MATH 247 Calculus 3, Solutions to Assignment 5

: Note that C = R? so a sequence in C is a sequence in R2.

(a) For k > 0, let o) = (3%“/5)16 € C, and for n > 0, let s,, = > z € C. Use the definition of the limit
k=0
(for a sequence in R?) to find a,b € R such that li_>m Sn = a + ib.

Solution: From the formula for the sum of a geometric series, or by noting that s, = > (3+i‘/§)k and
k=0
(3+j1\/§)3n: > (3+Zﬂ)k+1a so that Sn_(%) Sp=1— (%)nﬂ, we have
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and hence e o
oo = (L4V8)| = L4V 28] =2 ()
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It follows that lim s, = 1—|—i\/§; indeed given ¢ > 0 we can choose m € N so that ( 23)m < 57 and then
n—oo
e > v e o — (V)| =2 ()" <2 ()" < ¢

(b) Let ¢ = % € C. Let (zn)n>0 be the sequence in C given by zo = 0 and 2,41 = 2,2 + ¢ for n > 0.
Determine whether (z,,),>0 converges in C and, if so, find lim z, in C.

n—oo
Solution: If (z,) converges with z, — w in C, then taking the limit on each side of the equality 2,11 = 2,>+c¢
gives w = w? + ¢. By the Quadratic Formula, we have w = w? +¢ <= w? —w+c=0 <= w = 1vi-de V2174‘:,

(where /T — 4c is one of the two square roots of 1 — 4c in C). Note that 1 —dc=1— 2%t =1 = (M)2, SO

WemusthavewzliT?:Wﬂcha‘uisw:%orw:%.
Let w = %. We claim that z, — w. Note that zg —w =0 —w = _14“ so that |z — w| = 2\1/5 and

i

Z—w=c—w= % — % = g so that |21 —w| = %. Let n > 1 and suppose, inductively, that |z, —w| < %
and that |z, —w| < 1 (4—35)”_1. We have
Zn+1 —wzzn2+c—w:zn2+§:zn2—w2 = (zn —w)(zn +w) = (zn—w)((zn—w)—l—Qw)
so that
|2n41 — w| < |z — w| (|20 — w| + [20]) = |20 — w[ (|20 — w| + %)
Using the first induction hypotheses gives
|Zn+1 — w| <z —w|(%—|—%) < |zn —w|(ﬁ+%) = ﬁkn — w|.

Using this with the first induction hypothesis again gives |zp,+1 — w| < F|Z" —w| < |z —w| < 4, and
1
8

using it with the second induction hypothesis gives |zp4+1 —w| < ﬁ |2n —w| < ﬁ - (%)"_1 = (4%/5)”
. . —1
Thus, by induction, we have |z, — w| < % (%ﬁ)n for all n > 1.
. . . . -1
It follows that z, — w, as cllalmed: indeed given € > 0, since 4%/5 < 1 so that (%)n — 0, we can
choose m € ZT so that (ﬁ)mf < 8¢ and then for n > m we have

e —wl <3 (535)" <4 (55)" <e



2: (a) Let f(z,y) =

2
o for (z,y) # (0,0). Determine whether (w,y%i%H}O,O) f(z,y) exists and, if so, find it.
Solution: We claim that ( %irr}o 0 f(x,y) = 0. For all z,y we have |z| = Va2 < /22 + y2 and y? < 22 + 92
z,y)— (0,
and z2 + 2y% > 22 4+ y? and so

Fay) —0 = |2 [ = W VR )
’ x2+2y2 x2_|_2y2 — $2+y2 .

Thus given € > 0 we can choose § = € and then for all z with 0 < |(w, y) — (0,0)| < & we have

|f($ay)*0|§\/m<5:e.

