
MATH 247 Calculus 3, Solutions to Assignment 4

1: (a) Let A,B ⊆ Rn. Show that A ∪B = A ∪B.

Solution: Since A ⊆ A and B ⊆ B we have A ∪ B ⊆ A ∪ B. Since A ∪ B ⊆ A ∪ B and A ∪ B is closed, it
follows (from Definition 2.15) that A ∪B ⊆ A ∪B.

Note that for X,Y ⊆ Rn, if X ⊆ Y then every closed set containing Y also contains X, and so X ⊆ Y
(by Definition 2.15). Since A ⊆ A ∪ B we have A ⊆ A ∪B. Since B ⊆ A ∪ B we have B ⊆ A ∪B. Since

A ⊆ A ∪B and B ⊆ A ∪B we have A ∪B ⊆ A ∪B.

(b) Let A ⊆ Rn. Show that A′ = A
′

or, in other words, show that A and A have the same limit points.

Solution: Note first that if A ⊆ B then we have A′ ⊆ B′: indeed if a ∈ A′ then given r > 0 we have

B∗(a, r) ∩ B ⊇ B∗(a, r) ∩ A 6= ∅. Since A ⊆ A, it follows that A′ ⊆ A
′
. It remains to show that A

′ ⊆ A′.

Let a ∈ A
′
. Let r > 0. We must show that B∗(a, r) ∩ A 6= ∅. Since a ∈ A

′
we can choose an element

x ∈ B∗
(
a, r2

)
∩ A. Since x ∈ A = A ∪ A′, either we have x ∈ A or we have x ∈ A′. If x ∈ A then we

have x ∈ B∗(a, r) ∩ A so that B∗(a, r) ∩ A 6= ∅. Suppose that x ∈ A′. Let s = d(x, a) and note that since
x ∈ B∗

(
a, r2

)
we have 0 < s < r

2 . Since x ∈ A′ we can choose y ∈ B∗(x, s) ∩ A. Then we have y ∈ A, and

we have y 6= a
(
since d(y, x) < s = d(a, x)

)
, and we have d(y, a) ≤ d(y, x) + d(x, a) < s+ r

2 < r, and hence
y ∈ B∗(a, r) ∩A so that B∗(a, r) ∩A 6= ∅, as required.

(c) Let A,B ⊆ Rn be disjoint closed sets. Show that there exist disjoint open sets U, V ⊆ Rn with A ⊆ U
and B ⊆ V .

Solution: Let A and B be disjoint closed sets in Rn. For each a ∈ A, since A ∩ B = ∅ we have a ∈ Bc, and
since B is closed so that Bc is open, we can choose ra > 0 such that B(a, 2ra) ⊆ Bc, that is B(a, 2ra)∩B = ∅.
Similarly, for each b ∈ B we can choose sb > 0 such that B(b, 2sb) ⊆ Ac, that is B(b, 2sb) ∩A = ∅.

Let U =
⋃

a∈AB(a, ra) and V =
⋃

b∈B B(b, sb). Then U and V are open with A ⊆ U and B ⊆ V . We
claim that U ∩ V = ∅. Suppose, for a contradiction, that c ∈ U ∩ V . Since c ∈ U =

⋃
a∈AB(a, ra) we can

choose a ∈ A such that c ∈ B(a, ra). Since c ∈ V =
⋃

b∈B B(b, sb) we can choose b ∈ B such that c ∈ B(b, sb).
If ra ≤ sb then d(a, b) ≤ d(a, c) + d(c, b) < ra + sb ≤ 2sb so that a ∈ B(b, 2sb), but this contradicts the fact
that B(b, 2sb) ∩ A = ∅. Similarly, if sb ≤ ra then d(a, b) < 2ra so that b ∈ B(a, 2ra), contradicting the fact
that B(a, 2ra) ∩B = ∅. Thus U ∩ V = ∅, as claimed.



2: (a) Let A,B ⊆ Rn. Show that ∂(A ∪B) ⊆ ∂A ∪ ∂B.

Solution: Suppose that x /∈ (∂A ∪ ∂B), that is x /∈ ∂A = A \ Ao and x /∈ ∂B = B \ Bo. This means that(
x /∈ A or x ∈ Ao

)
and

(
x /∈ B or x ∈ Bo

)
. If x ∈ Ao then we can choose r > 0 so that B(a, r) ⊆ A, and

then we also have B(a, r) ⊆ (A ∪ B) so that x ∈ (A ∪ B)o, and hence x /∈ ∂(A ∪ B). Similarly, if x ∈ Bo

then we also have x ∈ (A ∪ B)o hence x /∈ ∂(A ∪ B). Finally, if x /∈ A and x /∈ B, then we have x /∈ A ∪ B
and hence, by Question 1(a), we have x /∈ A ∪B, so that again x /∈ ∂(A ∪B).

(b) Let A,B ⊆ Rn. Show that ∂(A ∩ B) ⊆ (A ∩ ∂B) ∪ (B ∩ ∂A) ∪ (∂A ∩ ∂B). Hint: first show that if
a ∈ ∂(A ∩B) and a /∈ (A ∩ ∂B) then a ∈ ∂A.

