MATH 247 Calculus 3, Solutions to Assignment 2

: (a) Let (u,v) = g(z) = (Vz—1,5Inz), where z = f(z,y) = 42% — 8zy + 5y>. Use the Chain Rule to find
gz, ng % and af at the point (2,1).

Solution: Write h(z,y) = g(f(z,y)). When (z,y) = (2,1) we have z = f(2,1) = 5 and so by the Chain Rule,
we have Dh(2,1) = Dg(5) Df(2,1), that is
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(b) Let (z,y) = f(r,0) = (rcos, rsind), let z = g(x,y) and let z = h(r,8) = g(f(r,0)). Suppose that
h(r,0) = r2¢V3=%) Find Dg(v/3,1).
Solution: Note that (z,y) = (v/3,1) when (r,6) = (2, %) and then, by the Chain Rule,

Dh=Dg-Df
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and so
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(c) Let f(z,y,2) = @ sin(y? — 2z2) and let a(t) = (V1, it, e(t_4)/4). Find the rate of change of f as we
move along the curve a(t) when ¢t = 4.

Solution: We have a(4) = (2,2,1) and f(a(4)) = f(2,2,1) = 2sin0 = 0, and we have
Df(z,y, 2) = (sin(y? — 2x2) — 2zz cos(y? — 222) , 2xycos(y? — 2x2) , —2x2 cos(y? — 2x2))

Df(2,2,1) = (—4,8,-8)
a(t) = (W i ie(tf4)/4)T
=3
For 3(t) = f((t)) we have 8'(t) = Df (a(t))a/ (t), so the rate of change of f as we move along «(t) is

B'(4) = Df(2,2,1)a’(4) = ( — 4,8, —8) =1
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2: (a) Consider the surface z = f(x,y) where f(z,y) = R An ant walks counterclockwise
around the curve of intersection of the above surface z = f(z,y) with the cylinder (z — 2)? + y? = 5. Find
the value of tan @, where 6 is the angle (from the horizontal) at which the ant is ascending when it is at the

point (1,2,1).

s of _  —16z>—8z of _ —8y of _ 24 _ 3
Solution: We have 57 = Fzita2+y?)2 and oy = TRt and so we have 57 (1,2) = —&7 = —5 and
of 6 1
oy (1,2) = —51 = —7. Thus

Vi) = (-8 -)"

Looking down from above, the ant moves counterclockwise around the circle (x — 2)? + y? = 5. The radius
vector from the center (2,0) to the point (1,2) is the vector r = (1,2) — (2,0) = (—1,2), and the unit tangent
vector perpendicular to 7, in the direction in which the ant moves, is v = —=(—2, —1). If we parametrize

[

S

the circle, in the counterclockwise direction, by a(t) = (x(t),y(t)) with «(0) = (1,2), then we will have

% =y = %(—2,—1). The ant moves along the curve y(t) = (x(2),y(t),2(t)) = (a(t), f(a(t))), the

tangent vector at t = 0 is 7/(0) = (a/(0), D f(«(0))a/(0)). The angle of inclination 6 of 7/(0) is given by

_ Df(a(0)a’(0) _ a’(0) _ _ 3 _ 1y, .1 _ 1
tan 6§ = O] T Vf(l,Q)’ o’ (0) — va(172) - ( - §771)°%( - 2771) - %
6z
1422492
the points (1,0) and (—1,0) is a curve of steepest descent, that is for any point (z,y) on any circle C' through
the two points (—1,0) and (1,0), the slope of C at (z,y) is equal to the slope of the gradient vector V f(x, y).

(b) Consider the surface z = f(x,y) where f(x,y) = Show that any circle which passes through

Solution: The circle through (1,0) and (—1,0) with center at (0,c) has equation 22 + (y — ¢)? = 1 + 2.
Differentiate this equation (with respect to ) to get 2z+2(y—c)y’ = 0. This shows that at the point (z,y) on

the circle, the slope of the circle is ¢y’ = — yfc. On the other hand, V f(z,y) = W(l —x?+y?, —2xy),
so the gradient vector has slope m = fl_iwfiym When (z,y) is on the circle, we have 22+ (y—c)? = 1+¢?, so

2xy —x

22 4+y? —2cy = 1, and so we can put 1 —z? = y? — 2¢y into the formula for m to get m = — T T pee

Thus the slope of the circle at (x,y) is equal to the slope of the gradient vector at (z,y), as required.



