MATH 247 Calculus 3, Solutions to Assignment 6

: (a) Define f : R? — R by f(0,0) = 0 and f(z,y) = “":ermyy; for (z,y) # (0,0). Determine whether f is
differentiable at (0, 0).

Solution: We claim that f is not differentiable at (0,0). When «(t) = (¢,0) and g(t) = f(«(t)) = t, we have
5L(0,0) = ¢'(0) = 1. When $(t) = (0,t) and h(t) = f(B(t)) = 0, we have 3£(0,0) = h’(0) = 0. When
~v(t) = (t,t) and k(t) = f(v(t)) = 0, if f was differentiable at (0,0), then by the Chain Rule we would have
k'(0) = Df(0,0)'(0) = (1 0)(;) = 1, but instead we have &’(0) = 0.

(b) Suppose f: U C R™ — R is differentiable and f has a local maximum at a € U. Show that Df(a) = O
(this is Exercise 6.15 in the lecture notes).

Solution: Suppose, for a contradiction, that Df(a) # O. Choose 0 # u € R™ such that Df(a)u # 0. By
replacing u by —u if necessary, we may assume that Df(a)u = ¢ > 0. Let a(t) = a + tu, choose §; > 0
small enough so that a(t) € U for all |t| < d1, and let g(¢) = f(«(t)) for |t| < §;. By the Chain Rule we

have ¢'(t) = Df(a(t))d/(t) so that, in particular, ¢’'(0) = Df(a)u = ¢ > 0. Since ¢ = ¢'(0) = tlin(l) M,
e

we can choose & with 0 < § < d; such that when 0 < [t| < § we have |M —¢| < &, and hence
5 < M < 3¢ For 0 < t < & we have g(t) — g(0) > £ > 0 so that g(t) > g(0). Thus f(a+ tu) > f(a)

for all 0 < t < 6, and so f does not have a local maximum at a.

(c¢) Let f: U CR™ — R™. Suppose the partial derivatives g—i’z(x) exist and are bounded in U. Prove that
f is continuous.

Solution: We imitate the proof of Theorem 5.13. Let € > 0. Choose M > 0 so that ‘%(l’)’ < M for all
indices k,/ and all z € U and choose ¢ with 0 < ¢ < 35— so that B(a,d) € U. Let € B(a,d). For
0<?¢<n,let ug = (1, - +,2p,ap41, ", an), with ug = a and u,, = z, and note that each u, € B(a, ). For
1<t<n,let ap(t)=(x1, -+, xp—1,t,ap41, -+, ay) for t between ap and z,. For 1 <k<m and 1<{<mn, let

Gie(t) = fr(cu(t)) so that Gro(t) = % (cw(t)). By the Mean Value Theorem, we can choose sy, ¢ between ay

and x; so g}cﬁ(skl)(w—ag) = gr¢(xs)—gk,e(ar) or, equivalently, so %(Ozz(sk,g)) (xe—ap) = fr(ue)— fr(upe—1).
Then

M=

Sk (vp(sk,0)) (e — ag),

fe(®) = fr(a) = fe(un) — fuluo) =

4

: (fr(ue) = fr(ue—r)) =

1 4

1
so that |fi(x) — fr(a)] < M Y |zg — ae| < Mnl|z — a|. Thus
=1

1/2

|f($) - f(a)’ = (]g:l ‘fk(x) - fk(a)‘g) < (1:2::1”2M2|x_ a|2)1/2 =Mnmlx —al] < Mnmd < e.



2: (a) Let (u,v) = f(z,y) = (:c In(y — %), (2 + %)3/2 ) Explain why f is locally invertible in a neighbourhood
of (1,2) and find the linearization of its inverse at (0, 8).