(b) Let f(x,y) =

5 for y > 0. Determine whether — lim  f(x,y) exists and, if so, find it.
T4 +y (@,5)—(0,0)

Solution: Suppose, for a contradiction, that ( %irn(0 O)f(x,y) exists. Let a(t) = (¢,0) for ¢ > 0. Since
z,y) (0,
a(t) # (0,0) for t > 0 and }in(l) a(t) = (0,0) it follows, by Part 1 of Theorem 3.31 (Composition and Limits),
—

that lim  f(x,y) = }51(1) fla(t)) = tliﬂrr(l)O =0. Let 8(t) = (t,t2) for t > 0. Since B(t) # (0,0) for t > 0 and

(2,y)—(0,0)

, -~ . , : 1 11
}gr(l) B(t) = (0,0), it follows, again by Theorem 3.31, that (w7y%1_)r11(070) flz,y) = }gr(l) f(B() = lgr(l) = }gr(l) 5=73-
By Theorem 3.18 (the uniqueness of limits), we cannot have  lim  f(x,y) =0and lim = %, SO we

(z,y)—(0,0) (2,y)—(0,0)

obtain the desired contradiction. Thus  lim  f(x,y) does not exist.
(,9)—(0,0)
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5 5 ity #xx

(c) Define f : R? — R by f(z,y) =4 £~ — VY . Determine where f(x,y) is continuous, that
0 ify=+x

is find all points (a,b) € R? such that f is continuous at (a,b).

Solution: Note that f is continuous for all points (z,y) with y # +z because elementary functions are
continuous in their domains. We claim that f not continuous at any other points.

First, let us show that f is not continuous at (0,0). Suppose, for a contradiction, that f is continuous
at (0,0). Define o : R — R? by a(t) = (2t,t). Since « is continuous (it is elementary) with «/(0) = (0,0), it
follows, by Part 1 of Corollary 3.32 (Composition of Continuous Functions) that g= fo« is continuous at 0.
This implies that g(0) = th_r)% g(t) = }1_{% flat)) = tlim 21 but in fact g(0) = f(a(0)) = £(0,0) = 0,

o T 37
which gives the desired contradiction.
Finally, let us show that f is not continuous at any point (a,+a) with a # 0. Let 0 # a € R. Suppose,
for a contradiction, that f is continuous at (a,a). Define 3 : R — R? by §(t) = (a,a) + t(a, —a) and note
that 8 is continuous with 5(0) = (a,a). By Corollary 3.32, the composite h = f o f is continuous at 0.

.. . IRT (a+ta)(a—ta) —2
This implies that h(0) = }1_1)1(1J f(B) = %51(1) ot —(a—ta = 111% 7, but this is not possible since hn(1) 1=t

I
does not exist. Similarly, f is not continuous at (a, —a) since, if it was, then for v(t) = (a, —a) + t(a,a) and

k = f o7, we would have k(0) = %ir% f(y@) = hm % = hr% 247:&’ which does not exist.
—



3: For each of the following subsets A C R™, determine whether A is closed, whether A is compact, and whether

A is connected.
a b\ (1 0
c d) \0 1 '

Solution: We claim that A is closed. For a,b,c,d € R we have <Ccl

(a) A= {(a,b,c,d) eR*

b\° _ (a*+bc ab+bd

d) - <ac+cd bc+d2> so that

(a,b,c,d) € A — (a2 + be, ab+ bd, ac+ cd, bc+d2) = (1,0,0,1), and so A = f~1(p) where f : R* — R*is

given by f(a,b,c,d) = (a2 + be, ab + bd, ac + cd, be + d2) and p = (1,0,0,1) € R*. The map f is continuous

(it is a polynomial map) and {p} is closed in R?, and so A = f~({p}) is closed in R* (by Theorem 3.36).
Note that A is not bounded because for r > 0 we have (1,7,0,—1) € A and }(17 r,0, —1)| =v2+71? 5 0

as r — 0o. Since A is not bounded in R*, it is not compact (by the Heine Borel Theorem).