Solution: We claim that if a ∈ ∂(A∩B) and a /∈ (A∩ ∂B) then we have a ∈ ∂A. Suppose that a ∈ ∂(A∩B)
and a /∈ (A ∩ ∂B). We need to show that for all r > 0 we have B(a, r) ∩ A 6= ∅ and B(a, r) ∩ Ac 6= ∅.
Let r > 0. Note that since a ∈ ∂(A ∩ B) we have B(a, r) ∩ (A ∩ B) 6= ∅. Since A ∩ B ⊆ A we have
B(a, r) ∩ (A ∩ B) ⊆ B(a, r) ∩ A. Since B(a, r) ∩ (A ∩ B) 6= ∅ and B(a, r) ∩ (A ∩ B) ⊆ B(a, r) ∩ A, we also
have B(a, r) ∩A 6= ∅. It remains to show that B(a, r) ∩Ac 6= ∅.

Since a /∈ (A ∩ ∂B), either a /∈ A or a /∈ ∂B. In the case that a /∈ A we have a ∈ B(a, r) ∩ Ac so that
B(a, r) ∩Ac 6= ∅. Suppose that a /∈ ∂B. Since a /∈ ∂B we can choose s > 0 such that either B(a, s) ∩B = ∅
or B(a, s) ∩ Bc = ∅. Since a ∈ ∂(A ∩ B) we have B(a, s) ∩ (A ∩ B) 6= ∅, and hence (because A ∩ B ⊆ B)
we also have B(a, s) ∩ B 6= ∅, and it follows that B(a, s) ∩ Bc = ∅. Let δ = min(r, s) and note that since
B(a, s) ∩ Bc = ∅ we also have B(a, δ) ∩ Bc = ∅. Since a ∈ ∂(A ∩ B) we have B(a, δ) ∩ (A ∩ B)c 6= ∅,
that is B(a, r) ∩ (Ac ∪ Bc) 6= ∅, or equivalently

(
B(a, δ) ∩ Ac

)
∪
(
B(a, δ) ∩ Bc

)
6= ∅. Since we know that

B(a, δ) ∩Bc = ∅, it follows that B(a, δ) ∩Ac 6= ∅, hence also B(a, r) ∩Ac 6= ∅, as required.

(c) Give an example of sets A,B ⊆ R for which ∂(A ∩B) 6= (A ∩ ∂B) ∪ (B ∩ ∂A) ∪ (∂A ∩ ∂B).

Solution: One such example is obtained by letting A = Q and B = Qc. Since A ∩ B = ∅, we also have
∂(A ∩ B) = ∅. Since A is dense in R, it follows that A′ = R so that A = R. Since B = Ac is dense in R, it
follows that Ao = ∅ so that ∂A = A \ Ao = R. Similarly we have B = R and Bo = ∅ and ∂B = R. Thus
(A ∩ ∂B) ∪ (B ∩ ∂A) ∪ (∂A ∩ ∂B) = (R ∩ R) ∪ (R ∩ R) ∪ (∅ ∩ ∅) = R.



3: (a) Let a ∈ Rn, let r > 0, and let B(a, r) ⊆ A ⊆ B(a, r). Show that Ao = B(a, r) and A = B(a, r).

Solution: Since B(a, r) is open and B(a, r) ⊆ A, it follows that B(a, r) ⊆ Ao. Let b ∈ Ao. We must show that
b ∈ B(a, r). Suppose, for a contradiction, that b /∈ B(a, r), that is |b− a| ≥ r. Since b ∈ Ao ⊆ A ⊆ B(a, r),
we have |b − a| ≤ r, and hence |b − a| = r. Since b ∈ Ao we can choose s > 0 so that B(b, s) ⊆ A. Let
x = b+ s

2r (b− a) and note that |x− b| = s
2 so that x ∈ B(b, s). Also note that x− a = (b− a) + s

2r (b− a) =(
1 + s

2r

)
(b− a), so that |x− a| =

(
1 + s

2r

)
· r = r + s

2 > r, and hence x /∈ B(a, r) so that x /∈ A. But since
x ∈ B(b, s) with x /∈ A, this contradicts the fact that B(b, s) ⊆ A. Thus b ∈ B(a, r) as required.

Since B(a, r) is closed and A ⊆ B(a, r), it follows that A ⊆ B(a, r). Let b ∈ B(a, r). We must show
that b ∈ A, that is b ∈ A or b ∈ A′. Since b ∈ B(a, r) we have |b − a| ≤ r. If |b − a| < r then we have
b ∈ B(a, r) ⊆ A so that b ∈ A. Suppose that |b − a| = r. We claim that b ∈ A′. Let s > 0. Choose t with
0 < t < max{r, s} and let x = b − t

r (b − a). Then we have |x − b| = t
r |b − a| = t with 0 < t < s so that

x ∈ B∗(b, s), and we have |x−a| =
∣∣(1− t

r

)
(b−a)

∣∣ = r− t < r so that x ∈ B(a, r) ⊆ A Thus x ∈ B∗(b, s)∩A
so that B∗(b, s) ∩A 6= ∅, which shows that b ∈ A′, as claimed.

