
MATH 247 Calculus 3, Solutions to Assignment 2

1: (a) Let (u, v) = g(z) =
(√
z − 1, 5 ln z

)
, where z = f(x, y) = 4x2 − 8xy + 5y2. Use the Chain Rule to find

∂u
∂x , ∂u

∂y , ∂v
∂x and ∂v

∂y at the point (2, 1).

Solution: Write h(x, y) = g(f(x, y)). When (x, y) = (2, 1) we have z = f(2, 1) = 5 and so by the Chain Rule,
we have Dh(2, 1) = Dg(5)Df(2, 1), that is( ∂u

∂x
∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
du
dz
dv
dz

)(
∂z
∂x

∂z
∂y

)
=

( 1
2
√
z−1
5
z

)
( 8x−8y −8x+10y ) =

(
1
4
1

)
( 8 −6 ) =

(
2 − 3

2
8 −6

)
(b) Let (x, y) = f(r, θ) =

(
r cos θ , r sin θ

)
, let z = g(x, y) and let z = h(r, θ) = g

(
f(r, θ)

)
. Suppose that

h(r, θ) = r2e
√
3(θ−π

6 ). Find Dg(
√

3, 1).

Solution: Note that (x, y) = (
√

3, 1) when (r, θ) =
(
2, π6

)
and then, by the Chain Rule,

Dh = Dg ·Df

( ∂h∂r
∂h
∂θ ) =

( ∂g
∂x

∂g
∂y

)( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
(

2r e
√
3(θ−π

6 )
,
√

3r2e
√
3(θ−π

6 )
)

=
(
∂g
∂x ,

∂g
∂y

)(
cos θ −r sin θ
sin θ r cos θ

)
(
4 , 4
√

3
)

=
(
∂g
∂x ,

∂g
∂y

)( √3
2 −1
1
2

√
3

)
and so

∇gT =
(
∂g
∂x ,

∂g
∂y

)
=
(
4, 3
√

3
)( √3

2 −1
1
2

√
3

)−1
=
(
4, 4
√

3
)
· 12

(√
3 1

− 1
2

√
3
2

)
=
(√

3, 5
)
.

(c) Let f(x, y, z) = x sin(y2 − 2xz) and let α(t) =
(√
t , 1

2 t , e
(t−4)/4). Find the rate of change of f as we

move along the curve α(t) when t = 4.

Solution: We have α(4) = (2, 2, 1) and f(α(4)) = f(2, 2, 1) = 2 sin 0 = 0, and we have

Df(x, y, z) = ( sin(y2 − 2xz)− 2xz cos(y2 − 2xz) , 2xy cos(y2 − 2xz) , −2x2 cos(y2 − 2xz) )

Df(2, 2, 1) = (−4, 8,−8)

α′(t) =
(

2
2
√
t
, 12 ,

1
4 e

(t−4)/4)T
α′(4) =

(
1
4 ,

1
2 ,

1
4

)T
.

For β(t) = f
(
α(t)

)
we have β′(t) = Df(α(t))α′(t), so the rate of change of f as we move along α(t) is

β′(4) = Df(2, 2, 1)α′(4) =
(
− 4, 8,−8

) 1
4
1
2
1
4

 = 1.



2: (a) Consider the surface z = f(x, y) where f(x, y) =
4

2 + x4 + x2 + y2
. An ant walks counterclockwise

around the curve of intersection of the above surface z = f(x, y) with the cylinder (x− 2)2 + y2 = 5. Find
the value of tan θ, where θ is the angle (from the horizontal) at which the ant is ascending when it is at the
point

(
1, 2, 12

)
.

Solution: We have ∂f
∂x = −16x3−8x

(2+x4+x2+y2)2 and ∂f
∂y = −8y

(2+x4+x2+y2)2 , and so we have ∂f
∂x (1, 2) = − 24

64 = − 3
8 and

∂f
∂y (1, 2) = − 16

64 = − 1
4 . Thus

∇f(1, 2) =
(
− 3

8 ,−
1
4

)T
.

