Chapter 5. Differentiation

In this chapter (and the next) we give a more detailed and precise presentation of differ-
entiation in Euclidean space. We repeat some of the definitions from the previous chapter,
and we restate some of the theorems (in a different order), and we provide rigorous proofs
for the theorems which were not proven earlier. We also prove a few additional theorems.

5.1 Note: Recall that for a single-variable function f: U CR — R and a € U,

f is differentiable at a <= lim M

Tr—a r — a

exists

z) — f(a)

<= ImeRVe>036>0VarelU O<]x—a]<5:>‘f( —m‘<e
r—a

< IMERVe>035>0VzeU 0<|z—a|<d = |f(z) - fla) — m(z — a)| < €|z — q
< IMERVe>030>0VzeU |z—a| <6 = |f(z) — (f(a) + m(z —a))| < €|z —al.
In this case, the number m € R is unique, we call it the derivative of f at a and denote
it by f’(a), and the map ¢(x) = f(a) + f'(a)(x — a) is called the linearization of f at a.

5.2 Definition: Let f: U C R™ — R™, where U is open. We say f is differentiable at
a € U if there is an m x n matrix A such that

Ve>030>0VeelU (\x—a| <5 = |f(x) = (f(a) + A(z — a))| < eyx—a|).

We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and
we denote it by Df(a). The affine map L : R™ — R™ given by L(z) = f(a)+ Df(a)(z —a),
which approximates f(x), is called the linearization of f at a. We say f is differentiable
in U when it is differentiable at every point a € U.

5.3 Example: If f is the affine map f(z) = Ax + b, then we have Df(a) = A for all a.
Indeed given € > 0 we can choose § > 0 to be anything we like, and then for all z we have

|f(@) = f(a) — A(z —a)| = |[Az +b— Aa — b— Az + Aa| =0 < €|z — al.

5.4 Theorem: (The Derivative is the Jacobian) Let f : U C R™ — R™ and let a € U.
If f is differentiable at a then the partial derivatives g—i’z(a) all exist and the matrix A
which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).

Proof: Suppose that f is differentiable at a. Fix indices k and ¢ and let g(t) = fi(a + tey)
so that g—i’z(a) = ¢'(0) provided that the derivative ¢’(0) exists. Let A be a matrix as in
the definition of differentiability. Let ¢ > 0. Choose § > 0 such that for all x € U with
|z — a] < & we have |f(z) — f(a) — A(x —a)| < €|z —al. Let ¢t € R with [t| < 6. Let
z = a+tes. Then we have [z—a| = |te| = |t| < d and so | f(z)— f(a)—A(z—a)| < €|z —al.
Since for any vector u € R we have |u| < |u|, we have
|9(t) — g(0) — Apet| = | fr(a +tee) — fr(a) — (Alter)) |
< |fla+tee) — f(a) — A(tes)]
= |f(z) = f(a) = Az - a)|

<e€lr—al=c¢€lt|

It follows that Ay, = ¢'(0) = g—i’z(a), as required.



5.5 Definition: Let A € M,,,x,(R) and let S = {x € R"! |z| = 1}. Since S is compact,
by the Extreme Value Theorem, the continuous function f : R™ — R given by f(z) = }Aac!
attains its maximum value on S. We define the norm of the matrix A to be

|All = max {|Az| | x| = 1}.
5.6 Lemma: (Properties of the Matrix Norm) Let A € M,,x»(R). Then
(1) |[Az| < ||A|| || for all z € R™,
(2) if A is invertible then |Ax| > ﬁ for all x € R",
(3) Al < 22 32 Ak, and

k=16=1
(4) || A]| is equal to the square root of the largest eigenvalue of the matrix ATA.

Proof: When x = 0 € R™ we have |Az| = 0 = ||A| |z| and when 0 # x € R™ we have
Az] = |lo] A | = lzl|AZ] < lal Al

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose
x € R™ with |z| = 1 such that Az # 0 so we must have [|A|| > 0. Similarly, since
A~! is also invertible, we also have ||A~™!|| > 0. By Part 1, for all x € R™ we have

jz| = |A™ 1 Az| < ||[A7Y||Az| so that [Az| > ﬁ, as required. To prove Part 3, let

x € R™ with |z| = 1. Then |x¢| < |z| <1 for all indices ¢, and so

n m n m n
o Ao < 30 D0 Akl el < D0 Y7 [Awyel
=1 k ¢ k=1/¢=1

= =1/4=1

m

|Az| = ‘ i(AfL’)kek‘ <3 [GENEDY
k=1 k=1 k=1

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra
course).