2
We claim that A is not connected. For a,b,¢,d € R, if (a,b, ¢,d) € A then we have (CCL Z) = I so that

a b

det c = =1, that is ad — bec = £1. It follows that A can be separated in R* by the two open sets

d
U = {(a,b,c,d)|ad—bc > 0} and V = {(a, b, c,d)|ad—bc < 0}. Note that U is open because U = g~ ((0, 00))
where g : R* — R is given by g(a, b, c,d) = ad — be (and g is continuous and (0, 00) is open), and similarly V/
is open because V = g~! ((—0070)). And we have U N A # () because for example (1,0,0,1) € UN A, and we
have VN A # () because for example (0,1,1,0) € VNA. And A CUUV since (a,b,¢,d) € A = ad—be # 0.

(b) A is the set of points (a,b,c) € R? such that the polynomial p(z) = 23 + az? + bx + ¢ has three distinct
real roots which all lie in the closed interval [—1,1].

Solution: We claim that A is not closed in R® . For n € Z*, let u, = (an, by, c) = (0,—25,0) € R®. Note

RN

that u, € A since the polynomial p,(z) = 23 + a,2? + byx + ¢, = 2% — Lo = (9: + %) (9: — O) (x — %) has

2
3 distinct real roots, namely —%, 0, and %, which all lie in [—1,1]. Notne that nhﬁrr;o u, = (0,0,0) so that
(0,0,0) € A. But (0,0,0) ¢ A because the polynomial p(z) = 23 + 022 + 0z + 0 = 2 does not have three
distinct real roots (it has the single triple root, 0). Thus A is not closed in R* (by Theorem 3.11), as claimed.
Since A is not closed in R3, it is not compact (by the Heine-Borel Theorem).

We claim that A is connected. Let C' = {(r,s,t) e R®| -1 <r < s <t <1} and define f : C — A by
flr,s,t) = (—(r+5—|—t), st+tr+rs, —rst). Note that f is continuous (all polynomial functions are continuous),
and f takes values in A and is surjective because 2® — (r+s+t)a%+ (st+tr+rs)x—rst = (x—r)(xz—s)(xz —1t).
Note that C = C1NCyNC3NCy where Cq = {(’I",S,t)‘ -1< 7"}, Cy = {(’I",S,t)|?” < s}, C3 = {(r,s7t)|s < t}
and Cy = {(r,s,t)|t < 1}. Each of these sets C} is easily seen to be convex: for example, Cy is convex
because if u1 = (11, 81,%1) € Ca (so r1 < s2) and ug = (rg, S2,t2) € Co (s0 12 < $2) then for all A € [0, 1] we
have (1 — A)rq + Arg < (1 — A)sy + Asg so that

(1 — )\)ul + Aug = ((1 — )\)7’1 =+ /\’I"Q, (1 — )\)81 + /\82, (1 — )\)tl + /\tg) € Cs.

Since C' is the intersection of four convex sets, it follows that C' is convex: indeed given a,b € C, we have
a,b € Cy, so that [a,b] C Cj, for every index k, and hence [a,b] C C = ﬂizl C. Since C' is convex, it is path
connected, and hence connected. Since f is continuous and C' is connected and A = f(C), it follows that A
is connected by Part 1 of Theorem 3.37.



4: (a) When A C R? is unbounded, f: A CR* — R™ and b € R™, we write lim f(x) = b when
T—r 00

Ve>03r>0 VazeA (lz|>r=|f(z) —b| <e¢).
Show that if A C R’ is closed and unbounded, and f : A C R — R™ is continuous, and lim f(z) =b € R™,

Tr— 00
then f is uniformly continuous on A.

Solution: Suppose A is closed and unbounded in R?, and f : A C R — R™ is continuous with li_>m f(z) =0.
Let € > 0. Since lim f(x) = b we can choose r > 0 such that for all z € A with x > r we have |f(z) —b| < 5.
T—r0o0

