- **1:** (a) Let $A, B \subseteq \mathbb{R}^n$. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (b) Let $A \subseteq \mathbb{R}^n$. Show that $A' = \overline{A}'$ or, in other words, show that A and \overline{A} have the same limit points.
 - (c) Let $A, B \subseteq \mathbb{R}^n$ be disjoint closed sets. Show that there exist disjoint open sets $U, V \subseteq \mathbb{R}^n$ with $A \subseteq U$ and $B \subseteq V$.
- **2:** (a) Let $A, B \subseteq \mathbb{R}^n$. Show that $\partial(A \cup B) \subseteq \partial A \cup \partial B$.
 - (b) Let $A, B \subseteq \mathbb{R}^n$. Show that $\partial(A \cap B) \subseteq (A \cap \partial B) \cup (B \cap \partial A) \cup (\partial A \cap \partial B)$.
 - (c) Give an example of sets $A, B \subseteq \mathbb{R}$ for which $\partial(A \cap B) \neq (A \cap \partial B) \cup (B \cap \partial A) \cup (\partial A \cap \partial B)$.
- **3:** (a) Let $a \in \mathbb{R}^n$, let r > 0, and let $B(a, r) \subseteq A \subseteq \overline{B}(a, r)$. Show that $A^o = B(a, r)$ and $\overline{A} = \overline{B}(a, r)$.
 - (b) Determine whether for every subset $P \subseteq \mathbb{R}^n$, we have $\overline{B_P(a,r)} = \overline{B_P(a,R)}$ for all $a \in P$ and all r > 0.
 - (c) Let $A \subseteq P \subseteq \mathbb{R}^n$. Prove that A is compact in P if and only if A is compact in \mathbb{R}^n .
- 4: (a) Let $A \subseteq \mathbb{R}^n$ be compact and let S be an open cover of A. Show that there exists r > 0 such that for every $a \in A$ there exists $U \in S$ such that $B(a, r) \subseteq U$.
 - (b) Let C_1, C_2, C_3, \cdots be non-empty closed sets in \mathbb{R}^n with $C_1 \supseteq C_2 \supseteq C_3 \supseteq \cdots$. Show that if each set C_k is compact then $\bigcap_{k=1}^{\infty} C_k \neq \emptyset$, and find an example where the sets C_k are not compact and we have $\bigcap_{k=1}^{\infty} C_k = \emptyset$.