 1$ when the density (mass per unit area) is given by f(x, y, z) = 3 - z (This is Exercise 7.26).

(c) Find the mass of the curve of intersection of the parabolic sheet $z = x^2$ with the paraboloid $z = 2-x^2-2y^2$ when the density (mass per unit length) is given by f(x, y, z) = |xy| (This is Exercise 7.27).