Chapter 2. Topological Properties of Sets in Euclidean Space

2.1 Definition: For vectors x,y € R™ we define the dot product of = and y to be
n
zoy=yz=3 zy.
i=1
2.2 Theorem: (Properties of the Dot Product) For all x,y,z € R™ and all t € R we have
(1) (Bilinearity) (x +y)+z=xz-2+y-2z, (tz)-y=t(z-y)

ro(yt+z)=z-yta-z, x-(ty) =tx-y),
(2) (Symmetry) x -y =y - z, and
(3) (Positive Definiteness) x - x > 0 with x - x = 0 if and only if z = 0.

Proof: The proof is left as an exercise.

2.3 Definition: For a vector x € R", we define the norm (or length) of x to be

ol = VaE =3 e

We say that x is a unit vector when |z| = 1.

2.4 Theorem: (Properties of the Norm) Let x,y € R™ and let t € R. Then

(1) (Positive Definiteness) |z| > 0 with |x| = 0 if and only if z = 0,

(2) (Scaling) [tx| = |||z,

(3) |z £y = |o[* £ 2(z - y) + [y]*.

(4) (The Polarization Identities) z +y = 2 (Jz + y|* — 2> — [y]*) = 1 (lz + y|* — |z — y|?),
(5) (The Cauchy-Schwarz Inequality) |z - y| < |z||y| with |z - y| = |=| |y| if and only if the
set {x,y} is linearly dependent, and

(6) (The Triangle Inequality) |z + y| < |z| + |y|.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {z,y} is linearly
dependent. Then one of x and y is a multiple of the other, say y = tx with ¢ € R. Then

@yl = |2+ (ta)] = [t(z - 2)| = [t] 2] = |2] [tz] = |2] |y].

Suppose next that {x,y} is linearly independent. Then for all ¢t € R we have x + ty # 0
and so

0# [z +ty* = (x+ty) - (x +ty) = |2> + 2t(z - y) + *|y[*.

Since the quadratic on the right is non-zero for all ¢ € R, it follows that the discriminant
of the quadratic must be negative, that is

Az - y)® —4fzly* < 0.

Thus (z - y)? < |z|?|y|* and hence |z - y| < |z||y|. This proves part (5).
Using part (5) note that

2
@ +y* = [a]* +2(2 - y) +y1* < v +yl* + 20wyl + [yl < |2l +202]lyl+y* = (j2]+]y])
and so |x + y| < |x| + |y|, which proves part (6).
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2.5 Definition: For points a,b € R", we define the distance between a and b to be
dist(a,b) = |b — a.

2.6 Theorem: (Properties of Distance) Let a,b,c € R™. Then

(1) (Positive Definiteness) dist(a,b) > 0 with dist(a,b) = 0 if and only if a = b,

(2) (Symmetry) dist(a, b) = dist(b, a), and

(3) (The Triangle Inequality) dist(a, c¢) < dist(a,b) + dist(b, c).

Proof: The proof is left as an exercise.

2.7 Definition: For nonzero vectors 0 # u,v € R"™, we define the angle between u and
v to be O(u,v) = cos™! T € [0, 7]. We say that u and v are orthogonal when u - v = 0.
As an exercise, determine (with proof) some properties of angles.

2.8 Definition: For a € R™ and 0 < r € R, the sphere, the open ball, the closed ball,
and the (open) punctured ball in R™ centered at a of radius r are defined to be the sets

S(a,r)={x € R”|dist(x,a) =r}={ze ]R”Ha —z|=r},

B(a,r) = {z € R*|dist(z,a) <1} = {z € R"|[a — 2| < r},

B(a,r) = {z e R"|dist(z,a) <r} = {z € R"|[a — x| <1},
B*(a,r) = {z e R*|0 < dist(z,a) <r} = {z e R"|0 < |a — x| < r}.

2.9 Definition: Let A C R". We say that A is bounded when A C B(a,r) for some
a € R™ and some 0 < r € R. As an exercise, verify that A is bounded if and only if
A C B(0,r) for some r > 0.

2.10 Definition: For a set A C R"”, we say that A is open (in R"™) when for every a € A
there exists 7 > 0 such that B(a,r) C A, and we say that A is closed (in R™) when its
complement A° =R" \ A is open in R™.

