
1. Appendix. Bilinear Forms

1.1 Definition: Let U , V and W be vector spaces over a field F and let L : U × V →W .
We say that L is bilinear when

L(x1 + x2, y) = L(x1, y) + L(x2, y) , L(tx, y) = t L(x, y) ,
L(x, y1 + y2) = L(x, y1) + L(x, y2) and L(x, ty) = t L(x, y)

for all x, x1, x2 ∈ U , and all y, y1, y2 ∈ V and all t ∈ F. For a bilinear map L : U×U →W ,
we say that L is symmetric when L(y, x) = L(x, y) for all x, y ∈ U , and we say that L is
alternating (or skew-symmetric) when L(y, x) = −L(x, y) for all x, y ∈ U . A bilinear
map L : U × U → F is called a bilinear form on U .

1.2 Example: For any field F, the dot product . : Fn × Fn → F given by u . v = vTu
is a symmetric bilinear form on Fn, and the cross product × : F3 × F3 → F given by
u× v =

(
u2v3 − u3v2 , u3v1 − u1v3 , u1v2 − u2v1

)
is an alternating bilinear form on F3.

1.3 Note: Let U , V and W be vector spaces over a field F. Given bases A and B for U
and V , A bilinear map L : U × V →W is uniquely determined by the values L(u, v) ∈W
with u ∈ A and v ∈ B. Indeed, given x ∈ U and y ∈ V , say x =

n∑
i=1

siui and y =
m∑
j=1

tjvj

with ui ∈ A, vj ∈ B and si, tj ∈ F, we have

L(x, y) = L
( n∑

i=1

siuu ,
m∑
j=1

tjvj

)
=

∑
1≤i≤n,1≤j≤m

sitjL(ui, vj).

1.4 Theorem: (The Matrix of a Bilinear Map) Let U and V be finite dimensional vector
spaces over a field F. Let A = {u1, · · · , uk} and B = {v1, · · · , vl} be bases for U and V .
Let L : U × V → F be a bilinear map. There exists a unique matrix [L]AB ∈Ml×k(F) with
the property that

[y]B
T

[L]AB [x]A = L(x, y)

for all x ∈ U and y ∈ V .

Proof: First we prove uniqueness. Suppose that such a matrix [L]AB exists. Let A = [L]AB .
Then the entries of A are given by

Ai,j = ei
TAej = [vi]B

T
[L]AB [uj ]A = L(uj , vi).

This shows that the matrix is unique.
To prove existence, given a bilinear map L : U × V → F, we let A ∈ Ml×k(F) be the

matrix with entries Ai,j = L(uj , vi). Define M : U × V → F by M(x, y) = [y]B
T
A [x]A.

Note that M is bilinear and for all indices i and j we have

M(uj , vi) = [vi]B
T
A [uj ]A = ei

TAej = Ai,j = L(uj , vi).

It follows from the above note that M = L, so we can take [L]AB = A.

1.5 Definition: The matrix [L]AB in the above theorem is called the matrix of the bilinear
map L with respect to the bases A and B. For a bilinear form L : U × U → F, we write
[L]A = [L]AA.
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1.6 Theorem: Let U be a finite dimensional vector space over a field F. Let L be a
bilinear form on U . Then L is symmetric if and only [L]A is symmetric for some, hence
any, basis A for U .

Proof: Suppose that L is symmetric. Let A = {u1, · · · , un} be any basis for U and let
A = [L]A. Then for all indices i, j we have Ai,j = L(uj , ui) = L(ui, uj) = Aj,i, and so A is
symmetric. Conversely, let A = {u1, · · · , un} be any basis for U , let A = [L]A, and suppose

that A is symmetric. Let x, y ∈ U , say x =
n∑

i=1

siui and y =
n∑

i=1

tjuj with si, tj ∈ F. Then

L(x, y) = L
( n∑

i=1

siui ,
n∑

i=1

tjuj

)
=

∑
1≤i,j≤n

sitj L(ui, uj) =
∑

1≤i,j≤n
sitjAj,i

=
∑

1≤i,j≤n
sitjAi,j =

∑
1≤i,j≤n

sitjL(uj , ui) = L
( n∑

i=1

tjuj ,
n∑

i=1

siui

)
= L(y, x).

1.7 Theorem: (Change of Basis) Let U and V be finite dimensional vector spaces over
a field F. Let L : U × V → F be a bilinear map. Let A1, A2 and B1, B2 be two bases for
each of the vector spaces U and V . Then

[L]A2

B2
= [I]B2

B1

T
[L]A1

B1
[I]A2

A1
.

