
MATH 247 Calculus 3, Solutions to Assignment 3

1: (a) Find

∫∫
D

dA√
x2 + y2

where D =
{

(x, y)∈R2
∣∣ 4 ≤ x2+ y2 ≤ 4x

}
.

Solution: Note that D is the region outside the circle x2 + y2 = 4, and inside the circle x2 + y2 = 4x, that
is the circle (x− 2)2 + y2 = 4. These two circles intersect at (x, y) = (1±

√
3). The two circles are given in

polar coordinates by r = 2 and r = 4 cos θ and these intersect at (r, θ) =
(
2,±π3

)
. Thus D = g(C) where g

is the polar coordinates map with |detDg| = r, and C =
{

(r, θ)∈R2
∣∣ − π

3 ≤θ≤
π
3 , 2≤r≤4 cos θ

}
. We have∫∫

D

dx dy√
x2 + y2

=

∫∫
C

r dr dθ

r
=

∫ π
3

θ=−π3

∫ 4 cos θ

r=2

dr dθ =

∫ π
3

θ=−π3
4 cos θ − 2 dθ

=
[
4 sin θ − 2θ

]π
3

−π3
=
(
2
√

3− 2π
3

)
−
(
− 2
√

3 + 2π
3

)
= 4
√

3− 4π
3 .

(b) Find

∫∫∫
D

ex−y+z dV where D =
{

(x, y, z)∈R3
∣∣ 2 ≤ x−y+z ≤ 3 , −1 ≤ x+2y ≤ 1 , 0 ≤ x−z ≤ 2

}
.

Solution: Let u = x− y + z, v = x+ 2y and w = x− z, that is u
v
w

 = A

x
y
z

 where A =

 1 −1 1
1 2 0
1 0 −1

 .

Note that g(C) = D where C = [2, 3] × [−1, 1] × [0, 2] =
{

(u, v, w)
∣∣ 2≤ u≤ 3 , −1≤ v≤ 1 , 0≤w≤ 2

}
and

g : R3 → R3 is the linear map given by g = A−1. Since detA = −5 we have |detDg| = |detA−1| = 1
5 and

so ∫∫∫
D

ex−y+z dx dy dz =

∫∫∫
C

1
5 e

u dw dv du =

∫ 3

u=2

∫ 1

v=−1

∫ 2

w=0

1
5 e

u dw dv du

=

∫ 3

u=2

∫ 1

v=−1

2
5 e

u dv dw =

∫ 3

u=2

4
5 e

u du = 4
5 (e3 − e2).

(c) Find

∫ 1

x=0

∫ √1−x2

y=0

∫ √2−x2−y2

z=
√
x2+y2

dz dy dx.

Solution: Note that g(C) = D where D =
{

(x, y, z)
∣∣ 0≤x≤1 , 0≤y≤

√
1−x2 ,

√
x2+y2≤z≤

√
2−x2−y2

}
,

C =
{

(r, θ, z)
∣∣ 0≤θ≤ π

2 0≤r≤1 , r≤ z≤
√

2−r2
}

and g is the cylindrical coordinates map with |detDg| = r.
Thus∫ 1

x=0

∫ √1−x2

y=0

∫ √2−x2−y2

z=
√
x2+y2

dz dy dx =

∫∫∫
D

dx dy dz =

∫∫∫
C

r dr dθ dz =

∫ π
2

θ=0

∫ 1

r=0

∫ √2−r2

z=r

r dz dr dθ

=

∫ π
2

θ=0

∫ 1

r=0

r
√

2− r2 − r2 dr dθ =

∫ π
2

θ=0

[
− 1

3 (2− r2)3/2 − 1
3r

3
]1
r=0

dθ

=

∫ π
2

θ=0

− 1
3 −

1
3 + 1

3 · 2
√

2 dθ = π
2

(
− 2

3 + 2
√
2

3

)
= π

3 (
√

2− 1).