2.11 Exercise: Show that open intervals in R are open in R and closed intervals in R are
closed in R.

2.12 Example: Show that for a € R™ and 0 < r € R, the set B(a,r) is open and the set

B(a,r) is closed.

Solution: Let a € R™ and let » > 0. We claim that B(a,r) is open. We need to show that
for all b € B(a,r) there exists s > 0 such that B(b,s) C B(a,r). Let b € B(a,r) and note
that [b —a|] < r. Let s = r — |b — a| and note that s > 0. Let =z € B(b,s), so we have
|z — b| < s. Then, by the Triangle Inequality, we have

lt—a|l=lz—b+b—a|<|z—-b+|b—a|l<s+|b—a|=r

and so x € B(a,r). This shows that B(b,s) C B(a,r) and hence B(a,r) is open.

Next we claim that B(a,r) is closed, that is B(a,7)¢ is open. Let b € B(a, ), that is
let b € R™ with b ¢ B(a,r). Since b ¢ B(a,r) we have |b—a| >r. Let s = |b—a| —r > 0.
Let = € B(b, s) and note that |x — b| < s. Then we have

b—a|l=b—z+x—a|<|b—z|+|x—a|] <s+|r—al

and so |z —a| > |b—a| —s=r. Since [z —a| > r we have x ¢ B(a,r) and so x € B(a,r)°.
This shows that B(b,s) C B(a,r)¢ and it follows that B(a,r)¢ is open and hence that

B(a,r) is closed.



2.13 Theorem: (Basic Properties of Open Sets)

(1) The sets () and R™ are open in R™.
(2) If S is a set of open sets then the union |JS = |J U is open.

ves
(3) If S is a finite set of open sets then the intersection (1S = () U is open.

ves

Proof: The empty set is open because any statement of the form “for all z€() F” (where
F is any statement) is considered to be true (by convention). The set R™ is open because
given a € R™ we can choose any value of » > 0 and then we have B(a,r) C R" by the
definition of B(a, ). This proves Part (1).

To prove Part (2), let S be any set of open sets. Let a € |JS = UyegU. Choose
an open set U € S such that a € U. Since U is open we can choose r > 0 such that
B(a,r) C U. Since U € S we have U C |JS. Since B(a,r) C U and U C |JS we have
B(a,r) CJS. Thus |J S is open, as required.

To prove Part (3), let S be a finite set of open sets. If S = ) then we use the convention
that (S = R", which is open. Suppose that S # (), say S = {Uy,Us, - - -, U,, } where each
Ui is an open set. Let a € (S = (N—, Ux. For each index k, since a € Uy we can
choose r;, > 0 so that B(a,ry) C Ug. Let r = min{ry,rs,---,r}. Then for each index
k we have B(a,r) C B(a,ry) C Ug. Since B(a,r) C Uy, for every index k, it follows that
B(a,r) C (i~ Ux =(S. Thus (S is open, as required.

2.14 Theorem: (Basic Properties of Closed Sets)

(1) The sets () and R™ are closed in R™.

(2) If S is a set of closed sets then the intersection (S = (| K is closed.
KesS

(3) If S is a finite set of closed sets then the union |JS = |J K is closed.
KesS

Proof: The proof is left as an exercise

2.15 Definition: Let A C R™. The interior and the closure of A (in R™) are the sets
A° = U {U C R"‘U is open, and U C A},
A= ﬂ {K C R”!K is closed and A C K}.

2.16 Theorem: Let A C R"™.

(1) The interior of A is the largest open set which is contained in A. In other words,
A® C A and A° is open, and for every open set U with U C A we have U C A°.

(2) The closure of A is the smallest closed set which contains A. In other words, A C A
and A is closed, and for every closed set K with A C K we have A C K.

Proof: Note that A° is open by Part (2) of Theorem 2.13, because A° is equal to the union
of a set of open sets. Also note that AY C A because A° is equal to the union of a set of
subsets of A. Finally note that for any open set U with U C A we have U € S so that
U CJS = A" This completes the proof of Part (1), and the proof of Part (2) is similar.

2.17 Corollary: Let A C R".

(1) (A%)° = A% and A = A.

(2) A is open if and only if A = A°
(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.