5.7 Theorem: (Differentiability Implies Continuity) Let f : U C R™ — R™. If f is
differentiable at a € U, then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all x € U we have
[f(x) = f(a)| = | f(z) — f(a) = Df(a)(z — a) + Df(a)(z — a)|
< |f(z) - f(a) — Df(a)(z — a)| + |Df (a) (x - a)]
< |f(z) = f(a) = Df (a)(z — a)| + || Df (a)|| |2 — a|

Let € > 0. Since f is differentiable at a we can choose § with 0 < § < such that

D@
2~ al <6 = |£(@) — f(a) = Df{a) @ — )| < |0 —af
and then for |x — a|] < § we have
/@)~ £(@)] < |£(@) — (a) = D @)z = )] + | D (@)][]a — a
< |z —al + IDf(a)|| |z — a| = (1 + | Df (@)]) |= — al
< (1+[[Df(a)]l) 6 <e.



5.8 Theorem: (The Chain Rule) Let f : U C R -V CR™ let g: V C R™ — R,
and let h(x) = g(f(z)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and ¢ is differentiable at f(a). Write y = f(x) and
b= f(a). We have

|h(z) — h(a) — Dg(f(a))Df (a)(z — a)| = |g(y) — g(b) — Dg(b)Df (a)(z — a)|
= |9(y) — g(b) — Dg(b)(y — b) + Dg(b)(y — b) — Dg(b)Df (a)(x — a)|
<|g(y) — g(b) — Dg(b)(y — b)| + | Dg ()|l |y — b — Df (a)(x — a)|
< |g9(y) — g(b) — Dg(b)(y — b)| + (1 + [|[Dg(®)|) | f(x) — f(a) — Df(a)(x — a)|

and
ly = bl =|f(z) — f(a)|
= |f(2) = f(a) — Df(a)(z — a) + Df(a)(z — a)
< |f(z) = f(a) = Df(a)(x — a)| + |Df (a)|| |z — al.
Let € > 0 be given. Since g is differentiable at b we can choose dy > 0 so that
—b| < — — — < € |y—bl.
[y — bl < 00 = [g(y) — 9(b) = Dg(O)(y = b)| < srams v —
Since f is continuous at a we can choose §; > 0 so that
[z —al <6 = |y — bl = [f(z) — fla)] < do
Since f is differentiable at a we can choose 2 > 0 so that
|z —a| <6 = |f(z) — f(a) — Df(a)(z — a)| < |z —ql
and we can choose d3 > 0 so that

|z —a| <65 = |f(z) — f(a) — Df(a)(z —a)| < Weg(a)n)\x—a].

Let 6 = min{d;,d2,93}. Then for |x — a| < § we have
ly = 0| < [f(2) = f(a) — Df(a)(z — a)| + [ Df(a)(z — a))|
< |z —al +|[Df(a)[l |z - af
= (1 +[[Df (a)l]) |« — al

SO
— _ _ < € Jyu—-bl<Elr—
|9(y) = 9(b) = Dg(b)(y = b)| < soram 1Y — Ol < Sl —al

and we have
(1+Dg®))|f(z) — f(a) = Df(a)(z — a)| < § |z — al
and so
|h(x) — h(a) — Dg(f(a))Df(a)(z — a)| < § o —a| + § |z —a| = €|z — al.
Thus h is differentiable at a with derivative Dh(a) = Dg(f(a))Df(a), as required.



5.9 Definition: Let f : U C R" — R, let a € R™ and let v € R”. We define the
directional derivative of f at a with respect to v, written as D, f(a), as follows: pick
any differentiable function a : (—¢,¢) C R — U C R", where € > 0, such that «(0) = a
and o/(0) = v (for example, we could pick a(t) = a+vt), let g(t) = f(a(t)), note that by
the Chain Rule we have ¢'(t) = Df(«(t))d/(t), and then define

D, f(a) = g'(0) = Df((0)) &’(0) = Df (a) v = V f(a) - v
Notice that the formula for D, f(a) does not depend on the choice of the function «(t).