2: (a) For r > 0, let A(r) =
{

(x, y)∈R2
∣∣ 0≤x , 0≤y , x2+y2 ≤ r2

}
, B(r) =

{
(x, y)∈R2

∣∣ 0≤x≤ r , 0≤y≤r
}

and C(r) =
{

(x, y)∈R2
∣∣ 0≤x , 0≤y , x2+y2 ≤ 2r2

}
, and note that A(r) ⊆ B(r) ⊆ C(r). You may assume,

without proof, that if f : R2 → R is continuous with f(x, y) ≥ 0 for all (x, y) then
∫
A(r)

f ≤
∫
B(r)

f ≤
∫
C(r)

f .

Use this fact for the function f(x, y) = e
−(x2+y2)

to find the value of
∫ ∞
0
e−x

2

dx = lim
r→∞

∫ r
0
e−x

2

dx.

Solution: Let I(r) =
∫ r
x=0

e−x
2

dx =
∫ r
y=0

e−y
2

dy. Note that since e−(x
2+y2) = e−x

2

e−y
2

, we have∫
B(r)

f =

∫ r

x=0

∫ r

y=0

e−x
2

e−y
2

dy dx =

∫ r

x=0

e−x
2

∫ r

y=0

e−y
2

dy dx =

∫ r

x=0

e−x
2

dx ·
∫ r

y=0

e−y
2

dy = I(r)2.

Using polar coordinates (x, y) = g(s, θ) = (s cos θ, s sin θ) with detDg = s, we have∫
A(r)

f =

∫ r

s=0

∫ π
2

θ=0

se−s
2

dθ ds = π
2

∫ r

s=0

s e−s
2

ds = π
2

[
− 1

2 e
−s2
]r
s=0

= π
4 (1− e−r2) and

∫
C(r)

f =

∫ √2 r

s=0

∫ π
2

θ=0

se−s
2

dθ ds = π
2

∫ √2 r

s=0

s e−s
2

ds = π
2

[
− 1

2 e
−s2
]√2 r

s=0
= π

4 (1− e−2r2)

Since
∫
A(r)

f ≤
∫
B(r)

f ≤
∫
C(r)

f we have π
4 (1− e−r2) ≤ I(r)2 ≤ π

4 (1− e−2r2). By the Squeeze Theorem, we

have lim
r→∞

I(r)2 = π
4 , and hence

∫ ∞
0
e−x

2

dx = lim
r→∞

I(r) =
√
π
2 .

(b) Let a0, a1, a2, a3 ∈ R3, let uk = ak − a0 for k = 1, 2, 3, let A =
(
u1, u2, u3

)
∈M3(R), suppose detA 6= 0,

and let T be the tetrahedron in R3 with vertices ak. Find a formula, in terms of A, for the volume of T and
a formula, in terms of a0 and A, for the charge of T when the charge density is given by ρ(x, y, z) = x.

Solution: Let g : R3 → R3 be the affine map given by g(t) = a0 +At, that is byx
y
z

 = g(r, s, t) =

 a0,1
a0,2
a0,3

+A

 r
s
t

 where A =

u1,1 u2,1 u3,1
u1,2 u2,2 u3,2
u1,3 u2,3 u3,3


and note that Dg = A and that g(S) = T where S is the standard tetrahedron with vertices at 0, e1, e2, e3.
We have

Vol(S) =

∫ 1

r=0

∫ 1−r

s=0

∫ 1−r−s

t=0

dt ds dr =

∫ 1

r=0

∫ 1−r

s=0

1− r − s ds dr

=

∫ 1

r=0

[
(1− r)s− 1

2s
2
]1−r
s=0

dr =

∫ 1

r=0

1
2 (1− r)2dr = [− 1

6 (1− r)3
]1
r=0

= 1
6

Vol(T ) =

∫
T

1 =

∫
S

|detA| = |detA| ·Vol(S) = 1
6 |detA|.