Looking down from above, the ant moves counterclockwise around the circle (x− 2)2 + y2 = 5. The radius
vector from the center (2, 0) to the point (1, 2) is the vector r = (1, 2)− (2, 0) = (−1, 2), and the unit tangent
vector perpendicular to r, in the direction in which the ant moves, is v = 1√

5
(−2,−1). If we parametrize

the circle, in the counterclockwise direction, by α(t) = (x(t), y(t)) with α(0) = (1, 2), then we will have
α′(0)
|α′(0)| = v = 1√

5
(−2,−1). The ant moves along the curve γ(t) =

(
x(t), y(t), z(t)

)
=
(
α(t), f(α(t))

)
, the

tangent vector at t = 0 is γ′(0) =
(
α′(0), Df(α(0))α′(0)

)
. The angle of inclination θ of γ′(0) is given by

tan θ = Df(α(0))α′(0)
|α′(0)| = ∇f(1, 2). α′(0)

|α′(0) = Dvf(1, 2) =
(
− 3

8 ,−
1
4

). 1√
5

(
− 2,−1

)
= 1√

5
.

(b) Consider the surface z = f(x, y) where f(x, y) =
6x

1 + x2 + y2
. Show that any circle which passes through

the points (1, 0) and (−1, 0) is a curve of steepest descent, that is for any point (x, y) on any circle C through
the two points (−1, 0) and (1, 0), the slope of C at (x, y) is equal to the slope of the gradient vector ∇f(x, y).

Solution: The circle through (1, 0) and (−1, 0) with center at (0, c) has equation x2 + (y − c)2 = 1 + c2.
Differentiate this equation (with respect to x) to get 2x+2(y−c)y′ = 0. This shows that at the point (x, y) on
the circle, the slope of the circle is y′ = − x

y−c . On the other hand, ∇f(x, y) = 6
(1+x2+y2)2 (1−x2 +y2,−2xy),

so the gradient vector has slope m = − 2xy
1−x2+y2 . When (x, y) is on the circle, we have x2+(y−c)2 = 1+c2, so

x2 +y2−2cy = 1, and so we can put 1−x2 = y2−2cy into the formula for m to get m = − 2xy
y2−2cy+y2 = −x

y−c .

Thus the slope of the circle at (x, y) is equal to the slope of the gradient vector at (x, y), as required.



3: (a) Find

∫∫
D

y ex dA where D is the region in R2 bounded by y = 0, y = x and x+ y = 2.

Solution: We have∫∫
D

y ex dA =

∫ 1

y=0

∫ 2−y

x=y

y ex dx dy =

∫ 1

y=0

[
y ex

]2−y
x=y

dy =
∫ 1

y=0
y e2−y − yey dy

=
[
− (y + 1)e2−y − (y − 1)ey

]1
y=0

= e2 − 2e− 1.

(b) Find

∫∫
D

x√
1 + x2 + y2

dA where D =
{

(x, y)
∣∣ 0 ≤ x ≤ 2 , 0 ≤ y ≤ 1

2x
2
}

.

Solution: Note that we can also write D =
{

(x, y)
∣∣ 0 ≤ y ≤ 2 ,

√
2y ≤ x ≤ 2

}
and so∫∫

D

x√
1 + x2 + y2

dA =

∫ 2

y=0

∫ 2

x=
√
2y

x√
1 + x2 + y2

dx dy =

∫ 2

y=0

[√
1 + x2 + y2

]2
x=
√
2y
dx

=

∫ 2

y=0

√
5 + y2 −

√
1 + 2y + y2 dy =

∫ 2

y=0

√
5 + y2 − (1 + y) dy .

Using the substitution
√

5 tan θ = y so that
√

5 sec θ =
√

5 + y2 and
√

5 sec2 θ dθ = dy, we have∫ √
5 + y2 dy =

∫
5 sec3 θ dθ = 5

2

(
sec θ tan θ + ln(sec θ + tan θ)

)
+ c

= 5
2

(
y
√

5+y2

5 + ln
(y+√5+y2

5

))
+ c = 1

2 y
√

5 + y2 + 5
2 ln

(
5 +

√
5 + y2

)
+ d

(where d = c− 5
2 ln 5). Thus∫∫
D

x√
1 + x2 + y2

dA =
[
1
2 y
√

5 + y2 + 5
2 ln

(
5 +

√
5 + y2

)
− y − 1

2y
2
]2
y=0

=
(
1
2 · 6 + 5

2 ln(2 + 3)− 2− 2
)
−
(
5
2 ln
√

5
)

= 5
4 ln 5− 1.

(c) Find

∫∫∫
D

z dV where D =
{

(x, y, z)
∣∣ 0 ≤ x , 0 ≤ y ≤

√
x2 + z2 , 0 ≤ z ≤

√
1− x2

}
.

Solution: We have∫∫∫
D

z dV =

∫ 1

x=0

∫ √1−x2

z=0

∫ √x2+z2

y=0

z dy dz dx =

∫ 1

x=0

∫ √1−x2

z=0

z
√
x2 + z2 dz dx

=

∫ 1

x=0

[
1
3 (x2 + z2)3/2

]√1−x2

z=0
dx =

∫ 1

x=0

1
3 −

1
3 x

3 dx = 1
3 −

1
12 = 1

4 .