The directional derivative of f at a in the direction of v is defined to be D, f(a)
where w is the unit vector in the direction of v, that is w = ﬁ

5.10 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.

5.11 Theorem: Let f : U C R™ — R be differentiable at a € U. Say f(a) = b. The
gradient V f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let a(t) be any curve in the level set f(z) = b, with a(0) = a. We wish to show that
Vf(a) L o/(0). Since a(t) lies in the level set f(z) = b, we have f(«(t)) = b for all t. Take
the derivative of both sides to get Df(a(t))a/(t) = 0. Put in ¢t = 0 to get Df(a)a’/(0) =0,
that is Vf(a) - @/(0) = 0. Thus Vf(a) is perpendicular to the level set f(z) = b.

Next, let u be a unit vector. Then D, f(a) = Vf(a) - u = |Vf(a)| cos 8, where 0 is the
angle between u and Vf(a). So the maximum possible value of D,, f(a) is |Vf(a)|, and this
occurs when cosf = 1, that is when 6§ = 0, which happens when u is in the direction of

Vf(a).

5.12 Theorem: (Continuous Partial Derivatives Imply Differentiability) Let U C R™ be
open, let f : U CR™ — R™ and let a € U. If the partial derivatives g—fz(:zs) exist in U and
are continuous at a then f is differentiable at a.

Proof: Suppose that the partial derivatives a—f’“(ac) exist in U and are continuous at a.

Let € > 0. Choose § > 0 so that B(a,d) C U and so that for all indices k, ¢ and for all

y € U we have |y —a| < 6§ = |6f’“ g—i’z(a)‘ < & Let ¢ € U with |z —a| < 4. For
0<{l<mn,let u = (X1, +,Te, 041, ,ap), with ug = a and w,, = x, and note that each
wEB(a,J). For 1</<n, 1et Ozg(t):(:zzl, ce Xp_1,t,aps1, 0, ap) for t between ay and xy,

For 1<k<m and 1</<n, let gr,(t) = fi(ae(t)) so that Iio(t) = gi’“ (ou(t)). By the
Mean Value Theorem, we can choose s ¢ between ay and xy so that gk’g(skig)(xg —ay) =

9k.0(0) — gr.e(ar) or, equivalently, so that 2= (ay(sk.e)) (we—ae) = fi(ue) = fi(ue-1). Then
fe(@) = frula) = fu(un) — frl(uo) = él (fr(ue) = fr(ue—1)) = él L (cve(snop)) (e — ap).
Let B € My xn(R) be the matrix with entries By y = 54 (ay(sk)). Then (using Part 2
of Lemma, 5.7)we have
f(x) = f(a) = Df(a)(z — a)‘ = ‘(B — Df(a))(z —a ‘ |B — Df(a)|| |z — af

<z\8fk (ce(sne)) — 2= (a)| |z — a| < €|z —al.

Oxy Oxy

5.13 Corollary: IfU C R" is open and f: U C R® — R™ is C! then f is differentiable.



5.14 Corollary: Every function f : U C R™ — R™, which can be obtained by applying
the standard operations (such as multiplication and composition) of functions to basic
elementary functions defined on open domains, is differentiable in U.

5.15 Exercise: For each of the following functions f : R? \ {(0,0)} — R, extend the
domain of f(z,y) to all of R? by defining f(0,0) = 0 and then determine whether the
partial derivatives of f exist at (0,0) and whether f is differential at (0,0).

(a) f(z,y) = =3 (b) f(z,y) = |yl (c) f(z,y) = /|yl
3 23 3502
(d) flz.y) = =5 (e) f(z,y) = mryoms (f) fla,y) = Sy
5.16 Theorem: (The Mean Value Theorem) Let f : U C R™ — R™ with U open in R".