Solution: Note that f(1,2) = (0,8). Also

In(y — 24) — 422, e —
DF(z,y) = (uz uy> (" : yf/:624 v 12 | »s0 DF(1,2) = ( . 1) :
A S A -5 3
F' is locally invertible near (1,2) because the matrix DF(1,2) is invertible, and the partial derivatives u,,
Uy, vy and vy are all continuous near (1,2). Since F(1,2) = (0,8) we have F~1(0,8) = (1,2), and we have

DF1(0,8)=F(172)1:<:§ §,>_1=é(2 ;11)

and so the linearization of F~1 at (0,8) is

1 (T _ 1 1 3 -1 z—0
ranrt (5) = (2) <2 (5 21 (528)-
(b) Define f : R? — R by f(z,y) = 223 — 322 + 2y3 + 3y? and let C' = Null(f). Use the Implicit Function

Theorem to find all the points on C at which C is locally equal to the graph of a function y = g(z), or locally
equal to the graph of a function = = h(y).

Solution: By the Implicit Function Theorem, C'is locally equal to the graph of a function y = g(z) at all points
on C except (possibly) where g—i =0, and it is locally equal to the graph of a function x = h(y) at all points

on C except (possibly) where % = 0. We have % = 6y% + 6y = 6y(y + 1) and so g—i =0 < ye{0,-1}.
For (z,y) € C we have 222 — 322 = — (2> + 3y?), so
y=0=22°-322=0= 2?20 —-3) =0 = 2 € {0, 3},
y=-1=22%-322=-1=223-32>+1=0= (-1’22 +1) =0 =z € {1,—3}.
Thus C is locally equal to the graph of a smooth function y = g(x) except (possibly) at the points

(@0 € {(0.0). (3.0). (1.-1). (- 3.-1)}.

Also, we have % = 622 — 6z = 6x(z — 1) so that g—i =0 < z € {0,1}. When (z,y) € C so that
2y + 3y? = — (22 — 322), we have

1=0= 243> =0= y*(2y+3)=0=y e {0,-3},
r=1=2P543P2=1=23+3° - 1=0= (y+1)?(2y—-1)=0=ye {-1,1}.
Thus C is locally equal to the graph of a function = h(y) at all points in C' except (possibly) at the points

() € {(0,0), (0.=3), (1.=1), (1. 3)}-



3: (a) Let U = {(m,y) € R2| % > yz}. Find the 2°¢ Taylor polynomial of the map f : U — R given by

flz,y) = /22 — y? at the point (5,4).

Solution: We have &£ = — 2 of _ -y 9 _ i \/7 —y? *f zy
. ox /22 —y2’ dy /22 —y2’ Ox2 x2—y2 — (@2—y2)3/2> 9z0y (z2—yy2)3/21
12
82 —\/x2—y?2— m;ny s B 5 5
and 8y2 - e R (a2 % Y2372 50 that £(5,4) = 3, 6£(5 4) =73, 65(5 4) = 37 az2 (5 4) = 277

(54)—@and8 (5,4) =

—25 and hence the 2" Taylor polynomial of f at (5,4) is

T(z,y)=3+3(@—5)-3(y—4) — 5 (@-5°+ Fl@ -5y —4) - Hy— 4>
(b) Define f : R? — R by f(x,y) = 2% — 2y + 3® — y. Find and classify all the critical points of f in R?, and
find the absolute maximum and minimum values of f on the set A = {(x, y) € ]R2| P —1<z< 2}.

Solution: We have Df (z,y) = (%, %) =2z—y, —z+3y*—1), 50

azay

Df(z,y) = (0,0) <= (y=2z andx:3y2fl) — (y=2= andx:3(2x)271).
Since v =3(22)* =1 <= 1222 —2—1=0 < 4o+ 1)z —1)=0 < z € {5,—1}, we have

Df(z,y) = (0,0) «= (z,9) € {(3.3), (-1 -3)}
To classify the critical points, we find the Hessian of f. We have

oy o 2 —1
22 T -
Hi(zy) = ( 1 a@"‘%) - (-1 Gy)'

Oyox oy?