4: (a) Find

∫∫
D

cos(3x2 + y2) dA where D =
{

(x, y)
∣∣x2 + 1

3 y
2 ≤ 1

}
.

Solution: The change of variables map (x, y) = g(r, θ) =
(
r cos θ ,

√
3 r sin θ

)
sends C = [0, 1]× [0, 2π] to the

given region D, and we have Dg =

(
cos θ −r sin θ√
3 sin θ

√
3r cos θ

)
so that detDg =

√
3r, and when (x, y) = g(r, θ)

we have 3x2 + y2 = 3r2 cos2 θ + 3r2 sin2 θ = 3r2, and so∫∫
cos(3x2 + y2) dA =

∫ 1

r=0

∫ 2π

θ=0

cos(3r2)
√

3r dθ dr =

∫ 1

r=0

2π
√

3 r cos(3r2) dr

=
[
π√
3

sin(3r2)
]1
r=0

= π√
3

sin 3.

(b) Find

∫∫
D

e(y−x)/(y+x) dA where D is the quadrilateral with vertices at (1, 1), (2, 0), (4, 0), (2, 2).

Solution: When u = y + x and v = y − x we have y = u+v
2 and x = u−v

2 and the lines x+ y = 2, x+ y = 4,
yt = 0 and y = x (which form the boundary of D) are given by u = 2, v = 4, u + v = 0 and v = 0. So the
change of variables map (x, y) = g(u, v) =

(
u−v
2 , u+v2

)
sends the set C =

{
(u, v)

∣∣ 2 ≤ u ≤ 4 , −u ≤ v ≤ 0
}

to the given region D. We have Dg = 1
2

(
1−1
1 1

)
so that detDg = 1

2 , and so∫∫
D

e(y−x)/(y+x) dA =

∫ 4

u=2

∫ 0

v=−u
ev/u dv du =

∫ 4

u=2

[
u
2 e

v/u
]0
v=−u

du

=

∫ 4

u=2

u
2

(
1− 1

e

)
du =

[
u2

4

(
1− 1

e

)]4
u=2

= 3
(
1− 1

e

)
.

(c) Find

∫∫∫
D

(x− y)z dV where D =
{

(x, y, z)
∣∣x2 + y2 + z2 ≤ 4 , z ≥

√
x2 + y2 , x ≥ 0

}
.

Solution: The region D can be described in spherical coordinates by 0 ≤ r ≤ 2, 0 ≤ ϕ ≤ π
4 , and 0 ≤ θ ≤ π. In

other words, the spherical coordinates map sends the set C =
{

(r, ϕ, θ)
∣∣ 0 ≤ r ≤ 2 , 0 ≤ ϕ ≤ π

4 , 0 ≤ θ ≤ π
}

to the given region D. Thus we have∫∫∫
D

(x− y)z dV =

∫ 2

r=0

∫ π
4

ϕ=0

∫ π

θ=0

(
r sinϕ cos θ − r sinϕ sin θ

)
(r cosϕ) r2 sinϕ dθ dϕdr

=

∫ 2

r=0

∫ π
4

ϕ=0

∫ π

θ=0

r4 · sin2 ϕ cosϕ · (cos θ − sin θ) dθ dϕ dr

=

(∫ 2

r=0

r4 dr

)(∫ π
4

ϕ=0

sin2 ϕ cosϕ dϕ

)(∫ π

θ=0

(cos θ − sin θ) dθ

)
=
[
1
5 r

5
]2
r=0

[
1
3 sin3 ϕ

]π
4

ϕ=0

[
sin θ + cos θ

]π
θ=0

= 32
5 ·

1
6
√
2
· 2 = 16

√
2

15 .



5: (a) Find the total charge in the region D =
{

(x, y, z)
∣∣∣√ 1

3 (x2 + y2) ≤ z ≤
√

4− x2 − y2
}

where the charge

density (charge per unit volume) is given by f(x, y, z) = x2.