Proof: For all x ∈ U and y ∈ V we have

[y]B2

T
[L]A2

B2
[x]A2

= F(x, y) = [y]B1

T
[L]A1

B1
[x]A1

=
(

[I]B2

B!
[y]B2

)T
[L]A1

B1

(
[I]A2

A1
[x]A2

)
= [y]B2

T
(

[I]A2

A1

T
[L]A1

B1
[I]A2

A1

)
[x]A2

and so, by the uniqueness of the matrix [L]A2

B2
, we have [L]A2

B2
= [I]B2

B1

T
[L]A1

B1
[I]A2

A1
.

1.8 Definition: Let U and V be finite dimensional vector spaces over a field F, and let
L : U × V → F be a bilinear map. We define the rank of L to be the rank of the matrix
[L]AB where A and B are any bases for U and V . Note that, by the above theorem, this
definition does not depend on the choice of A and B (because multiplying a matrix, on the
right or on the left, by an invertible matrix does not alter its rank).

1.9 Note: As a particular case of the above theorem, if U is a finite dimensional vector
space over a field F, L is a bilinear form on U , and A and B are two bases for U , and if
we write A = [L]A, B = [L]B and P = [I]BA, then we have B = PTAP .

1.10 Definition: For A,B ∈Mn(F), we say that A and B are congruent, and we write
A ∼= B, when there exists an invertible matrix P ∈Mn(F) such that B = PTAP .

1.11 Note: It is perhaps worth mentioning that congruent matrices do not, in general,
share the same trace, determinant, or eigenvalues, and we do not define the trace, deter-
minant, or eigenvalues of a bilinear map.
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1.12 Theorem: (Diagonalization of Symmetric Bilinear Forms) Let U be a finite dimen-
sional vector space over a field F with char (F) 6= 2. Let L : U ×U → F be a bilinear form
on U . Then there exists a basis A for U such that [L]A is diagonal if and only if L is
symmetric.

Proof: If A is a basis for U such that [L]A is diagonal, then L is symmetric since its matrix
[L]A is symmetric. Conversely, suppose that L is symmetric. Choose a basis A0 for U , and
let A = [L]A0

∈ Mn(F). Note that A is symmetric. We must show that A is congruent
to a diagonal matrix. We describe an algorithm which uses elementary row and column
operations to put the matrix A into diagonal form. Consider the element A1,1. If A1,1 6= 0
then we use the (1, 1) entry to eliminate the other entries on the first row and column by
applying the row and column operations

Rk 7→ Rk −
Ak,1

A1,1
R1 and Ck 7→ Ck −

A1,k

A1,1
C1.

Note that since A is symmetric, we have Ak,1 = A1,k, and it follows that, for each k ≥ 2, the
elementary matrices associated to the above row and column operations are the transposes
of one another. If A1,1 = 0 and A1,j 6= 0 for some j ≥ 2, say A1,k 6= 0, then first we use row
and column operations to replace the (1, 1) entry by a non-zero element in F as follows: if
Ak,k 6= 0 we use the operations

R1 ↔ Rk and C1 ↔ Ck

to replace the (1, 1) entry by Ak,k, and if Ak,k = 0 then we use the operations

R1 7→ R1 +Rk and C1 7→ C1 + Ck

to replace the (1, 1) entry by A1,k + Ak,1 = 2A1,k (which is non-zero since char (F) 6= 2).
Then we use this new non-zero (1, 1) entry to eliminate the other entries on the first
row and column, as above. Again, note that the elementary matrices associated to the
above row and column operation are the transposes of one another. At this stage we have

converted A to the congruent matrix P1
TAP1 =

(
d1 0
0 B

)
with B ∈ Mn−1(F), where P1

is the product of all the elementary column operation matrices. Since A is symmetric, the
matrix P1

TAP is symmetric, and so the matrix B ∈Mn−1(F) is also symmetric. We now
repeat the above procedure on the matrix B.

1.13 Corollary: Let U be a finite dimensional vector space over a field F and let L be
a symmetric bilinear form on U of rank r. Then there is a basis A for U such that such
that [L]U = diag(d1, d2, · · · , dn) for some di ∈ F with di 6= 0 for 1 ≤ r and di = 0 for i > r.

Proof: Choose a basis A0 so that [L]A0 is diagonal, then, if necessary, perform the row and
column operations Ri ↔ Rj and Ci ↔ Cj to rearrange the diagonal entries of the matrix.

1.14 Corollary: Let U be a finite dimensional vector space over C and let L be a
symmetric bilinear form on U of rank r. Then there exists a basis A for U such that

[L]A =

(
Ir 0
0 0

)
.

