
MATH 247 Calculus 3, Solutions to Assignment 6

1: (a) Define f : R2 → R by f(0, 0) = 0 and f(x, y) = x3−xy2
x2+y2 for (x, y) 6= (0, 0). Determine whether f is

differentiable at (0, 0).

Solution: We claim that f is not differentiable at (0, 0). When α(t) = (t, 0) and g(t) = f(α(t)) = t, we have
∂f
∂x (0, 0) = g′(0) = 1. When β(t) = (0, t) and h(t) = f(β(t)) = 0, we have ∂f

∂y (0, 0) = h′(0) = 0. When

γ(t) = (t, t) and k(t) = f(γ(t)) = 0, if f was differentiable at (0, 0), then by the Chain Rule we would have
k′(0) = Df(0, 0)γ′(0) = (1 0)

(
1
1

)
= 1, but instead we have k′(0) = 0.

(b) Suppose f : U ⊆ Rn → R is differentiable and f has a local maximum at a ∈ U . Show that Df(a) = O
(this is Exercise 6.15 in the lecture notes).

Solution: Suppose, for a contradiction, that Df(a) 6= O. Choose 0 6= u ∈ Rn such that Df(a)u 6= 0. By
replacing u by −u if necessary, we may assume that Df(a)u = c > 0. Let α(t) = a + tu, choose δ1 > 0
small enough so that α(t) ∈ U for all |t| < δ1, and let g(t) = f(α(t)) for |t| < δ1. By the Chain Rule we

have g′(t) = Df(α(t))α′(t) so that, in particular, g′(0) = Df(a)u = c > 0. Since c = g′(0) = lim
t→0

g(t)−g(0)
t ,

we can choose δ with 0 < δ < δ1 such that when 0 < |t| < δ we have
∣∣ g(t)−g(0)

t − c
∣∣ < c

2 , and hence
c
2 <

g(t)−g(0)
t < 3c

2 . For 0 < t < δ we have g(t)− g(0) > ct
2 > 0 so that g(t) > g(0). Thus f(a+ tu) > f(a)

for all 0 < t < δ, and so f does not have a local maximum at a.

(c) Let f : U ⊆ Rn → Rm. Suppose the partial derivatives ∂fk
∂x`

(x) exist and are bounded in U . Prove that
f is continuous.

Solution: We imitate the proof of Theorem 5.13. Let ε > 0. Choose M ≥ 0 so that
∣∣∂fk
∂x`

(x)
∣∣ ≤ M for all

indices k, ` and all x ∈ U and choose δ with 0 < δ < ε
Mnm so that B(a, δ) ⊆ U . Let x ∈ B(a, δ). For

0 ≤ ` ≤ n, let u` = (x1, · · · , x`, a`+1, · · · , an), with u0 = a and un = x, and note that each u`∈B(a, δ). For
1≤ `≤n, let α`(t) = (x1, · · · , x`−1, t, a`+1, · · · , an) for t between a` and x`. For 1≤ k≤m and 1≤ `≤n, let
gk,`(t) = fk

(
α`(t)

)
so that g′k,`(t) = ∂fk

∂x`

(
α`(t)

)
. By the Mean Value Theorem, we can choose sk,` between a`

and x` so g′k,`(sk,`)(x`−a`) = gk,`(x`)−gk,`(a`) or, equivalently, so ∂fk
∂x`

(
α`(sk,`)

)
(x`−a`) = fk(u`)−fk(u`−1).

Then

fk(x)− fk(a) = fk(un)− fk(u0) =
n∑̀
=1

(
fk(u`)− fk(u`−1)

)
=

n∑̀
=1

∂fk
∂x`

(
α`(sk,`)

)
(x` − a`),

so that
∣∣fk(x)− fk(a)

∣∣ ≤M n∑̀
=1

∣∣x` − a`∣∣ ≤Mn |x− a|. Thus

∣∣f(x)− f(a)
∣∣ =

( m∑
k=1

∣∣fk(x)− fk(a)
∣∣2)1/2 ≤ ( m∑

k=1

n2M2|x− a|2
)1/2

= Mnm |x− a| < Mnmδ < ε.