2.18 Definition: Let A C R". An interior point of A is a point a € A such that for
some r > 0 we have B(a,r) C A. A limit point of A is a point a € R™ such that for every
r > 0 we have B*(a,r) N A # (). An isolated point of A is a point a € A which is not a

limit point of A. A boundary point of A is a point a € R™ such that for every r > 0 we
have B(a,r) N A # () and B(a,r) N A¢ # (. The set of limit points of A is denoted by A’.
The boundary of A, denoted by 0A, is the set of all boundary points of A.

2.19 Theorem: (Properties of Interior, Limit and Boundary Points) Let A C R™.
(1) A° is equal to the set of all interior points of A.
(2) A is closed if and only if A" C A.
(3) A=AUA"
(4) 0A = A\ A°.
Proof: We leave the proofs of Parts (1) and (4) as exercises. To prove Part (2) note that
when a ¢ A we have B(a,r) N A= B*(a,r) N A and so
A is closed <= A€ is open
Vae€ A° Ir>0 B(a,r) C A°
VaeR" (a¢ A = 3r>0 Bla,r) C A°
VaeR" (a¢ A = Fr>0 B(a,r)NA=0)
VaeR" (a¢ A = Ir>0 B*(a,r) N A =10)
VaeR™ (Vr>0 B*(a,r) N A# 0 = ac A)
VaeR" (a € A" = a € A)
A C A

rreeree

To prove Part (3) we shall prove that AU A’ is the smallest closed set which contains A.
It is clear that A U A’ contains A. We claim that A U A" is closed, that is (A U A’)¢ is
open. Let a € (AU A’)°, that is let « € R™ with a ¢ A and a ¢ A’. Since a ¢ A" we
can choose 7 > 0 so that B(a,r) N A = (. We claim that because B(a,r) N A = () it
follows that B(a,r) N A’ = (). Suppose, for a contradiction, that B(a,r) N A" # (. Choose
b € B(a,r) N A’. Since b € B(a,r) and B(a,r) is open, we can choose s > 0 so that
B(b,s) C B(a,r). Since b € A’ it follows that B(b,s) N A # (. Choose x € B(b,s) N A.
Then we have z € B(b,s) C B(a,r) and x € A and so = € B(a,r) N A, which contradicts
the fact that B(a,r) N A = (. Thus B(a,r) N A" = (), as claimed. Since B(a,r)N A =
and B(a,r)NA" = (it follows that B(a,r)N(AUA") = () hence B(a,r) C (AUA")¢. Thus
proves that (AU A’)¢ is open, and hence AU A’ is closed.

It remains to show that for every closed set K with A C K we have AUA’ C K. Let
K be a closed set in R"® with A C K. Note that since A C K it follows that A’ C K’
because if a € A’ then for all » > 0 we have B(a,r) N A # () hence B(a,r) N K # () and so
a € K'. Since K is closed we have K’ C K by Part (2). Since A’ C K’ and K’ C K we
have A’ C K. Since A C K and A’ C K we have AUA’ C K, as required. This completes
the proof of Part (3).

2.20 Definition: Let A C R™. For sets U,V C R", we say that U and V separate A
when

UNA#0, VNA#D, UNV=0and ACUUV.

We say that A is connected when there do not exist open sets U and V' in R™ which
separate A. We say that A is disconnected when it is not connected, that is when there
do exist open sets U and V' in R™ which separate A.
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2.21 Theorem: The connected sets in R are the intervals, that is the sets of one of the
forms

(a,b), [a,b), (a,b], [a,b], (a,0), [a,0), (—o0,b), (—0,b], (—00,0)

for some a,b € R with a < b. We include the case that a = b in order to include the
degenerate intervals () = (a,a) and {a} = [a, a].

Proof: We use the fact that the intervals in R are the sets with the intermediate value
property (a set A C R has the intermediate value property when for all a,b, € A and
all z € R, if a <z < b then x € A). Let A C R. Suppose that A is not an interval. Then
A does not have the intermediate value property so we can choose a,b € A and u € R with
a<u<b Then U = (—o0,u) and V = (u,c0) separate A and so A is disconnected.