(a) Find // ye* dA where D is the region in R? bounded by y =0, y =2 and = +y = 2
D
Solution: We have

2—y 1 2—y
// ye®dA = / / ye“"dxdyz/ {ye}
=y y=0

n ydy—fy oYY —ye¥ dy
1
==+ e~ (y = ey

y=0

=e2—2 — 1.

Fmd//idAwhereD: x, 0<z<2,0<y<iz?
i {(z.y)| y ¥

Solution: Note that we can also write D = {(x,y) |O <y<2,V2y<z< 2} and so

T 2 2 T 2
Y
D1+ 22+y? y=0 Ja=y3y \/1+ 22 + y? y

=0

{\/ 1+a22+ yQ} i:mdx

2 2
:/ \/5+y2—\/1+2y+y2dy:/ Vit+yr—(1+4y)
y=0 y=0

Using the substitution v/5tan = y so that v/5secd = /5 + y2 and v/5sec? # df = dy, we have
/\/5 +y2dy = /5sec30d0 = 3(secOtanf + In(secf + tan 6))

_ 5({yV/5+y?
,( = +1

-2

(y+\/5ﬁ))+c=%y Sy +3m(G+VE+y?) +d
(where d = ¢ — 71n5) Thus

T 2
7d_[ 5+y2+5In(5+ b+ - 12}
R R e

=(36+5m@2+3)-2-2)—(3Inv5) =251
Flnd///deWhereD:{(m,y,z)‘ogx,ogygvxz—i—z2 0<z<\/1—x2}
D

Solution: We have

V1—z2 VrZ¥z2 Vi—z2
///de / / / zdydzdx—/ / 2V a2 + 22 dzdx
z=0Jz x=0Jz
Vi
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4: (a) Find // cos(32® + y?) dA where D = {(z,y) |x2 +3y* <1}
D

Solution: The change of variables map (z,y) = g(r,6) = (r cos®, /37 sin 9) sends C' = [0, 1] x [0, 27| to the
given region D, and we have Dg = ( P S;;%) so that det Dg — v/3r, and when (z,3) — g(r. 0)

we have 322 + y? = 3r2 cos? 0 + 3r2sin? 6 = 3r2, and so

1
// cos(3x2 + y?)dA = / / cos(3r%)V/3r df dr —/ 2mV/3 1 cos(3r?) dr
r=0J6= r=0

= {\/55111(37" )]rzo = J5sin3.

(b) Find // eW=2)/W+2) 4 A where D is the quadrilateral with vertices at (1,1), (2,0), (4,0), (2,2).
D

Solution: When v =y + 2z and v = y — x we have y = % and r = “5* and the lines v +y = 2, x +y = 4,
yt = 0 and y = x (which form the boundary of D) are given by u =2, v =4, u4+v =0 and v = 0. So the
change of variables map (z,y) = g(u,v) = (3%, “$%) sends the set C = {(u,v) |2 <u <4, —u < v <0}
to the given region D. We have Dg = %(i 1) so that det Dg = %, and so

4 0
// W)/ He) g4 = / / e’/ dv du = / [% 6”/“] du
D u=2 Juv=—u u=2 v=-u

- [ s-pa=[£0-] -s0-),

=2

(¢c) Find /// (z —y)zdV where D = {(z,y,2) |2? +y* + 22 <4, 2> /2 + 32, 2 > 0}.