2: (a) Let (u, v) = f(x, y) =
(
x ln(y−x4),

(
2 + y

x

)3/2 )
. Explain why f is locally invertible in a neighbourhood

of (1, 2) and find the linearization of its inverse at (0, 8).

Solution: Note that f(1, 2) = (0, 8). Also

DF (x, y) =

(
ux uy
vx vy

)
=

(
ln(y − x4)− 4x2

y−x4
x

y−x4

− 3y
2x2

(
2 + y

x

)1/2 3
2x

(
2 + y

x

)1/2
)

, so DF (1, 2) =

(
−4 1
−6 3

)
.

F is locally invertible near (1, 2) because the matrix DF (1, 2) is invertible, and the partial derivatives ux,
uy, vx and vy are all continuous near (1, 2). Since F (1, 2) = (0, 8) we have F−1(0, 8) = (1, 2), and we have

DF−1(0, 8) = F (1, 2)−1 =

(
−4 1
−6 3

)−1
= 1

6

(
3 −1
6 −4

)
and so the linearization of F−1 at (0, 8) is

L(0,8)F
−1
(
x
y

)
=

(
1
2

)
+ 1

6

(
3 −1
6 −4

)(
x− 0
y − 8

)
.

(b) Define f : R2 → R by f(x, y) = 2x3 − 3x2 + 2y3 + 3y2 and let C = Null(f). Use the Implicit Function
Theorem to find all the points on C at which C is locally equal to the graph of a function y = g(x), or locally
equal to the graph of a function x = h(y).

Solution: By the Implicit Function Theorem, C is locally equal to the graph of a function y = g(x) at all points
on C except (possibly) where ∂f

∂y = 0, and it is locally equal to the graph of a function x = h(y) at all points

on C except (possibly) where ∂f
∂x = 0. We have ∂f

∂y = 6y2 + 6y = 6y(y+ 1) and so ∂f
∂y = 0 ⇐⇒ y ∈ {0,−1}.

For (x, y) ∈ C we have 2x2 − 3x2 = −(2y3 + 3y2), so

y = 0 =⇒ 2x3 − 3x2 = 0 =⇒ x2(2x− 3) = 0 =⇒ x ∈
{

0, 32
}
,

y = −1 =⇒ 2x3 − 3x2 = −1 =⇒ 2x3 − 3x2 + 1 = 0 =⇒ (x− 1)2(2x+ 1) = 0 =⇒ x ∈
{

1,− 1
2

}
.

Thus C is locally equal to the graph of a smooth function y = g(x) except (possibly) at the points

(x, y) ∈
{(

0, 0
)
,
(
3
2 , 0
)
,
(
1,−1

)
,
(
− 1

2 ,−1
)}
.

Also, we have ∂f
∂x = 6x2 − 6x = 6x(x − 1) so that ∂f

∂x = 0 ⇐⇒ x ∈ {0, 1}. When (x, y) ∈ C so that
2y3 + 3y2 = −(2x3 − 3x2), we have

x = 0 =⇒ 2y3 + 3y2 = 0 =⇒ y2(2y + 3) = 0 =⇒ y ∈
{

0,− 3
2

}
,

x = 1 =⇒ 2y3 + 3y2 = 1 =⇒ 2y3 + 3y2 − 1 = 0 =⇒ (y + 1)2(2y − 1) = 0 =⇒ y ∈
{
− 1, 12

}
.

Thus C is locally equal to the graph of a function x = h(y) at all points in C except (possibly) at the points

(x, y) ∈
{(

0, 0
)
,
(
0,− 3

2

)
,
(
1,−1

)
,
(
1, 12
)}
.



3: (a) Let U =
{

(x, y) ∈ R2
∣∣x2 > y2

}
. Find the 2nd Taylor polynomial of the map f : U → R given by

f(x, y) =
√
x2 − y2 at the point (5, 4).