Suppose, conversely, that A is disconnected. Choose open sets U and V' which separate
A. Choose a € U and b € V. Note that a # b since U NV = (). Suppose that a < b (the
case that b < a is similar). Let u = sup (U N [a,b]). Note that u # a since we can choose
& > 0 such that [a,a+8) € U N [a,b] and then we have u = sup (U N [a,b]) > a + §. Note
that u # b since we can choose § > 0 such that (b—3J,b] C V N [a,b] and then we have
u = sup (UN[a,b]) <b—4dsince UNV = . Thus we have a < u < b. Note that u ¢ U
since if we had u € U we could choose § > 0 such that (u—d,u+3J) C U N [a,b] which
contradicts the fact that u = sup (U N [a, b]). Note that u ¢ V since if we had u € V then
we could choose § > 0 such that (u—d,u+d) C V N [a,b] which contradicts the fact that
u = sup (U N [a,b]) because UNV = 0. Since w ¢ U and u ¢ V and A C U NV we have
u ¢ A, so A does not have the intermediate value property, and so A is not an interval.

2.22 Definition: Let A C R”. An open cover of A is a set S of open sets in R™ such
that A C |JS. A subcover of an open cover S of A is a subset T' C S such that A C |JT.
We say that A is compact when every open cover of A has a finite subcover.

2.23 Exercise: Show that the set A = {%|n € Z+} is not compact, but that the set
B = AU {0} is compact.
2.24 Theorem: (The Nested Interval Theorem) Let Iy, Iy, I, -+ be nonempty, closed
bounded intervals in R. Suppose that Iy 2 Iy D I D ---. Then [\ I # 0.

k=0

Proof: For each k > 1, let I}, = [ay, bi] with ap < bi. For each k, since I C I we have
ar < apt1 < b1 < bgyi1. Since ap > a4 for all k, the sequence (ay) is increasing. Since
ap < by <bg_1 <--- < b for all k, the sequence (ay) is bounded above by b;. Since (ax)
is increasing and bounded above, it converges. Let a = sup{a} = klggo ar. Similarly, (by)

is decreasing and bounded below by a1, and so it converges. Let b = inf{b,} = klim by.
—» 00

Fix m > 1. For all k > m we have a,, < by, < b1 < -+ < bg. Since ap < b for all &,
by the Comparison Theorem we have a < b, and so the interval [a, b] is not empty. Since
(ar) is increasing with ay — a, it follows (we leave the proof as an exercise) that a; < a
for all £ > 1. Similarly, we have by, > b for all £ > 1 and so [a,b] C |ag,bi] = I. Thus

[a,b] € () Ik, and so [ I # 0.
k=1 k=1

2.25 Definition: A closed rectangle in R" is a set of the form
R = [al,bl] X [az,bz] X oo X [an,bn]
= {(ml,xg, cee L Xp) € R”‘aj < z; <b; for all j}.



2.26 Theorem: (Nested Rectangles) Let Ry, Ro, Rs,--- be closed rectangles in R™ with
R1 QRQ 2R3 2 Then

() Be # 0.

k=1
Proof: Let Ry = [ak,1,bk,1] X [ak,2,bk2] X -+ X [akn, bgn]. Since Ry O Ry D --- it follows
that for each index j with 1 < j < n we have [ay ,b1 ;] 2 [a2;,b2,] 2 ---. By the
Nested Interval Theorem, for each index j we can choose u; € () [ag,j,bk,;]. Then for

k=1
u = (uy,ug, -, u,) we have u € (| Rg.
k=1

2.27 Theorem: (Compactness of Rectangles) Every closed rectangle in R™ is compact.
Proof: Let R = I; x Iy x --- x I,, where I; = [aj,b;] with a; < b;. Let d be the diameter of
R, that is d=diam(R) = ( 3 (b; — a;)?) "/

71=1
contradiction, that S does not have a finite subset which covers R. Let a1 ; = aj, b1 ; = b;,

ILj=1;=1Ja1,,b1 ] and Ry = R=1;1 X --- x I ,. Recursively, we construct rectangles

. Let S be an open cover of R. Suppose, for a

R = R1 D) R2 D) R3 D) teey with Rk = Ik,l X+ X Ik,n where Ikyj = [ak,j,bk,j], and
d, = diam(Ry) = ( > (g — ak,j)z)l/Q = 2,%1, such that the open cover S does not have
j=1

a finite subset which covers any of the rectangles Rr. We do this recursive construction
as follows. Having constructed one of the rectangles R, we partition each of the intervals
It.; = |ak.j, bk ;] into the two equal-sized subintervals [a ;, %] and [ak’jTer’“’j,bk’j],
and we thereby partition the rectangle Ry into 2" equal-sized sub-rectangles. We choose
Ry41 to be equal to one of these 2" sub-rectangles with the property that the open cover
S does not have a finite subset which covers Ry (if each of the 2" sub-rectangles could
be covered by a finite subset of S then the union of theses 2™ finite subsets would be a
finite subset of S which covers Ry).