Solution: The region D can be described in spherical coordinates by 0 <r <2,0<p < 7, and 0 <6 < 7. In
other words, the spherical coordinates map sends the set C = {(r,¢,0) [0 <r<2,0 S p<Z,0<0<m}
to the given region D. Thus we have

2 T T
/// (:r:—y)de:/ / / (rsinapcos@—rsingpsin@)(rcosgp)r2sin<p de dy dr
D r=0 6=0
/ / / -sin? g cos ¢ - (cos @ — sin @) db dy dr
r=0 6=0

= (/T_Or dr></: sin? ¢ cos d(p)(/eio(c%ﬁ—blnﬁ) d@)
|
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5: (a) Find the total charge in the region D = { T,Y, 2 ‘,/ (22 4+y?) <2< J4—22—y } where the charge

density (charge per unit volume) is given by f(z,vy,2) = 22
Solution: We use spherical coordinates (z,y,z) = (r sin ¢ cos 0, rsin ¢ sin @, r cos gf)). Some students will see

immediately that the cone z = \/%(xQ + y?) is given in spherical coordinates by ¢ = 7. If you do not see
this immediately, then you can verify this algebraically as follows. We have

z? +y? = (rsin ¢ cos 0)% + (rsin ¢sin 0)? = r?sin ¢ (cos® § + sin? ) = r?sin? ¢

and so (since r > 0 and sin ¢ > 0)

2= /322 +9?) = rcosqﬁzw/%rQsianS:%rsinqb = tangp=+3 <= =1

Thus the region D is described in spherical coordinates by 0 <r <2, 0 < ¢ < % and 0 < 6 < 27. Thus the
total charge is

w/3
Q= /// 22 dV = / / / (rsin¢cosf)? - r¥sin¢ df do dr
r=0J¢= 0=
w/3 w/3
/ / / r*sin® ¢ cos? Gdﬁdgﬁdrf/ / mrtsin® ¢ dodr
r=0J¢=0 Jo 0J¢=0
2 w/3
_ / / 74 (1 — cos? ¢) sin ¢ dg dr = / 777«4[— cos ¢ + £ cos? qﬁ} dr
r=0J $=0 r=0 $=0
2 2
2/707r7"4<(—%+i)—(—1+%)> dr:/ioﬂ'r‘l-#3{2478 dr
2 2
5T 4 T 5 327 4T
/7:0 A= [24 r L:o 24 3
(b) Find the mass of the sphere z? + y* + 22 = 1 when the density (mass per unit area) is given by
f(xayaz) =3-z

Solution: The sphere is the image of the map o : [0,7] x [0,27] — R?® given by (x,9,2) = o(p,0) =
(sincpcos@, sin psin @, cos gp). We have

cospcosf —sinpsinf sin? o
Do = (U¢709) = | cosysinf singpcosf and o, X o9 = sin? psin @
—sing 0 sin ¢ cos ¢
and hence |J¢ X 09| = | sin |v/sin? ¢ cos? 0 + sin® psin® 6 + cos? ¢ = | sin ¢| = sin ¢ (since 0 < ¢ < 7). Thus
the mass is given by
T
M = / / 3 — cosy)sinp d9d<p—27r/ 3sinp —singcos p dp = 127.
0 =0

(c) Find the mass of the curve of intersection of the parabolic sheet z = 22 with the paraboloid z = 2—z2 —2y?
when the density (mass per unit length) is given by f(z,y, 2) = |zy|.

Solution: Let us find a parametric equation for the curve C of intersection. To get z = 22 and z = 2—x2—2y?,
we need x2 = 2 — 22 — 2y%, that is 22 + y? = 1. Thus we can write (z,y) = (cost,sint) with ¢ € [0,27]. We
also need z = x%, so the curve C is given parametrically by (z,y,z) = a(t) = (cost,sint, cos® t). We have

o/ (t) = (—sint,cost, —2sintcost) and |o/(t)| = V/sin?t + cos? t 4 4sin’ t cos? t = /1 + sin®(2t). Using the
substitution u = cos(2t) so du = —2sin(2t) dt, the mass is given by

2m
M = ’costsmth/l—l—sm (2t) dt = / | sin(2¢)[y/1 + sin®(2t) dt—8/ Lsin(2t)4/1 + sin®(2t) dt

=0
/2

:/ 4sin(2t)/2 — cos?(2t) dt = / —2v/2 —u? duf2/ V2—u?r=Z+1
=0 u=1 =0

(the final value was obtained by noticing that the integral fol V2 —u? du measures the area of a region
consisting of one eighth of the disc of radius /2 along with a triangle of base 1 and height 1).