Suppose that f is differentiable in U. Let uw € R™ and let a,b € U with [a,b] C U, where
we recall that [a,b] = {a+t(b—a) |0<t<1}. Then there exists c € [a,b] such that

Df(c)(b—a) -u = (f(b) — f(a)) - u.
Proof: Let a(t) = a+t(b—a) and define g : [0,1] — R by g(t) = f(a(t)) - u. By the Chain
Rule, we have ¢/(t) = (Df(a(t))e/(t)) +u = (Df(a(t))(b — a)) - u. By the Mean Value
Theorem (for a real-valued function of a single variable) we can choose s € [0, 1] such that

¢(s) = g(1) — 9(0), that is (Df(a(s))(b— a)) +u = F(b) - u— f(a) - u= (f(b) — f(a)) - u.
Thus we can take ¢ = a(s) € [a,b] to get Df(c)(b—a)-u= (f(b) — f(a)) - u.

5.17 Corollary: (Vanishing Derivative) Let U C R™ be open and connected and let
f: U — R™ be differentiable with Df(x) = O for all x € U. Then f is constant in U.

Proof: Let a € U and let A = {z € U|f(z) = f(a)}. We claim that A is open (both
in R™ and in U). Let b € A, that is let b € U with f(b) = f(a). Since U is open we
can choose r > 0 so that B(b,7) C U. Let ¢ € B(b,r). Since B(b,r) is convex we have
[b,c] C B(b,r) C U. Let u = f(c) — f(b) and choose d € [b,¢|, as in the Mean Value
Theorem, so that (Df(d)(c — b)) - u= (f(c) — f(b)) - u. Then we have

£(e) = FB))" = (f(e) = f(1)) - u = (Df(d)(c — b)) - u=0

since Df (d) = O . Since |f(c) — f(b)| = 0 we have f(c) = f(b) = f(a), and so ¢ € A. Thus
B(b,r) € A and so A is open, as claimed. A similar argument shows that if b € U \ A
and we chose r > 0 so that B(b,7) C U then we have f(c) = f(b) for all ¢ € B(b,r) hence
B(b,r) C U\ A and hence U \ A is also open. Note that A is non-empty since a € A. If
U \ A was also non-empty then U would be the union of the two non-empty open sets A
and U \ A, and this is not possible since U is connected. Thus U\ A = () so U = A. Since
U=A={xzcU|f(x)= f(a)} we have f(z) = f(a) for all z € U, so f is constant in U.



5.18 Theorem: (The Inverse Function Theorem) Let f : U C R™ — R™ where U C R"
is open with a € U. Suppose that f is C! in U and that Df(a) is invertible. Then there
exists an open set Uy C U with a € Uy such that the set Vo = f(Uy) is open in R™ and the
restriction f : Uy — Vj is bijective, and its inverse g = f~' : Vo — Uy is C* in Vj. In this
case we have Dg(f(a)) = Df(a)™".

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is C!, we can

choose r > 0 so that B(a,r) C U and so that ’g—i’;(x) - %(aﬂ < m for all k, £. Let

Uy = B(a,r) and note that for all x € Uy we have ||Df(x) — AH < m.

Claim 1: for all € Uy, the matrix Df(z) is invertible.
Let x € Uy and suppose, for a contradiction, that Df(x) is not invertible. Then we can
choose u € R™ with |u| = 1 such that Df(z)u = 0. But then we have

|Df(2) ~ A|| > |(Df(@) — Ayu| = |Au > o = L

which contradicts the fact that since x € Uy we have HDf(m) — AH < m.

Claim 2: for all b,c € Uy we have |f(c) — f(b) — A(c —b)| < 5155

Let b,c € Uy. Let a(t) = b+ t(c — b) and note that a(t) € Uy for all ¢t € [0,1]. Let ¢(t) =

f(a(t)) —L(a(t)) where L is the linearization of f at a given by L(a) = f(a)+Df (a)(z—a),

and note that ¢(1) — ¢(0) = (f(c) — L(¢)) — (f(b) — L(b)) = f(c) — f(b) — A(c — b). By

the(z1 Chain Rule, we have ¢/(t) = Df («(t))/(t) — DL(a(t)) e/ (t) = (Df (a(t)) — A)(c — b)
[#'(t)] < [|Df () = Al le = bl < 51755

2fA-H
By the Mean Value Theorem, using u = ¢(1) — ¢(0), we choose t € [0, 1] such that

[6(1) = 6(0)]" = (&(1) = $(0)) - u = (DH(t)(1 ~0)) - u= &/ (1) - w
= [¢'(t) - (6(1) — D(0)] < [¢' ()] |o(1) — 6(0)]
by the Cauchy Schwarz Inequality, and hence |p(1) — ¢(0)| < |¢'(t)] < %, that is
|