[oe)
By the Nested Rectangles Theorem, we can choose an element u € () Rj. Since
k=1
u € R and S covers R we can choose an open set U € S such that u € U. Since U is open

we can choose r > 0 such that B(u,r) C U. Since dy, — 0 we can choose k so that dj < r.
Since u € Ry, and diamRy, = dj, < r we have Ry C B(u,r) C U. Thus S does have a finite
subset, namely {U}, which covers Ry, giving the desired contradiction.

2.28 Theorem: Let A C K C R". If A is closed and K is compact then A is compact.

Proof: Suppose that A is closed in R” and that K is compact. Let S be an open cover
of A. Let A°=R"\ A. Since A C |JS we have | JSU{A°} = R™ and so SU {A°} is an
open cover of K. Since K is compact, we can choose a finite subset 7" C S U {A°} with

K CUT. Since AC K CJT we also have A C |J (T'\ {A4°}). Thus the open cover S of
A does have a finite subcover, namely T\ {A°}, and so A is compact, as required.



2.29 Theorem: (The Heine-Borel Theorem) Let A C R™. Then A is compact if and only
if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded.
For cach k € Z* let U, = B(0,k) and let S = {Uix|k € Z*}. Then JS = R" so S
is an open cover of A. Let T be any finite subset of S. If T = () then |JT = () and
A Z |JT. Suppose that T # 0, say T = {Ukl,Ukz,---,Ukm} with k1 < ko < -+ < k.
Since Uy, C Uy, C -+ C Uy,, we have YT = .-, Ui, = Uy,, = B(0, k). Since A is not
bounded we have A Z B(0, k,,) and so A € |JT. This shows that the open cover S has
no finite subcover T', which contradicts the fact that A is compact.

Next suppose, for a contradiction, that A is not closed. By Part (2) of Theorem 2.19,
it follows that A” ¢ A. Choose a € A’ with a ¢ A. For each k € Z* let Uy be the
open set Uy = E(a,%)c = {z € R"||z —a| > ;} and let S = {Ui|k € Z*}. Note that
US = R"\ {a} so S is an open cover of A. Let T be any finite subset of S. If T = )
then JT = 0 so A € |JT (since A is not closed so A # (). Suppose that T # 0, say
T ={Uk,,Usy, -+, Uy, } with ky < ks < -+ < ky,. Since Uy, C Ui, C --- C Uy,, we have
UT =UZ, U, = Uy, = B(a, ﬁ)c Since a is a limit point of A we have B(a, ﬁ) # 0
hence E(a, kim) NA#Pandso AL E(a, ﬁ)c, hence A € |JT'. This shows that the open
cover S has no finite subcover T, which again contradicts the fact that A is compact.

Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose
r >0 so that A C B(0,7). Let R be the closed rectangle R = {z € R"||z;| < r for all k}.
Note that B(0,7) C R since when z = (x1,---,z,) € B(0,r), for each index k we have

ol = (@) < (2, 02) " = Jod <.

Since A is closed and A C R and R is compact, A is compact, by the above theorem.

Topology in Subsets of Fuclidean Space

2.30 Definition: Let P C R". For a € P and 0 < r € R we define the open ball in P
and the closed ball in P centred at a of radius r to be the sets

Bp(a,r) ={z € P||z—a| <r} =B(a,r) NP,

Bp(a,r)={z € P! |z —a| <r} =B(a,r)N P.
For A C P C R", we say A is open in P when for every a € A there exists r > 0 such
that Bp(a,r) C A, and we say A is closed in P when A¢ = P\ A is open in P.
2.31 Theorem: Let A C P C R"™.
(1) A is open in P if and only if there exists an open set U in R™ such that A =U N P.
(2) A is closed in P if and only if there exists a closed set K in R™ such that A = K N P.