Note that ρ(g(r, s, t)) is the first entry of g(r, s, t), that is ρ(g(r, s, t)) = a0,1 + u1,1r + u2,1s + u3,1t, so the
charge of T is

Q =

∫
T

ρ =

∫
S

(ρ ◦ g)|detDg| = |detA|
∫
S

(ρ ◦ g) = |detA|
∫
S

(
a0,1 + u1,1r + u2,1s+ u3,1t

)
dr ds dt

We have∫
S

r =

∫ 1

r=0

∫ 1−r

s=0

∫ 1−r−s

t=0

r dt ds dr =

∫ 1

r=0

∫ 1−r

s=0

r(1− r)− rs ds dr =

∫ 1

r=0

[
r(1− r)s− 1

2rs
2
]1−r
s=0

dr

=

∫ 1

r=0

1
2 r(1− r)

2 dr =

∫ 1

r=0

1
2 (r − 2r2 + r3) dr = 1

2

[
1
2r

2 − 2
3r

3 + 1
4r

4
]1
r=0

1
2

(
1
2 −

2
3 + 1

4

)
= 1

24

and similarly (by interchanging the roles of r, s and t)
∫
S
s =

∫
S
t = 1

24 , and we have
∫
S

1 = Vol(S) = 1
6 ,

and hence

Q = |detA|
(
a0,1

∫
S

1 + u1,1

∫
S
r + u2,1

∫
S
s+ u3,1

∫
S
t
)

= |detA|
(
1
6a0,1 + 1

24 (u1,1 + u2,1 + u3,1
))
.

This can also be written as
Q = 1

24 |detA|
(
4a0 +A(e1+e2+e3)

).e1.



3: (a) Find the area of the portion of a sphere S of radius R which lies between two parallel planes which
intersect with the sphere and are separated by a distance d. Note that since translations and rotations
preserve volume, we can take S to be given by x2 + y2 + z2 = R2 and we can take the planes to be given by
z = a and z = b with b− a = d.

Solution: We provide two solutions. For the first solutions, we describe the sphere parametrically by

(x, y, z) = σ(θ, z) =
(√

R2 − z2 cos θ ,
√
R2 − z2 sin θ , z

)T
with θ ∈ [0, 2π] and z ∈ [−1, 1]. Then we have

Dσ =
(
σθ, σz

)
=

−
√
R2 − z2 sin θ −z√

R2−r2 cos θ
√
R2 − z2 cos θ −z√

R2−r2 sin θ
0 1

 so that σθ × σz =

√R2 − z2 cos θ√
R2 − z2 sin θ

z


and hence

∥∥σθ × σz∥∥ =
√

(R2 − z2) + z2 = R. Thus the area is

A =

∫ 2π

θ=0

∫ b

z=a

‖σθ × σz‖ dz dθ =

∫ 2π

θ=0

∫ b

z=a

R dz dθ =

∫ 2π

θ=0

R(b− a) = 2πR(b− a) = 2πRd.

For the second solution, we describe the sphere parametrically by

(x, y, z) = σ(ϕ, θ) =
(
R sinϕ cos θ , R sinϕ sin θ , R cosϕ

)T
with ϕ ∈ [0, π] and θ ∈ [0, 2π]. Then we have

Dσ =
(
σϕ , σθ

)
=

R cosϕ cos θ −R sinϕ sin θ
R cosϕ sin θ R sinϕ cos θ
−R sinϕ 0

 so that σϕ × σθ =

R2 sin2 ϕ cos θ
R2 sin2 ϕ sin θ
R2 sinϕ cosϕ


hence ∥∥σϕ × σθ∥∥ =

√
R4 sin4 ϕ+R4 sin2 ϕ cos2 ϕ =

√
R4 sin2 ϕ = R2 sinϕ.

Note that we have z = a when R cosϕ = a, that is when ϕ = cos−1aR and z = b when ϕ = cos−1 bR , and so

A =

∫ cos−1a
R

ϕ=cos−1 b
R

∫ 2π

θ=0

R2 sinϕ dθ dϕ =

∫ cos−1a
R

ϕ=cos−1 b
R

2πR2 sinϕ dϕ= 2πR2
[
−cosϕ

]cos−1a
R

cos−1 b
R

= 2πR2
(
b
R−

a
R

)
= 2πRd.