(b) Determine whether for every subset P ⊆ Rn, we have BP (a, r) = BP (a,R) for all a ∈ P and all r > 0.

Solution: This is false. For example, when a, b ∈ Rn with a 6= b, and P = {a, b}, and r = |b − a|, we have
BP (a, r) = {a} which is closed (both in P and in Rn) so that BP (a, r) = {a}, but we have BP (a, r) = {a, b}.
(c) Let A ⊆ P ⊆ Rn. Prove that A is compact in P if and only if A is compact in Rn.

Solution: Suppose that A is compact in P . Let T be an open cover for A in Rn. For each V ∈ T , let
UV = V ∩ P . By Theorem 2.31, each set UV is open in P . Since A ⊆ P and A ⊆

⋃
V ∈T V , we also have

A ⊆
⋃

V ∈T (V ∩ P ) =
⋃

V ∈T UV . Thus the set S =
{
UV

∣∣V ∈ T} is an open cover for A in P . Since

A is compact in P we can choose a finite subcover, say
{
UV1

, · · ·UVn

}
of S, where each Vi ∈ T . Since

A ⊆
⋃n

i=1 UVi
=
⋃n

i=1(Vi ∩ P ), we also have A ⊆
⋃n

i=1 Vi and so {V1, · · · , Vn} is a finite subcover of T .
Suppose, conversely, that A is compact in Rn. Let S be an open cover for A in P . For each U ∈ S, by

Theorem 2.31, we can choose an open set VU in Rn such that U = VU ∩ P . Then T =
{
VU
∣∣U ∈S} is an

open cover of A in Rn. Since A is compact in Rn we can choose a finite subcover, say
{
VU1

, · · · , VUn

}
of T ,

where each Ui ∈ S. Then A ⊆
⋃n

i=1(VUi
∩ P ) =

⋃n
i=1 Ui and so {U1, · · · , Un} is a finite subcover of S in P .



4: (a) Let A ⊆ Rn be compact and let S be an open cover of A. Show that there exists r > 0 such that for
every a ∈ A there exists U ∈ S such that B(a, r) ⊆ U .

Solution: For each p ∈ A, since S is an open cover for A we can choose Up ∈ S with p ∈ Up and then, since
Up is open we can choose rp > 0 so that B(p, 2rp) ⊆ Up. Note that the set T =

{
B(p, rp)

∣∣p ∈ A} is an open

cover for A. Since A is compact, we can choose a finite subcover, say
{
B(p1, rp1

), · · · , B(p`, rp`
)
}

of T for
A, with each pk ∈ A. Let r = min{rp1

, · · · , rp`
}. We claim that for every a ∈ A there exists U ∈ S such

that B(a, r) ⊆ U . Let a ∈ A. Choose an index k such that a ∈ B(pk, rpk
), and let U = Upk

∈ S. For all
x ∈ B(a, r) we have |x − pk| ≤ |x − a| + |a − pk| ≤ r + rpk

≤ 2rpk
and hence x ∈ B(pk, 2rpk

) ⊆ Upk
= U .

This shows that B(a, r) ⊆ U , as required.

(b) Let C1, C2, C3, · · · be non-empty closed sets in Rn with C1 ⊇ C2 ⊇ C3 ⊇ · · ·. Show that if each set Ck is

compact then
∞⋂
k=1

Ck 6= ∅, and find an example where the sets Ck are not compact and we have
∞⋂
k=1

Ck = ∅.

Solution: Suppose that each set Ck is compact, and suppose, for a contradiction, that
∞⋂
k=1

Ck = ∅. Then

Rn = ∅ c =
( ∞⋂
k=1

Ck

)c
=
∞⋃
k=1

Ck
c = C1

c ∪
∞⋃
k=2

Ck
c.

It follows that C1 ⊆
∞⋃
k=2

Ck
c since given a ∈ C1 we have a ∈ C1

c ∪
∞⋃
k=2

Ck
c but a /∈ C1

c, and so a ∈
∞⋃
k=2

Ck
c.

Thus S =
{
C2

c, C3
c, C4

c, · · ·
}

is an open cover for C1. Since C1 is compact, we can choose a finite sub-cover

T =
{
Ck1

c, Ck2

c, · · · , Ck`

c
}

say with 2 ≤ k1 < k2 < · · · < k`. Since T covers C1 we have C1 ⊆
⋃̀
i=1

Cki

c.

Since Ck1 ⊇ Ck2 ⊃ · · · ⊃ Ck`
we have Ck1

c ⊆ Ck2

c ⊆ · · · ⊆ Ck`

c and hence
⋃̀
i=1

Cki

c = Ck`

c. Thus we obtain

C1 ⊆ Ck`

c, or equivalently C1 ∩ Ck`
= ∅. But this is not possible since C1 ∩ Ck`

= Ck`
6= ∅.

Note that the sets Ck = Rm \B(0, n) are closed in Rm with C1 ⊇ C2 ⊇ · · ·, but
∞⋂
k=1

Ck = ∅.


