- 1: (a) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by f(0,0) = 0 and $f(x,y) = \frac{x^3 xy^2}{x^2 + y^2}$ for $(x,y) \neq (0,0)$. Determine whether f is differentiable at (0,0).
 - (b) Suppose $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ is differentiable and f has a local maximum at $a \in U$. Show that Df(a) = O (this is Exercise 6.15 in the lecture notes).
 - (c) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. Suppose the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(x)$ exist and are bounded in U. Prove that f is continuous.
- **2:** (a) Let $(u, v) = f(x, y) = \left(x \ln(y x^4), \left(2 + \frac{y}{x}\right)^{3/2}\right)$. Explain why f is locally invertible in a neighbourhood of (1, 2) and find the linearization of its inverse at (0, 8).
 - (b) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = 2x^3 3x^2 + 2y^3 + 3y^2$ and let C = Null(f). Use the Implicit Function Theorem to find all the points on C at which C is locally equal to the graph of a function y = g(x), or locally equal to the graph of a function x = h(y).
- 3: Read Chapter 6 in the Lecture Notes, then solve the following problems.

(a) Let $U = \{(x, y) \in \mathbb{R}^2 | x^2 > y^2\}$. Find the 2nd Taylor polynomial of the map $f : U \subseteq \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = \sqrt{x^2 - y^2}$ at the point (5, 4).

(b) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = x^2 - xy + y^3 - y$. Find and classify all the critical points of f in \mathbb{R}^2 , and find the absolute maximum and minimum values of f on the set $A = \{(x, y) \in \mathbb{R}^2 | y^2 - 1 \le x \le 2\}$.

4: (Lagrange Multipliers) For $X \subseteq \mathbb{R}^n$ with $a \in X$, we define the **tangent space** of X at a to be the set $T_a X$ of all vectors $u \in \mathbb{R}^n$ such that there exists $\delta > 0$ and there exists a differentiable map $\alpha : (-\delta, \delta) \subseteq \mathbb{R} \to X \subseteq \mathbb{R}^n$ with $\alpha(0) = a$ such that $\alpha'(0) = u$.

(a) Let $U \subseteq \mathbb{R}^n$ be open with $a \in U$, let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at a, let b = f(a). Prove that $T_{(a,b)}\operatorname{Graph}(f) = \operatorname{Graph}(Df(a))$, which is an *n*-dimensional vector space in \mathbb{R}^{n+m} .

(b) Let $U \subseteq \mathbb{R}^n$ be open with $a \in U$, let $g: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be \mathcal{C}^1 in U with g(a) = 0, and suppose that $\operatorname{rank}(Dg(a)) = m < n$. Prove that $T_a\operatorname{Null}(g) = \operatorname{Null}(Dg(a))$, an (n-m)-dimensional vector space in \mathbb{R}^n .

(c) Let $U \subseteq \mathbb{R}^n$ be open with $a \in U$, let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ be differentiable at a, let $g : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be \mathcal{C}^1 in U with g(a) = 0 and $\operatorname{rank}(Dg(a)) = m < n$. Prove that if $f(a) \ge f(x)$ for all $x \in \operatorname{Null}(g)$, or if $f(a) \le f(x)$ for all $x \in \operatorname{Null}(g)$, then $\nabla f(a) \in \operatorname{Row}(Dg(a)) = \operatorname{Span}\{\nabla g_1(a), \dots, \nabla g_m(a)\}$.

(d) Using Part (c), find the maximum and minimum values of f(x, y, z) = xy on the circle in \mathbb{R}^3 given by $x^2 + y^2 + z^2 = 1$ and x + y + z = 0 (first let $g(x, y) = (x^2 + y^2 + z^2 - 1, x + y + z)$ and find all points $a \in \mathbb{R}^3$ with g(a) = 0 such that $\nabla f(a) \in \operatorname{Row}(Dg(a))$).