Since A is closed, the set B = B(0,3r) N A is closed, and since B is also bounded, it is compact. Since
f is continuous on B, which is compact, it follows that f is uniformly continuous on B, so we can choose
d > 0 with § < r such that for all a,x € A, if |x —a| < ¢ then |f(z) — f(a)| < e. Let a,z € A with
|z —a] < 6. If |a| < 2r then since |z — a| < r we have |z| < |z —a|+ |a|] < r+2r = 3r, so that z,a € B with
|z —al < d, and hence |f(z) — f(a)| < e. If |a| > 2r then since |z — a| < r we have |a| < |a — x|+ |z| so that
|z| > |a| — |x —a| > 2r —r =7, so we have |a| > r and |z| > r, and hence |f(a) —b| < § and |f(z) —b] < §
so that | £(z) — f(a)] < |f(x) = b + b — Fla)| < §+ 5 = e

(b) Show that if f : A € R — R™ is uniformly continuous on A then there exists a unique continuous
function g : A C R — R™ with g(z) = f(z) for all z € A, and that g is uniformly continuous on A.

Solution: Suppose that f is uniformly continuous on A. Note that if a € A then there exists a sequence (x,,)
in A such that x,, — a: indeed if a € A then we can use the constant sequence z,, = a for all n, and if a € A’
then we can choose a sequence in A\ {a} by Theorem 3.10 (the sequential characterization of limit points).

We claim that when a € A and (z,,) is a sequence in A with x,, — a, the sequence (f(z,)) converges in
R™. Let € > 0. Since f is uniformly continuous on A, we can choose § > 0 such that for all z,y € A we have
|z —y| <6 => |f(z) — f(y)| < e Since x, — a, we can choose n € Z* such that k > n => |z, —a| < $.
Then for k,¢ > n we have |z, — z,| < |z —a| +|a — x| < § + % =4, and hence |f(zr) — f(xe)| <e. This
shows that the sequence (f(x,)) is Cauchy in R™, and so it converges, as claimed.

We claim that when a € A and (z,,) and (y,) are two sequences in A with z,, — a and y,, — a, we
have nlLII;O flz,) = nhﬁrrgo f(yn). By the previous paragraph, we know that the sequences (f(z,)) and f(y.))

both converge, say f(z,) — b and f(y,) — ¢. We need to show that b = ¢. Let ¢ > 0. Since f is uniformly
continuous on A, we can choose § > 0 so that for all z,y € A we have |z —y| <0 = [f(z) — f(y)| < 5.
Since z, — a and y, — a and f(z,) — b and f(y,) — b, we can choose n € Z* such that |z, —a| < 2,
lyn —al < 3, |f(zn) — b < g and | f(yn) —c| < §. Since |z, —al < ¢ and |y, —a| < § we have |z, — y,| < &
and hence |f(x,,) — f(yn)| < §. Thus we have [b—c| < [b— f(zn)|+|f(2n) = f(yn) | +|yn—c| < §+5+5 =€
Since € > 0 was arbitrary, we have |b — ¢| < € for every € > 0, and hence b = ¢, as required.

Thus we can define g : A — R™ as follows: given a € A we choose a sequence (x,,) in A with z,, — a,
and we define g(a) = nlin;o f(x,). Note that when a € A, we do have g(a) = f(a) because we can choose

(5,) to be the constant sequence x,, = a for all a, and then g(a) = lim f(z,) = lim f(a) = f(a).
n—oo n—oo

It remains to show that the map g : A — R™ is uniformly continuous on A. Let ¢ > 0. Since f is
uniformly continuous on A, we can choose §; > 0 such that for all z,y € A we have |z —y| < § =
|f(x) = f(y)] < §. Let § = £61. Let a,b € A with |a — b| < 6. Choose sequences (z,) and (y,) in
A with =, — a and y, — b. Since z, — a and y, — b and f(z,) — g(a) and f(y,) — g(b), we can
choose n € Z* such that |z, —a| < 6, |yn — b < 9, |f(zn) —g(a)| < § and [f(yn) — g(b)| < §. Then
[T = Yn| < |2n —al +|a —=b| + b — yn| < 0++06 = 01 so that |f(zn) — f(yn)| < §, and hence

)

lg(a) —g(®)] < lg(a) = f(@n)| + |f(@n) = Flyn) |+ [f(yn) =9 < 5+ 5+ 5 =€