Solution: We have ∂f
∂x = x√

x2−y2
, ∂f
∂y = −y√

x2−y2
, ∂2f
∂x2 =

√
x2−y2− x2√

x2−y2

x2−y2 = −y2
(x2−y2)3/2 , ∂2f

∂x∂y = xy
(x2−yy2)3/2 ,

and ∂2f
∂y2 =

−
√
x2−y2− y2

√
x2−y2

x2−y2 = −x2

(x2−y2)3/2 , so that f(5, 4) = 3, ∂f∂x (5, 4) = 5
3 , ∂f∂y (5, 4) = − 4

3 , ∂
2f
∂x2 (5, 4) = − 16

27 ,

∂2f
∂x∂y (5, 4) = 20

27 and ∂2f
∂y2 (5, 4) = − 25

27 , and hence the 2nd Taylor polynomial of f at (5, 4) is

T (x, y) = 3 + 5
3 (x− 5)−

4
3 (y − 4)− 8

27 (x− 5)2 + 20
27 (x− 5)(y − 4)− 25

54 (y − 4)2.

(b) Define f : R2 → R by f(x, y) = x2 − xy+ y3 − y. Find and classify all the critical points of f in R2, and
find the absolute maximum and minimum values of f on the set A =

{
(x, y) ∈ R2

∣∣ y2 − 1 ≤ x ≤ 2
}

.

Solution: We have Df(x, y) =
(
∂f
∂x ,

∂f
∂y

)
=
(
2x− y , −x+ 3y2 − 1

)
, so

Df(x, y) = (0, 0) ⇐⇒
(
y = 2x and x = 3y2 − 1

)
⇐⇒

(
y = 2x and x = 3(2x)2 − 1

)
.

Since x = 3(2x)2 − 1 ⇐⇒ 12x2 − x− 1 = 0 ⇐⇒ (4x+ 1)(3x− 1) = 0 ⇐⇒ x ∈ { 13 ,−
1
4

}
, we have

Df(x, y) = (0, 0) ⇐⇒ (x, y) ∈
{(

1
3 ,

2
3

)
,
(
− 1

4 ,−
1
2

)}
.

To classify the critical points, we find the Hessian of f . We have

Hf(x, y) =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
2 −1
−1 6y

)
.

At the point
(
1
3 ,

2
3

)
we have Hf =

(
2 −1
−1 4

)
. The characteristic polynomial is x2 − 6x+ 7 so the eigenvalues

are 6±
√
36−28
2 = 3± 2. Since both eigenvalues are positive, f has a local minimum at

(
1
3 ,

2
3

)
. At

(
− 1

4 ,−
1
2

)
we have Hf =

(
2 −1
−1 −3

)
. The characteristic polynomial is x2 + x − 7 so the eigenvalues are −1±

√
29

2 . Since

one eigenvalue is positive and the other is negative, f has a saddle point at
(
− 1

4 ,−
1
2

)
.

Since f is continuous and A is compact, f attains its maximum and minimum values on A. In Ao, f
has a local minimum at

(
1
3 ,

2
3

)
with f

(
1
3 ,

2
3

)
= 1

9 −
2
9 + 8

27 −
2
3 = − 13

27 . The boundary of A is the union of

the parabolic curve x = y2− 1 with −
√

3 ≤ y ≤
√

3 and the line segment x = 2 with −
√

3 ≤ y ≤
√

3. When
x = y2 − 1 we have f(x, y) = f(y2 − 1, y) = (y2 − 1)2 − (y2 − 1)y + y3 − y = (y2 − 1)2. For g(y) = (y2 − 1)2

we have g′(y) = 4y(y2 − 1) so that g′(y) = 0 ⇐⇒ y = 0,±1, and we note that g(0) = 1, g(±1) = 0
and g(±

√
3) = 4 (so the max and min values of f along x = y2 − 1 are f(2,±

√
3) = 4 and f(0,±1) = 0).