Proof: To prove Part (1), suppose first that A is open in P. For each a € A, choose r, > 0
so that B(a,7q) NP C A, and let U = (J,. 4 B(a,rq). Since U is equal to the union of
a set of open sets in R™, it follows that U is open in R™. Note that A C U N P and,
since B(a,r,) NP C A for every a € A, we also have UN P = (Uan B(a,ra)) NP =

Uaea (Bla,74) N P) C A. Thus A = U N P, as required.

Suppose, conversely, that A = U N P with U open in R™. Let a € A. Since a € A =
U N P, we also have a € U. Since a € U and U is open in R™ we can choose > 0 so that
B(a,r) C U. Since B(a,r) CU and UNP = A we have B(a,ry) NP CUNP = A, as
required.



To prove Part (2), suppose first that A is closed in P. Let B be the complement of
Ain P, that is B= P\ A. Then B is open in P. Choose an open set U in R™ such that
B =UnNP. Let K be the complement of U in R™, that is K = R"\ U. Then A= KNP
since for z € R" we have z € A <= (zr € Pandz ¢ B) < (v € Pandz ¢ UNP)
< (z€Pandz¢U) < (r€PandzcK) < zc KNP.

Suppose, conversely, that K is a closed set in P with A = K N P. Let B be the
complement of A in P, that is B = P\ A, and let U be the complement of K in P,
that is U = P \ K, and note that U is open in P. Then we have B = U N P since
forz € P we have x € B < (z € Pandz ¢ A) < (v € Pandz ¢ KN P)
< (z€ePandz ¢ K) < (r€PandzecU) < =z € UnNP. Since U is open in
P and B = U N P we know that B is open in P. Since B is open in P, its complement
A= P\ Bis closed in P.

2.32 Theorem: Let A C P C R™. Define A to be connected in P when there do not
exists sets E, ' C P which are open in P and which separate A. Define A to be compact

in P when for every set S of open sets in P such that A C | S there exists a finite subset
T C S such that A C|JT. Then

(1) A is connected in P if and only if A is connected in R™, and
(2) A is compact in P if and only if A is compact in R™.

Proof: We prove. Part (1) and leave the proof of Part (2) as an exercise. Suppose that
A is not connected in R™. Choose open sets U and V in R™ which separate A, that is
UNA#0,VNA#D, UNV=0and ACUUV. Let E=UNP and F =V N P. Note
that E and F' are open in P and FE and F separate A.

Suppose, conversely, that there exist sets E, ' C P which are open in P and which
separate A, that is ANE #0, ANF #0, ENF =0 and A C EUF. Choose open sets
U,V CR" such that E=U NP and FF =V N P. Note that it is possible that U NV # ()
and so U and V might not separate A in R™. For this reason, we shall construct open
subsets Uy C U and Vi C V which do separate A in R™. For each a € E choose r, > 0
such that B(a,2r,) C U and then let Uy = |J,cp B(a,r,). Note that Uy is open in R”
(since it is a union of open sets in R™) and that we have E C Uy C U. Similarly, for each
b € F choose s, > 0 so that B(b,2s,) C V, and then let Vo = J,cp B(b, sp). Note that
Vo is open in R™ and F' C Vi C V. We claim that the open sets Uy and Vj separate A in
R™. Since E C Uy and F C Vo wehave ) # ANE C ANUy, 0 # ANF C ANV, and
ACEUF CUyUYV,. It remains to show that Uy NV = (). Suppose, for a contradiction,
that Up NV # 0. Choose z € UgNVp. Since x € Up = |J,cp B(a,ra) we can choose a € E
such that x € B(a,r,). Similarly, we can choose b € F' so that x € B(b,s;). Suppose
that r, > sp (the case that s, > r, is similar). By the Triangle Inequality, it follows that
b—a|l <|b—z|+|z—al < sy +r, < 2r, and so we have b € B(a,2r,) C U. Since
be FCPandbeU wehave be UNP = E. Thus we have b € EN F which contradicts
the fact that £ N F = (), and so Uy NV = (), as required.

2.33 Corollary: A set A C R"™ is connected (in R™) if and only if the only subsets of A
which are both open and closed in A are the sets ) and A.

Proof: We leave this as an exercise. It follows from the above theorem by taking A = P.