Proof: Choose a basis A0 for U so that [L]A0
= D = diag(d1, d2, · · · , dn) with di 6= 0 for

1 ≤ i ≤ r and di = 0 for r < i ≤ n. For 1 ≤ i ≤ r, choose ci ∈ C so that ci
2 = 1

di
and for

r < i ≤ n, choose ci = 1, and then let C = diag(c1, c2, · · · , cn). Then D is congruent to
the matrix CTDC, which is in the required form.
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1.15 Theorem: (Sylvester’s Law of Inertia) Let U be a finite dimensional vector space
over R and let L be a symmetric bilinear form on U of rank r. Then there exists a basis
A for U such that [L]A is of the form

[L]A =

 Ik
−Ir−k

0


for some uniquely determined number k with 0 ≤ k ≤ r.

Proof: We can choose a basis A0 for U so that D = [L]A is diagonal, and we can order
the diagonal entries so that D = diag(d1, d2, · · · , dn with di > 0 for 1 ≤ i ≤ k, di < 0 for
k < i ≤ r and di = 0 for r < i ≤ n. For 1 ≤ i ≤ k we choose ci = 1√

di
, for k < i ≤ r we

choose ci = 1√
−di

and for k < i ≤ n we choose ci = 1, and then let C = diag(c1, c2, · · · , cn).

Then the matrix D is congruent to the matrix CTDC which is in the desired form.

It remains to show that the number of positive entries k is uniquely determined by L.
Suppose, for a contradiction, that we can find two bases A and B for U such that

[L]A = diag
(
Ik,−Ir−k, 0

)
and [L]B = diag

(
Il,−Ir−l, 0

)
with k 6= l, say k < l. Note that for x ∈ U , with say x =

n∑
i=1

siui, we have

L(x, uj) = L
( n∑

i=1

siui , uj

)
=

n∑
i=1

siL(ui, uj) = sjL(uj , uj) =


sj if 1 ≤ j ≤ k
−sj if k < j ≤ r, and

0 if r < j ≤ n
and hence

L(x, x) = L
(
x ,

n∑
j=1

sjuj

)
=

n∑
j=1

sjL(x, uj) =
k∑

j=1

sj
2 −

r∑
j=k+1

sj
2.

Similar formulas hold for x ∈ U with x =
n∑

i=1

tivi.

Consider the linear map φ : U → Rk+r−l given by

φ(x) =
(
L(x, u1), L(x, u2), · · · , L(x, uk), L(x, vl+1), L(x, vl+2), · · · , L(x, vr)

)T
.

Note that nullity(φ) = n − rank(φ) ≥ n − (k + r − l) = (n − r) + (l − k) > n − r. Since
nullity(φ) > n− r = dim Span{ur+1, ur+2, · · · , un}, we can choose an element x ∈ Null(φ)

with x /∈ Span{uk+1, · · · , un}. Choose such an element x and write x =
n∑

i=1

siui =
n∑

i=1

tivi.

Since x ∈ Null(φ) we have si = L(x, ui) = 0 for 1 ≤ i ≤ k and ti = −L(x, vi) = 0 for
l < i ≤ r. Since x /∈ Span{ur+1, · · · , un}, we must have si 6= 0 for some 1 ≤ i ≤ r. Thus
we have si = 0 for all 1 ≤ i ≤ k and si 6= 0 for some 1 ≤ i ≤ r, which implies that

L(x, x) =
k∑

i=1

si
2 −

r∑
i=k+1

si
2 < 0, but we also have ti = 0 for all l < i ≤ r which implies

that L(x, x) =
l∑

i=1

ti
2 −

r∑
i=l+1

ti
2 ≥ 0, giving the desired contradiction.
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1.16 Definition: For a bilinear form L : U ×U → R, the number k in the above theorem
is called the index of L, and the pair (k, r − k) is called the signature of L.

1.17 Note: Let U be a finite dimensional inner product space over R and let L be a
symmetric bilinear form on U . Let A be any basis for U and let A = [L]A. Since A is
symmetric, it is orthogonally diagonalizable, so there exists an orthogonal matrix P such
that PTAP = D = diag(λ1, · · · , λn) and the diagonal entries λi are the eigenvalues of A
(repeated according to multiplicity). By Sylvester’s Theorem the number of indices i for
which λi > 0 is equal to the index of L, and does not depend on the choice of basis A.

1.18 Definition: Let U be a vector space over R and let L : U × U → R be a symmetric
bilinear form. Then

(1) L is positive definite when L(x, x) > 0 for all 0 6= x ∈ U ,
(2) L is positive semidefinite when L(x, x) ≥ 0 for all x ∈ U ,
(3) L is negative definite when L(x, x) < 0 for all 0 6= x ∈ U ,
(4) L is negative semidefinite when L(x, x) ≤ 0 for all x ∈ U , and
(5) L is indefinite when there exist x, y ∈ U with L(x, x) > 0 and L(y, y) < 0.