Solution: We use spherical coordinates (x, y, z) =
(
r sinφ cos θ, r sinφ sin θ, r cosφ

)
. Some students will see

immediately that the cone z =
√

1
3 (x2 + y2) is given in spherical coordinates by φ = π

3 . If you do not see

this immediately, then you can verify this algebraically as follows. We have

x2 + y2 = (r sinφ cos θ)2 + (r sinφ sin θ)2 = r2 sin2 φ (cos2 θ + sin2 θ) = r2 sin2 φ

and so (since r ≥ 0 and sinφ ≥ 0)

z =
√

1
3 (x2 + y2) ⇐⇒ r cosφ =

√
1
3r

2 sin2 φ = 1√
3
r sinφ ⇐⇒ tanφ =

√
3 ⇐⇒ φ = π

3 .

Thus the region D is described in spherical coordinates by 0 ≤ r ≤ 2, 0 ≤ φ ≤ π
3 and 0 ≤ θ ≤ 2π. Thus the

total charge is

Q =

∫∫∫
D

x2 dV =

∫ 2

r=0

∫ π/3

φ=0

∫ 2π

θ=0

(r sinφ cos θ)2 · r2 sinφ dθ dφ dr

=

∫ 2

r=0

∫ π/3

φ=0

∫ 2π

θ=0

r4 sin3 φ cos2 θ dθ dφ dr =

∫ 2

r=0

∫ π/3

φ=0

π r4 sin3 φ dφ dr

=

∫ 2

r=0

∫ π/3

φ=0

π r4(1− cos2 φ) sinφ dφ dr =

∫ 2

r=0

π r4
[
− cosφ+ 1

3 cos3 φ
]π/3
φ=0

dr

=

∫ 2

r=0

π r4
((
− 1

2 + 1
24

)
−
(
− 1 + 1

3

))
dr =

∫ 2

r=0

π r4 · −12+1+24−8
24 dr

=

∫ 2

r=0

5π
24 r

4 dr =
[
π
24 r

5
]2
r=0

=
32π
24 =

4π
3 .

(b) Find the mass of the sphere x2 + y2 + z2 = 1 when the density (mass per unit area) is given by
f(x, y, z) = 3− z.
Solution: The sphere is the image of the map σ : [0, π] × [0, 2π] → R3 given by (x, y, z) = σ(ϕ, θ) =(

sinϕ cos θ , sinϕ sin θ , cosϕ
)
. We have

Dσ =
(
σϕ, σθ

)
=

 cosϕ cos θ − sinϕ sin θ
cosϕ sin θ sinϕ cos θ
− sinϕ 0

 and σϕ × σθ =

 sin2 ϕ
sin2 ϕ sin θ
sinϕ cosϕ


and hence

∣∣σϕ×σθ∣∣ = | sinϕ|
√

sin2 ϕ cos2 θ + sin2 ϕ sin2 θ + cos2 ϕ = | sinϕ| = sinϕ (since 0 ≤ ϕ ≤ π). Thus
the mass is given by

M =

∫ π

ϕ=0

∫ 2π

θ=0

(3− cosϕ) sinϕ dθ dϕ = 2π

∫ π

ϕ=0

3 sinϕ− sinϕ cosϕ dϕ = 12π.

(c) Find the mass of the curve of intersection of the parabolic sheet z = x2 with the paraboloid z = 2−x2−2y2

when the density (mass per unit length) is given by f(x, y, z) = |xy|.
Solution: Let us find a parametric equation for the curve C of intersection. To get z = x2 and z = 2−x2−2y2,
we need x2 = 2− x2 − 2y2, that is x2 + y2 = 1. Thus we can write (x, y) = (cos t, sin t) with t ∈ [0, 2π]. We
also need z = x2, so the curve C is given parametrically by (x, y, z) = α(t) =

(
cos t, sin t, cos2 t

)
. We have

α′(t) =
(
− sin t, cos t,−2 sin t cos t

)
and

∣∣α′(t)∣∣ =
√

sin2 t+ cos2 t+ 4 sin2 t cos2 t =
√

1 + sin2(2t). Using the

substitution u = cos(2t) so du = −2 sin(2t) dt, the mass is given by

M =

∫ 2π

t=0

∣∣ cos t sin t
∣∣√1 + sin2(2t) dt =

∫ 2π

t=0

∣∣ 1
2 sin(2t)

∣∣√1 + sin2(2t) dt = 8

∫ π
2

t=0

1
2 sin(2t)

√
1 + sin2(2t) dt

=

∫ π/2

t=0

4 sin(2t)
√

2− cos2(2t) dt =

∫ 0

u=1

−2
√

2− u2 du = 2

∫ 1

u=0

√
2− u2 = π

2 + 1

(the final value was obtained by noticing that the integral
∫ 1

0

√
2− u2 du measures the area of a region

consisting of one eighth of the disc of radius
√

2 along with a triangle of base 1 and height 1).