(b) A point p is chosen (uniformly) at random on the surface of the sphere S given by (x+ 1)2 + y2 + z2 = 1
and a point q is chosen (uniformly and independently) at random on the surface of the sphere T given by
(x− 1)2 + y2 + z2 = 1. Find the probability P that the distance between p and q is at most 1: if ρ(x, y, z)
is the probability that a point p chosen at random on S lies within 1 unit of q = (x, y, z), then P = 1

4π

∫
T
ρ.

Solution: Let us call the portion of a sphere which lies between two parallel planes separated by a distance d
a “slice of thickness d ”. When one of the two planes is tangent to the sphere, let us call the slice a “spherical
cap”. When q = (x, y, z) lies on T so that we have (x− 1)2 + y2 = 1 (1), the distance r from q to the centre
(1, 0, 0) of S is given by (x+1)2 +y2 = r2 (2). Subtract (1) from (2) to get 4x = r2−1 so that r =

√
1 + 4x.

Note that the set of points p on S which lie within 1 unit of q is a spherical cap on S which is equal to a
slice of thickness d = 1 − r

2 which, by part (a), has area 2πd = 2π
(
1 − r

2

)
. The area of the entire sphere S

(being a slice of thickness 2) is equal to 4π, so the probability that p lies within 1 unit of q is equal to

ρ(x, y, z) = 1
4π · 2π(1− r

2

)
= 1

2 −
1
4r = 1

2 −
1
4

√
1 + 4x

when 1 ≤ r ≤ 2, that is when 0 ≤ x ≤ 3
4 , and is equal to 0 otherwise. When (x, y, z) ∈ T we have

(x − 1)2 + y2 + z2 = 1 so that y2 + z2 = 1 − (x − 1)2 = 2x − x2, and so we can represent the sphere T
parametrically by

(x, y, z) = σ(x, θ) =
(
x ,
√

2x− x2 cos θ ,
√

2x− x2 sin θ
)T

with x ∈ [0, 2] and θ ∈ [0, 2π]. We have

Dσ =
(
σx , σθ

)
=

 1 0
1−x√
2x−x2

cos θ −
√

2x− x2 sin θ
1−x√
2x−x2

sin θ
√

2x− x2 cos θ

 so that σx × σθ =

 1− x
−
√

2x− x2 cos θ
−
√

2x− x2 sin θ


hence

∥∥σx × σθ∥∥ =
√

(1− x)2 + (2x− x2) = 1. The required probability is

P = 1
4π

∫
T

ρ = 1
4π

∫ 3/4

x=0

∫ 2π

θ=0

1
2 −

1
4

√
1 + 4x dx =

∫ 3/4

x=0

1
4 −

1
8

√
1 + 4x dx

=
[
1
4x−

1
48 (1 + 4x)3/2

]3/4
x=0

=
(

3
16 −

1
6

)
−
(
− 1

48

)
= 1

24 .



4: (a) Let A =
{

(x, y) ∈ R2
∣∣y > x2

}
. Prove, from the definition of an open set, that A is open in R2.

Solution: Let (a, b) ∈ A so we have b > a2 and hence
√
b > |a|. Let r = min

(
b−a2

2 ,
√
b−|a|
2

)
. We claim that

B
(
(a, b), r

)
⊆ A. Let (x, y) ∈ B

(
(a, b), r

)
. Note that

|x− a| ≤
√

(x− a)2 + (y − b)2 = d
(
(a, b), (x, y)

)
< r ≤

√
b−|a|
2

and similarly

|y − b| < r ≤ b−a2
2 .

It follows that |x| − |a| ≤ |x − a| <
√
b−|a|
2 so that |x| ≤

√
b+|a|
2 and that b − y ≤ |y − b| < b−a2

2 so that

y > b+a2

2 . Note that 0 ≤
(√
b− |a|

)2
= b+ a2 − 2|a|

√
b so we have 2|a|

√
b ≤ b+ a2. It follows that

x2 <
(√

b+|a|
2

)2
= b+a2+2|a|

√
b

4 ≤ b+a2

2 < y.