1.19 Note: Let Ube an n-dimensional vector space over R and let L : U × U → R be a
symmetric bilinear form. Let A be a basis for U and let A = [L]A. Then

L is positive definite ⇐⇒ L(u, u) > 0 for all 0 6= u ∈ U

⇐⇒ [u]A
T

[L]A[u]A > 0 for all 0 6= u ∈ U
⇐⇒ xTAx > 0 for all 0 6= x ∈ Rn.

Similarly, L is positive semidefinite if and only if xTAx ≥ 0 for all x ∈ Rn, and so on.

1.20 Definition: For a symmetric matrix A ∈Mn(R),

(1) A is positive definite when xTAx > 0 for all 0 6= x ∈ Rn,
(2) A is positive semidefinite when xTAx ≥ 0 for all x ∈ Rn,
(3) A is negative definite when xTAx < 0 for all 0 6= x ∈ Rn,
(4) A is negative semidefinite when xTAx ≤ 0 for all x ∈ Rn, and
(5) A is indefinite when there exist x, y ∈ Rn with xTAx > 0 and xTAx < 0.

1.21 Theorem: (The Characterization of Definiteness by Eigenvalues) Let U be an n-
dimensional vector space over R and let L : U ×U → R be a symmetric bilinear form. Let
A be a basis for U and let A = [L]A ∈Mn(R). Let λ1, λ2, · · · , λn be the eigenvalues of A.
Then

(1) L is positive definite ⇐⇒ λi > 0 for all i ⇐⇒ index (L) = rank(L) = dim(U),
(2) L is positive semidefinite ⇐⇒ λi ≥ 0 for all i ⇐⇒ index (L) = rank(L),
(3) L is negative definite⇐⇒ λi < 0 for all i ⇐⇒ index (L) = 0 and rank(L) = dim(U),
(4) L is negative semidefinite ⇐⇒ λi ≤ 0 for all i ⇐⇒ index (L) = 0, and
(5) L is indefinite ⇐⇒ λi > 0 and λj < 0 for some i, j ⇐⇒ 0 < index (L) < rank(L).

Proof: We prove Part (1). Note that A is symmetric, and hence orthogonally diagonaliz-
able. Choose an orthogonal matrix P ∈ On(R) such that PTAP = D = diag(λ1, · · · , λn).
Then L is positive definite ⇐⇒ D is positive definite ⇐⇒ xTDx > 0 for all 0 6= x ∈ Rn

⇐⇒
n∑

i=1

λixi
2 > 0 for all 0 6= x ∈ Rn ⇐⇒ λi > 0 for all i.
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1.22 Theorem: (The Characterization of Definiteness by Determinants) Let U be an
n-dimensional vector space over R and let L : U × U → R be a symmetric bilinear form.
Let A be a basis for U and let A = [L]A ∈ Mn(R). For 1 ≤ k ≤ n, let Ak×k be the
upper-left k × k submatrix of A. Then

(1) L is positive definite ⇐⇒ det
(
Ak×k) > 0 for all k, and

(2) L is negative definite ⇐⇒ (−1)k det
(
Ak×k) > 0 for all k.

Proof: Suppose first that L is positive definite. Then A is positive definite, so we have

xTAx > 0 for all 0 6= x ∈ Rn. Let 1 ≤ k ≤ n. Note that xTAk×kx =

(
x
0

)T

A

(
x
0

)
> 0

for all 0 6= x ∈ Rk and so Ak×k is positive definite. Since Ak×k is positive definite, its
eigenvalues are all positive and hence det

(
Ak×k) > 0 (since the determinant of a square

matrix is equal to the product of its eigenvalues).
Conversely, suppose that det

(
Ak×k) > 0 for 1 ≤ k ≤ n. Consider what happens when

we apply the row and column operation algorithm (from Theorem 1.12) to diagonalize the
symmetric matrix A. Since A1,1 = det

(
A1×1) > 0, we begin by using the row and column

operations

Ri 7→ Ri −
Ai,1

A1,1
R1 and Ci 7→ Ci −

A1,i

A1,1
C1

to eliminate the other entries on the first row and column. This puts the matrix A into
the form (

A1,1 0
0 B

)
for some symmetric matrix B. Notice that for 1 ≤ k < n, the same row and column
operations convert A(k+1)×(k+1) to the matrix(

A1,1 0
0 Bk×k

)
and these operations do not change the determinant so we have

det
(
A(k+1)×(k+1)

)
= A1,1 det

(
Bk×k)

and so we have det
(
Bk×k) > 0 for 1 ≤ k < n. Thus repeating this procedure eventually

converts A to a diagonal matrix whose diagonal entries are all positive. It follows that
index (L) = n and hence L is positive definite. This proves Part (1).

Finally, note that Part (2) follows immediately from Part (1) because

L is negative definite ⇐⇒ −L is positive definite ⇐⇒ det
(
−Ak×k) > 0 for all k

⇐⇒ (−1)k det
(
Ak×k) > 0 for all k.
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