1: (a) Find
$$
\iint_D \frac{dA}{\sqrt{x^2 + y^2}}
$$
 where $D = \{(x, y) \in \mathbb{R}^2 | 4 \le x^2 + y^2 \le 4x\}.$
\n(b) Find $\iiint_D e^{x-y+z} dV$ where $D = \{(x, y, z) \in \mathbb{R}^3 | 2 \le x - y + z \le 3, -1 \le x + 2y \le 1, 0 \le x - z \le 2\}.$
\n(c) Find $\int_{x=0}^1 \int_{y=0}^{\sqrt{1-x^2}} \int_{z=\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} dz dy dx.$

2: (a) For $r > 0$, let $A(r) = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x, 0 \le y, x^2 + y^2 \le r^2\}$, $B(r) = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le r, 0 \le y \le r\}$ and $C(r) = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x, 0 \leq y, x^2 + y^2 \leq 2r^2\}$, and note that $A(r) \subseteq B(r) \subseteq C(r)$. You may assume, without proof, that if $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous with $f(x, y) \ge 0$ for all (x, y) then $\int_{A(r)} f \le \int_{B(r)} f \le \int_{C(r)} f$. Use this fact for the function $f(x,y) = e^{-(x^2+y^2)}$ to find the value of $\int_0^\infty e^{-x^2} dx = \lim_{r \to \infty} \int_0^r e^{-x^2} dx$.

(b) Let $a_0, a_1, a_2, a_3 \in \mathbb{R}^3$, let $u_k = a_k - a_0$ for $k = 1, 2, 3$, let $A = (u_1, u_2, u_3) \in M_3(\mathbb{R})$, suppose det $A \neq 0$, and let T be the tetrahedron in \mathbb{R}^3 with vertices a_k . Find a formula, in terms of A, for the volume of T and a formula, in terms of a_0 and A, for the charge of T when the charge density is given by $\rho(x, y, z) = x$.

3: For part (a) of this problem, note when $g : \mathbb{R}^3 \to \mathbb{R}^3$ is a change of variables map with Dg orthogonal, that is with $Dg^T Dg = I$, if S is the surface $S = \text{Range}(\sigma)$ where $\sigma : D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$, and T is the surface $T = g(S) = \text{Range}(g \circ \sigma)$ then, using the Chain Rule and the fact that $Dg^T Dg = I$, we have

Area
$$
(T) = \int_D \sqrt{\det (D(g \circ \sigma)^T D(g \circ \sigma))} = \int_D \sqrt{\det (D\sigma^T Dg^T Dg D\sigma)} = \int_D \sqrt{\det (D\sigma^T D\sigma)} = \text{Area}(S).
$$

In particular, note that translations and rotations preserve surface area.

(a) Find the area of the portion of a sphere S of radius R which lies between two parallel planes which intersect with the sphere and are separated by a distance d. Note that since translations and rotations preserve area, we can take S to be given by $x^2 + y^2 + z^2 = R^2$ and we can take the planes to be given by $z = a$ and $z = b$ with $b - a = d$.

(b) A point p is chosen (uniformly) at random on the surface of the sphere S given by $(x+1)^2 + y^2 + z^2 = 1$ and a point q is chosen (uniformly and independently) at random on the surface of the sphere T given by $(x-1)^2 + y^2 + z^2 = 1$. Find the probability P that the distance between p and q is at most 1: if $\rho(x, y, z)$ is the probability that a point p chosen at random on S lies within 1 unit of $q = (x, y, z)$, then $P = \frac{1}{4\pi} \int_T \rho$.

4: (a) Let $A = \{(x, y) \in \mathbb{R}^2 | y > x^2\}$. Prove, from the definition of an open set, that A is open in \mathbb{R}^2 .

(b) Define $f : \mathbb{R} \to \mathbb{R}^2$ by $f(t) = (\sin t, t e^t)$. Prove, from the definition, that Range(f) is not closed in \mathbb{R}^2 .

(c) Let A be the set of real numbers $x \in [0,1)$ which can be written in base 3 without using the digit 2, or in other words, let A be the set of real numbers of the form $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$ with each $a_k \in \{0,1\}$. Determine whether A is open or closed (or neither) in \mathbb{R} .