At the point (% %) we have H f = ( ? 71) The characteristic polynomial is 22 — 6z + 7 so the elgenvalues

Gin/SG 28

are = 3 £ 2. Since both eigenvalues are positive, f has a local minimum at (3, 3) At ( —l)

2
we have H f= ( 2 :1) The characteristic polynomial is 22 + 2 — 7 so the eigenvalues are _HEQr. Since

one eigenvalue is positive and the other is negative, f has a saddle point at (7%7 f%)

Since f is continuous and A is compact, f attains its maximum and minimum values on A. In A°, f
has a local minimum at (3, 3) with f(37 3) = % — % + % — % = —%. The boundary of A is the union of
the parabolic curve z = y —1 with —v/3 < y < v/3 and the line segment x = 2 with -3 < y < V3. When
x=y* —1wehave f(z,y) = f(y* —1,y) = (4* = 1)* = (v* = Dy +y* —y = (y* — 1)*. For g(y) = (y* — 1)°
we have ¢/(y) = 4y(y? — 1) so that ¢'(y) = 0 <= y = 0,%1, and we note that g(0) = 1, g(+1) = 0
and g(£v/3) = 4 (so the max and min values of f along z = y? — 1 are f(2,+v/3) = 4 and f(0,41) = 0).
When z = 2 we have f(z,y) = f(2,y) =4 -2y + 3> —y = > — 3y + 4. For h(y) = y*> — 3y + 4 we have
h'(y) = 3y* — 3y = 3(y* — 1) so that h'(y) = 0 <= y = +1, and we note that h(—/3) = 4, h(—1) = 6,
h(1) = 2 and h(v/3) = 4 (so the max and min values of f along x = 2 are f(2,—1) = 6 and f(2,1) = 2).

Thus the absolute maximum value of f is f(2,—1) = 6 and the absolute minimum value is f(%, %) =13



4: (Lagrange Multipliers) For X C R™ with a € X, we define the tangent space of X at a to be the set T, X of

all vectors u € R™ such that there exists ¢ > 0 and there exists a differentiable map o : (—6,0) CR — X C R"
with «(0) = a such that o/(0) = u.

a) Let - e open with a € U, let [ : - — e differentiable at a, let b = f(a). Prove that
Let U CR™ b ith U,let f:U CR" — R™ be diff iabl let b= f P h
T(a,p)Graph(f) = Graph(Df(a)), which is an n-dimensional vector space in R"*"™.

Solution: Let « : (-0, 5) CR— Graph(f) C R™™ be dlfferentlable Wlth a(O) = (a,b), here a € R™ and
b € R™. Since Graph(f) = { x,y) ’zEU y=f(z } we can write «( ( ), y(t ) = ( (t))) with
z(t) € U and z(0) = a. By the Chain Rule, we have o/(t) = (2/(0), Df (a)2'(0)) = (u, Df ) where u =

a'(0) € R™ and Df(a)u € R™. This shows that T{, ;) Graph(f) C {(u Df Ju) |u € R™} = Graph(Df(a)).
On the other hand, given u € R", since U is open with a € U we can choose § > 0 so that a + tu € U for all

€ (—6,0), then we can define a : (—4,8) — Graph(f) by a(t) = (a+tu, f(a+tu)) to get a(0) = (a,b) and
o/(0) = (u, Df(a)u). This shows that Graph(Df(a)) C T{4Graph(f). Finally, we recall (see Note 1.23)
that Graph(Df(a)) = Col(Df( )) which is an n-dimensional vector space.

(b) Let U C R™ be open with a € U, let g : U C R — R™ be C! in U with g(a) = 0, and suppose that
rank(Dy(a)) = m < n. Prove that T,Null(g) = Null(Dg(a)), an (n — m)-dimensional vector space in R".

Solution: Let a : (=4,6) € R — Null(g) € U C R” be differentiable with «(0) = a. For all t € (=4, ),
since «(t) € Null(g) we have g(a(t)) = 0. By the Chain Rule, Dg(a(t))a/(t) = 0. Taking ¢ = 0 gives
Dg(a)a’(0) = 0. This shows that T,Null(g) € Null(Dg(a)).