Claim 3: for all b, ¢ € Uy we have |f(c) — f(b)| > 2|||f;b1|‘|-

Let b, c € Uy. By the Triangle Inequality we have
[f(e) = f(b) = Ale = b)| > |A(c = b)| = | f(e) = )| = 5= — [ f(e) = F(0)]
and so, by Claim 3, we have
_ le=b] _ _ _ _ le=bl _ _le=b| _ _lc=b|
}f(C) f(b)| > A= ‘f(c) f(b> A(C b)‘ > A=T] 241 — 2JA-1"
It follows that when b # ¢ we have f(b) # f(c), so the restriction of f to Uy is injective.

Claim 4: the restriction of f to Uy is injective, hence f : Uy — Vo = f(Up) is bijective.
By Claim 3, when b,¢ € Uy with b # ¢ we have |f(c) — f(b)| > % > 0 so that
f(b) # f(c). Thus the restriction of f to Up is injective, as claimed.

Claim 5: the inverse g = f~1 : Vy — Up is continuous (indeed uniformly continuous).

Let p,q € V. Let b = g(p) and ¢ = g(q) so that p = f(b) and ¢ = f(c¢). By Claim 3 we
have |c — b| < 2[|A7H||f(c) — f(b)], that is |g(q) — g(p)| < 2[|A7||¢ — p|. It follows that
¢ is uniformly continuous in Vj.



Claim 6: the set Vj is open in R™. o

Let p € Vy. Let b = g(p) so that p = f(b). Choose s > 0 so that B(b,s) C Up.
We shall show that B(p, m) C Vp. Let q € B(b, m). We need to show that
q € Vo = f(Up) and in fact we shall show that ¢ € f(B(b, s)) To do this, define ) : U — R
by ¥(x) = ‘ flx) — q!. Since 1) is continuous, it attains its minimum value on the compact
set B(b, s), say at ¢ € B(b, s). We shall show that ¢ € B(b, s) and that f(c) = ¢ so we have
q€ f(B(b, s)), hence ¢q € f(Uy) = Vo, hence B(b, M) C Vp, and hence V} is open.
Claim 6(a): we have ¢ € B(b, s).

Suppose, for a contradiction, that ¢ ¢ B(b, s) so we have |c — b| = s. Then

Y(b) = ‘f(b) - (_I| = |p — q| < 7+ and, using Claim 3,

AT
P(e) = |fle)—q| = |f(e) = fF(b)| = |f(b) —q| = 2|"jf’1'” —|p—dq
= amay — P —adl > gy oA = A

so that ¢(b) < 1(c). But this contradicts the fact that ¢(c) is the minimum value of ¥(x)
in B(b, s), so we have ¢ € B(b, s), as claimed.

Claim 6(b): we have f(c) = gq.

Suppose, for a contradiction, that f(c) # g so we have ¥ (c) > 0. Let v = g — f(c) so that

lv] = 9(c) > 0. Let u = A~'v so that v = Au. Then for 0 < ¢ < 1, using Claim 2, we have
e+ tu) = | fle+tu) — q| < |f(c+tu) — fc) — Atu| + | f(c) + Atu — ¢

t| A" 1y t _ t
2||A_1’U” + (1 - t)|U| S 2 |1)| + (1 - t)|1)| - (1 - 5)‘,U|'

< [tu| . —
= 2[[A-1] + |t’U U|

Since |v] > 0 we have ¢(c + tu) < (1 — %)|v| < |v] = 1(c). But this again contradicts the
fact that ¢(z) attains its minimum value at ¢, and so we have f(c) = ¢, as claimed.

Claim 7: the function g is differentiable in Vi with Dg(f(b)) = Df(b)~* for all b € Up.
Let p € V and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by
Claim 1. Let C = B™!. Let y € V and let 2 = g(y) € Uy so that y = f(x). Then we have

l9(y) —9(p) = Cly —p)| = [o = b= C(f(2) = f(b)| = [CB(z — b— C(f(x) - f(b)))]
= |C(Bx — Bb— (f(z) — f(b)))] < IC]||f(z) — f(b) — B(x — )] '

|z —b|

s[A=1] SO that

Also, as shown above, we have |y — p| = | f(z) — f(b)| >

@ =0 < 2 A7 ||y - pl.