Since y > x2 we have (x, y) ∈ A. This shows that B
(
(a, b), r

)
⊆ A, as claimed, and so S is open.

(b) Define f : R→ R2 by f(t) =
(

sin t , tet
)
. Prove, from the definition, that Range(f) is not closed in R2.

Solution: We need to show that Range(f)c is not open. To say that Range(f) is open means that for all
a ∈ Range(f)c there exists r > 0 such that B(a, r) ⊆ Range(f)c, or equivalently that for all a ∈ Range(f)c

there exists r > 0 such that B(a, r) ∩Range(f) = ∅. Thus we need to show that there exists a ∈ Range(f)c

such that for all r > 0 we have B(a, r) ∩ Range(f) 6= ∅. Choose a = (1, 0). We claim that a ∈ Range(f)c.
Suppose, for a contradiction, that a ∈ Range(f), say a = f(t), that is (1, 0) =

(
sin t , tet

)
. Since sin t = 1,

we have t = π
2 + 2πn for some n ∈ Z, so in particular we have t 6= 0. But since tet = 0 and et 6= 0 we must

have t = 0, and this gives the desired contradiction. Thus a = (1, 0) ∈ Range(f)c, as claimed. It suffices to
show that for all r > 0 we have B(a, r) ∩ Range(f) 6= ∅. Let r > 0. Note that, by l’Hôpital’s Rule, we have

lim
t→−∞

t et = lim
t→−∞

t

e−t
= lim
t→−∞

1

−e−t
= lim
t→−∞

−et = 0,

so we can choose R < 0 such that for all t < R we have |tet| < r. Choose n ∈ Z+ such that π
2 −2nπ < R and

let t = π
2−2nπ. Then we have sin t = 1 and we have |tet| < r so that

∥∥f(t)−a
∥∥ =

∥∥(1, tet)−(1, 0)
∥∥ = |tet| < r.

Thus f(t) ∈ B(a, r) and hence B(a, r) ∩ Range(f) 6= ∅, as required.

(c) Let A be the set of real numbers x ∈ [0, 1) which can be written in base 3 without using the digit 2, or
in other words, let A be the set of real numbers of the form x =

∑∞
k=1

ak
3k

with each ak ∈ {0, 1}. Determine
whether A is open or closed (or neither) in R.

Solution: We claim that A is closed. Let An be the set of all x ∈ [0, 1) of the form x =
∑∞
k=1

ak
3k

with
a1, a2, · · · , an ∈ {0, 1} and ak ∈ {0, 1, 2} for k > n. Note that x ∈ An if and only if a = b + t for some
b of the form b =

∑n
k=1

ak
3k

with each ak ∈ {0, 1} and for some t of the form t = 1
3n+1

∑∞
k=0

ak
3k

with each

ak ∈ {0, 1, 2}, or equivalently for some t ∈
[
0, 1

3n+1

]
. Thus An is the union of the 2n closed intervals of the

form
[
b, b+ 1

3n+1

]
, where b =

n∑
k=1

ak
3k

with each ak ∈ {0, 1}. For example, we have A1 =
[
0, 13
]
∪
[
1
3 ,

2
3

]
=
[
0, 23
]

and A2 =
[
0, 19
]
∪
[
1
9 ,

2
9

]
∪
[
1
3 ,

4
9

]
∪
[
4
9 ,

5
9

]
=
[
0, 29
]
∪
[
1
3 ,

5
9

]
. Since A =

⋂∞
n=1An and each set An is closed, it

follows that A is closed (by Theorem 2.14, which follows easily from Theorem 2.13), as claimed.

We remark that A = 1
2C =

{
1
2x
∣∣x∈C} where C is the famous Cantor set, which is the set of x ∈ [0, 1]

which can be written in the form x =
∑∞
k=1

ak
3k

with each ak ∈ {0, 2}. One can prove that C is closed in the
same way that we proved that A is closed.