When x = 2 we have f(x, y) = f(2, y) = 4 − 2y + y3 − y = y3 − 3y + 4. For h(y) = y3 − 3y + 4 we have
h′(y) = 3y2 − 3y = 3(y2 − 1) so that h′(y) = 0 ⇐⇒ y = ±1, and we note that h(−

√
3) = 4, h(−1) = 6,

h(1) = 2 and h(
√

3) = 4 (so the max and min values of f along x = 2 are f(2,−1) = 6 and f(2, 1) = 2).
Thus the absolute maximum value of f is f(2,−1) = 6 and the absolute minimum value is f

(
1
3 ,

2
3

)
= − 13

27 .



4: (Lagrange Multipliers) For X ⊆ Rn with a ∈ X, we define the tangent space of X at a to be the set TaX of
all vectors u ∈ Rn such that there exists δ > 0 and there exists a differentiable map α : (−δ, δ) ⊆ R→ X ⊆ Rn
with α(0) = a such that α′(0) = u.

(a) Let U ⊆ Rn be open with a ∈ U , let f : U ⊆ Rn → Rm be differentiable at a, let b = f(a). Prove that
T(a,b)Graph(f) = Graph(Df(a)), which is an n-dimensional vector space in Rn+m.

Solution: Let α : (−δ, δ) ⊆ R → Graph(f) ⊆ Rn+m be differentiable with α(0) = (a, b), where a ∈ Rn and
b ∈ Rm. Since Graph(f) =

{
(x, y)

∣∣x∈U, y= f(x)
}

, we can write α(t) =
(
x(t), y(t)

)
=
(
x(t), f(x(t))

)
with

x(t) ∈ U and x(0) = a. By the Chain Rule, we have α′(t) =
(
x′(0), Df(a)x′(0)

)
=
(
u,Df(a)u

)
where u =

α′(0) ∈ Rn and Df(a)u ∈ Rm. This shows that T(a,b)Graph(f) ⊆
{(
u,Df(a)u

) ∣∣u∈Rn} = Graph(Df(a)
)
.

On the other hand, given u ∈ Rn, since U is open with a ∈ U we can choose δ > 0 so that a+ tu ∈ U for all
t ∈ (−δ, δ), then we can define α : (−δ, δ) → Graph(f) by α(t) =

(
a+tu, f(a+tu)

)
to get α(0) = (a, b) and

α′(0) = (u,Df(a)u). This shows that Graph
(
Df(a)

)
⊆ T(a,b)Graph(f). Finally, we recall (see Note 1.23)

that Graph(Df(a)) = Col
(

I
Df(a)

)
, which is an n-dimensional vector space.

(b) Let U ⊆ Rn be open with a ∈ U , let g : U ⊆ Rn → Rm be C1 in U with g(a) = 0, and suppose that
rank

(
Dg(a)

)
= m < n. Prove that TaNull(g) = Null

(
Dg(a)

)
, an (n−m)-dimensional vector space in Rn.

Solution: Let α : (−δ, δ) ⊆ R → Null(g) ⊆ U ⊆ Rn be differentiable with α(0) = a. For all t ∈ (−δ, δ),
since α(t) ∈ Null(g) we have g(α(t)) = 0. By the Chain Rule, Dg(α(t))α′(t) = 0. Taking t = 0 gives
Dg(a)α′(0) = 0. This shows that TaNull(g) ⊆ Null

(
Dg(a)

)
.

Since g is C1 in U and rank
(
Dg(a)

)
= m, it follows from the Implicit Function Theorem that Null(g) is

locally equal to the graph of a C1 function h: reorder the variables in Rn so that the last m columns of Dg(a)
are independent, write elements in Rn as (x, y) with x ∈ Rn−m and y ∈ Rm and write a = (b, c), choose an
open set U0 ⊆ Rn with a = (b, c) ∈ U0 ⊆ U , and a C1 function h : W0 ⊆ Rn−m → Rm with h(b) = c so
that Null(g) ∩ U0 = Graph(h). Because these two sets are equal, it follows that TaNull(g) = T(b,c)Graph(h)(
indeed, given a differentiable map α : (−δ, δ) → Null(g) with α(0) = a, we can restrict the domain by

choosing δ0 with 0 < δ0 ≤ δ so that α : (−δ0, δ0) → Null(g) ∩ U0

)
. Since TaNull(g) = T(b,c)Graph(h), we

know from Part (a) that TaNull(g) is an (n−m)-dimensional vector space. Since TaNull(g) and Null
(
Dg(a)

)
are both (n−m)-dimensional vector spaces with TaNull(g) ⊆ Null

(
Dg(a)

)
, they must be equal.