It follows that g is differentiable at p with Dg(p) = C = Df(b)~!, as claimed. Indeed,
given € > 0, since f is differentiable at b with Df (b) = B we can choose d; > 0 so that when
|z —a| < 01 we have | f(z) — f(b) — B(z —b)| < Whﬂ — bl, and since g is continuous
at b we can choose § > 0 so that when |y — p| <  we have |z — b = |g(y) — g(b)| < 1.
When |y — p| < 4, the above inequalities give |g(y) —g(b) —C(y — p)‘ <ely—np|

Claim 8: the function g is C! in V.
By the cofactor formula for the inverse of a matrix, for all y € V and all indices k, ¢,

Ogr. , _ o (DT
a—w(y> = (Dg¥)) ., = (Df(g(¥) "), = mdew

where is F is the matrix obtained from Df(g(y)) by removing the k" column and the £t}

row. Thus gﬂ(y) is a continuous function of y, as claimed.
Ye



5.19 Corollary: (The Parametric Function Theorem) Let f : U C R" — R"™*+* be C1.
Let a € U and suppose that Df(a) has rank n. Then Range(f) is locally equal to the
graph of a C' function.

Proof: Since Df(a) has maximal rank n, it follows that some n x n submatrix of Df(a)
is invertible. By reordering the variables in R™T* if necessary, suppose that the top
n rows of Df(a) form an invertible n x n submatrix. Write f(t) = (z(¢),y(t)), where

z(t) = (z1(t), -+, 2, (t)) and y(t) = (y1(t), -+, yr(t)), so that we have
Dx(t) >
Df(t) =
/e (Dy(t)

with Dz(a) invertible. By the Inverse function Theorem, the function z(t) is locally
invertible. Write the inverse function as ¢ = t(z) and let g(z) = y(t(z)). Then, locally,
we have Range(f) = Graph(g) because if (x,y) € Graph(g) and we choose t = t(x) then
we have (x,y) = (x,g(a:)) = (x(t),g ) ( ) € Range(f) and, on the other
hand, if (z,y) € Range(f), say (z,y) = (x(t), y(t )) then we must have t = t(x) so that
y(t) = y(t(z)) = g(z) so that (z,y) = (2(t),y(t)) = (v,9(x)) € Graph(g).

5.20 Corollary: (The Implicit Function Theorem) Let f : U C R*** — RF be C!. Let
p € U, suppose that Df (p) has rank k and let ¢ = f(p). Then the level set f~1(c) is locally
the graph of a C! function.

Proof: Since Df(p) has rank k, it follows that some k X k submatrix of f is invertible.
By reordering the variables in R™** if necessary, suppose that the last k& columns of
Df(p) form an invertible k x k matrix. Write p = (a,b) with a = (p1,---,pn) € R™ and
b= Pni1, ,Pnsir) € R¥ and write z = f(z,y) with z € R", y € R* and z € R¥, and
write

Df(z,y) = (F(z,1), 55 (x,))

with g—Z(a,b) invertible. Define F': U C R"*F — R"** by F(z,y) = (=, f(z,y)) = (w, 2).
Then we have I o
DF = < 0z 0z )
oz dy

with DF'(a,b) invertible. By the Inverse Function Theorem, F' = F(x,y) is locally invert-
ible. Write the inverse function as (z,y) = G(w, 2) = (w, g(w, z)) and let h(z) = g(z, c).
Then, locally, we have f~!(c) = Graph(h) because

f(x,y) = ¢ = F(z,y) = (z,¢c) = (2,9) = G(z,¢)
— (2,y) = (z,9(z,¢)) < (=,y) € Graph(h).

5.21 Remark: We can also find a formula for Dh where h is the function in the above
I O

proof. Since G(w,z) = (w,g(w,z)) we have DG(w,z) = | a3 ay ) and we also have
ow 0z
I
DG(w,z) = DF(z,y)~ ! = < YN aZO—l) so, since h(z) = g(z, ¢), we have
-(5) 7 (5)

Dh(z) = 92 (x,¢) = —(82) 7" 8(x, ).