Since g is C! in U and rank(Dg(a)) = m, it follows from the Implicit Function Theorem that Null(g) is
locally equal to the graph of a C! function h: reorder the variables in R™ so that the last m columns of Dg(a)
are independent, write elements in R™ as (z,y) with z € R"™™ and y € R™ and write a = (b, ¢), choose an
open set Uy C R™ with a = (b,c¢) € Uy C U, and a C! function h : Wy C R*"™™ — R™ with h(b) = ¢ so
that Null(g) N Uy = Graph(h). Because these two sets are equal, it follows that T, Null(g) = T{3,¢)Graph(h)
(indeed, given a differentiable map o : (—4,8) — Null(g) with a(0) = a, we can restrict the domain by
choosing 0y with 0 < dy < & so that a : (—do,89) — Null(g) N Up). Since T,Null(g) = T}, Graph(h), we
know from Part (a) that 7,Null(g) is an (n —m)-dimensional vector space. Since T,Null(g) and Null(Dg(a))
are both (n — m)-dimensional vector spaces with 7, Null(g) € Null(Dg(a)), they must be equal.

(c) Let U C R™ be open with a € U, let f: U C R® — R be differentiable at a, let g : U C R* — R™
be C' in U with g(a) = 0 and rank(Dg(a)) = m < n. Prove that if f(a) > f(z) for all z € Null(g), or if

f(a) < f(z) for all z € Null(g), then Vf(a) € Row(Dy(a)) = Span{Vygi(a), -, Vgm(a)}.

Solution: Let u € Null(Dg(a)). By Part (b), we have u € T,Null(g), so we can choose a differentiable map
a: (—4,8) CR — Null(g) with (0) = @ and o/(0) = w. Define h : (—0,5) C R — R by A(t) = f(a(t)).
By the Chain Rule, h is differentiable in (—6,0) with A/'(t) = Df(a(t))a/(t) for all t € (—d,d). From our
assumption that either f(a) > f(x) for all z € Null(g) or f(a) < f(x) for all z € Null(g), it follows that either
h(0) > h(t) for all t € (=6,9) or h(0) < h(t) for all ¢ € (—4,9) and, in either case, we must have h'(0) = 0.
Thus 0 = A'(0) = Df(«(0))a/(0) = Df(a)u = Vf(a)+u. Since Vf(a)+u = 0 for every v € Null(Dg(a)), we
have Vf(a) € (Null(Dg(a)))l = Row(Dg(a)).



(d) Using Part (c), find the maximum and minimum values of f(x,y,z) = xy on the circle in R?® given by
2+’ +22=1landx+y+2=0.

Solution: Define g : R® — R? by g(z,y,2) = (z2+y2+2271 , x+y+z) so that the given circle is C' = Null(g).
We remark that C' is compact, so f attains its maximum and minimum values on C'. We have

Yy

2¢ 2 2z
Dg(fv,y,Z)(1 1y 1> and Vf(z,y,2)= |z
0

By Part (c), if f attains a maximum or minimum value at (z,y,z) € C, then Vf(x,y,z) € RowDg(z,y, z),
that is (y,x,0) = s(2z,2y,2z) + t(1,1,1) for some s,t € R. We solve the equations y = 2sz +t (1),
x=2sy+t(2),0=2sz+1t (3) along with 22 + y?> + 22 =1 (4) and x +y + 2z = 0 (5). Subtract (2) from
(1) to get y — z = 2s(x — y), that is (25 + 1)(z — y) = 0 so that either s = 1 or z = y. First consider the
case that s = % Equation (3) gives —z +t = 0 so that ¢ = z, and putting s = —% and t = z into (1) gives
x = —y+ z so that  + y = 2. Putting z + y = z into (5) gives 2z = 0 so that z = O hence alsorx+y =0
so that y = —x. Then putting y = —x and z = 0 into (4) gives 222 = 1 so that = = f’ Thus in the case

s = 3 we obtain the solutions (z,y,z) = :I:\%( 1,—1,0). Now consider the case that © = y. Putting y = x

into (5) gives 2z + z = 0 so that z = —2x, then putting y =  and z = —2z into (4) gives 62> = 1 so that
x = :I:\lf. Thus in the case z = y we obtaln the solutions (z,y,z) = %(1 1, 2). Thus the maximum
value of f on C'is f( + (1 1,-2)) = % and the minimum value is f( £ %( 1,0)) = —1.