(c) Let U ⊆ Rn be open with a ∈ U , let f : U ⊆ Rn → R be differentiable at a, let g : U ⊆ Rn → Rm
be C1 in U with g(a) = 0 and rank

(
Dg(a)

)
= m < n. Prove that if f(a) ≥ f(x) for all x ∈ Null(g), or if

f(a) ≤ f(x) for all x ∈ Null(g), then ∇f(a) ∈ Row
(
Dg(a)

)
= Span

{
∇g1(a), · · · ,∇gm(a)

}
.

Solution: Let u ∈ Null(Dg(a)). By Part (b), we have u ∈ TaNull(g), so we can choose a differentiable map
α : (−δ, δ) ⊆ R → Null(g) with α(0) = a and α′(0) = u. Define h : (−δ, δ) ⊆ R → R by h(t) = f(α(t)).
By the Chain Rule, h is differentiable in (−δ, δ) with h′(t) = Df(α(t))α′(t) for all t ∈ (−δ, δ). From our
assumption that either f(a) ≥ f(x) for all x ∈ Null(g) or f(a) ≤ f(x) for all x ∈ Null(g), it follows that either
h(0) ≥ h(t) for all t ∈ (−δ, δ) or h(0) ≤ h(t) for all t ∈ (−δ, δ) and, in either case, we must have h′(0) = 0.
Thus 0 = h′(0) = Df(α(0))α′(0) = Df(a)u = ∇f(a).u. Since ∇f(a).u = 0 for every u ∈ Null(Dg(a)), we

have ∇f(a) ∈
(
Null(Dg(a))

)⊥
= Row(Dg(a)).



(d) Using Part (c), find the maximum and minimum values of f(x, y, z) = xy on the circle in R3 given by
x2 + y2 + z2 = 1 and x+ y + z = 0.

Solution: Define g : R3 → R2 by g(x, y, z) =
(
x2+y2+z2−1 , x+y+z

)
so that the given circle is C = Null(g).

We remark that C is compact, so f attains its maximum and minimum values on C. We have

Dg(x, y, z) =

(
2x 2y 2z
1 1 1

)
and ∇f(x, y, z) =

 y
x
0

 .

By Part (c), if f attains a maximum or minimum value at (x, y, z) ∈ C, then ∇f(x, y, z) ∈ RowDg(x, y, z),
that is (y, x, 0) = s(2x, 2y, 2z) + t(1, 1, 1) for some s, t ∈ R. We solve the equations y = 2sx + t (1),
x = 2sy + t (2), 0 = 2sz + t (3) along with x2 + y2 + z2 = 1 (4) and x + y + z = 0 (5). Subtract (2) from
(1) to get y − x = 2s(x − y), that is (2s + 1)(x − y) = 0 so that either s = 1

2 or x = y. First consider the
case that s = 1

2 . Equation (3) gives −z + t = 0 so that t = z, and putting s = − 1
2 and t = z into (1) gives

x = −y + z so that x + y = z. Putting x + y = z into (5) gives 2z = 0 so that z = 0, hence also x + y = 0
so that y = −x. Then putting y = −x and z = 0 into (4) gives 2x2 = 1 so that x = ± 1√

2
, Thus in the case

s = 1
2 we obtain the solutions (x, y, z) = ± 1√

2
(1,−1, 0). Now consider the case that x = y. Putting y = x

into (5) gives 2x + z = 0 so that z = −2x, then putting y = x and z = −2x into (4) gives 6x2 = 1 so that
x = ± 1√

6
. Thus in the case x = y we obtain the solutions (x, y, z) = ± 1√

6
(1, 1,−2). Thus the maximum

value of f on C is f
(
± 1√

6
(1, 1,−2)

)
= 1

6 and the minimum value is f
(
± 1√

2
(1,−1, 0)

)
= − 1

2 .


