Chapter 6. Higher Order Derivatives

6.1 Theorem: (Iterated Limits) Let I and J be open intervals in R witha € I and b € J,
let U = (I xJ)\{(a,b)}, and let f: U — R. Suppose that lim f(:r;,y) exists for every x € I

and that lim  f(z,y) =u € R. Then lim lim f(z,y) = u.

(x,y)—)(a,b) r—a t—b

Proof: Define g : I — R by g(z) = lim f(x,y). Let ¢ > 0. Since lim f(z,y) =
y—b (z,y)=(ab)

we can choose § > 0 such that for all (z,y) € U with 0 < |(z,y) — (a,b)| < 26 we have

|f(#,y) —u| <€ Let x € I with 0 < |z —a| < 6. For all y € J with 0 < |y —b| < § we have

0< |(z,y) = (a,b)| < |z —a| + |y —b| <26 and so |f(z,y) — u| < € and hence

l9(2) —ul < |g(@) = fz, )] + | f(z,9) —u| < [g(@) = f(z,y)] +e
Take the limit as y — b on both sides to get |g(z) —u| < e. Thus lim g(z) = u, as required.
Tr—a

6.2 Theorem: (Mixed Partials Commute) Let f : U C R™ — R where U is open in R"

with a € U, and let k,¢ € {1,---,n}. Suppose 89?:8fw (x) exists in U and is continuous at a,
2 2 2
%(z) exists and is continuous in U, and a:cagaka (a) exists. Then azaka (a) = 6378kgxé (a).

Proof: When k = ¢ there is nothing to prove, so suppose that k # £. Choose r > 0 so
that B(a,2r) C U. For |z| < r and |y| < r note that the points a, a + zeg, a + ye, and
a + xeg + yeg all lie in B(a,2r). For | X| < r and |y| < r, define

9(@,y) = fla+ vep +yee) — fla+xer) — fla+yer) + f(a).

By the Mean Value Theorem, applied to the function f(a + xep + yes) — f(a + yey) as a
function of y, we can choose ¢ between 0 and y such that

y(2L —(a + weg +teg) — 2L ~(a+ter)) = g(x,y).

By the Mean Value Theorem, applied to the function 3 f (a + xey, + teg) as a function of z,
we can choose s between 0 and z such that

x afkgm (@ + sex, +tey) = gg (a + zeg + teg) — 8f (a + tey).

Also by the Mean Value Theorem, applied to the function f(a + zex + yes) — f(a + xey) as
a function of x, we can choose r between 0 and z such that

(g oL —(a+rex + yee) — aaxfk (a+rer)) = g(z,y).
Then for |z| < r and 0 < |y| < r we have

f —(a+rex + yee) — af —(a+rex) 0
Y  Ox0xy

(a + sey, + tey).

Since % is continuous, the limit on the right as (x,y) — (0,0) is equal to 85:5;{ (a),
and since % is continuous, the limit as y — 0 of the limit as x — 0 on the left is equal to
92%f

Bmgaxk
6.3 Corollary: If U C R" is open and f : U C R® — R is C? in U then we have

%(w) af:ax (x) for all z € U and for all k,¢.

6.4 Exercise: Verify that for f(z,y) =

(a), so the desired result follows from the above lemma.

2257 we have hm hm flx,y) # hm hm f(z,y).



ry(z® —y°)
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6.5 Exercise: Let f(x,y) = 22 + o2 if (z,y) # (0,0)

0 , if (z,y) = (0,0)

partial derivatives ;(O 0) and aayg (0,0) both exist, but they are not equal.

. Verify that the mixed

6.6 Definition: for f : U C R" — R, where U is open in R" with a € U, we define
D% (a) = f(a) and for £ € Z* we define the (" total differential of f at a to be the map
D’f(a) : R® — R given by

n n n
/
= Oxp, OT ., - Oxp k1 Uky © " Wky
Df(a)(u) = 32 22 -+ X2 ot (@) ug,u u
k=1 ko=1 k=1 R £

provided that all of the ¢*" order partial derivatives exist at a.

6.7 Example: When f: U C R? — R is C? (so the mixed partial derivatives commute) we

have 0
D7f (u,v) = f(a,b)
D'f(a,b)(u,v) = L (a,b) u+ §L(a,b)v
D?f(a,b)(u,v) = $%(a,b) u? + 2525 (a,b) uv + 55 (a,b) v?
6.8 Theorem: (Taylor’s Theorem) Let f : U C R™ — R where U is open in R™. Suppose

that the m'® oder partial derivatives of f all exist in U. Then for all a,x € U such that
la, x] C U there exists ¢ € [a, x| such that

f(z) = j; 1D (a)(e —a) + L DT(e)(x — a).

Proof: Let a,x € U with [a,z] C U. Let a(t) = a + t(x — a) for all ¢ € R and note that
a(t) € U for 0 <t < 1. Since U is open and « is continuous, we can choose § > 0 so that
a(t)eUforallt € I = (—=9,1+06). Define g : I — R by g(t) = f(a(t)). By the Chain Rule,

we have
9'(t) = Df (alt)o/(1) = Df (a(®) (x — a) = 3
By the Chain Rule again, we have

HOEDY (z 2 (1) (2 — ;) (i — @) = D*f (a(t)) (x — a).

=1

2L (a(t)) (2 — a;) = D'f (a(t)) (x — a).

An induction argument shows that

g (t) = D'f (a(t)) (z — a).

By Taylor’s Theorem, applied to the function g(¢) on the interval [0,1], we can choose

s € [0,1] such that g(1) = > £g9(0) + L;g(™(s), that is
(=0

m—1

fl@)= % zDf(a)(x —a) + ;D"f(a(s))(z —a).

£=0

Thus we can choose ¢ = a(s) € [a, x].



6.9 Definition: For f: U C R" — R, where U is open in R" with a € U, we define the
m'™ Taylor polynomial of f at a to be the polynomial

T (a)(z) = é 1 D! (a)(x — a)

provided that all the m'™ order partial derivatives exist at a. When f is C? in U (so that
the mixed partial derivatives commute) we have

T*f(a)(z) = f(a) + Df (a)(z — a) + 5 (z — a)" Hf (a) (z — a)

where Hf(a) € M, xn(R) is the symmetric matrix with entries Hf (a)r, = %(a). The
matrix Hf(a) is called the Hessian matrix of f at a.

6.10 Definition: Let A € M,,(R) be a symmetric matrix. We say that

(1) A is positive-definite when u” Au > 0 for all 0 # u € R",
(2) A is negative-definite when u? Au < 0 for all 0 # u € R™, and
(3) A is indefinite when there exist 0 # u,v € R” with u7 Au > 0 and v Av < 0.

6.11 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let A€ M,,(R)
be symmetric. Then

(1) A is positive-definite if and only if all of the eigenvalues of A are positive,
(2) A is negative-definite if and only if all of the eigenvalues of A are negative, and
(3) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that A is positive definite. Let A be an eigenvalue of A and let u be
a unit eigenvector for . Then A = Mu|?> = ANu-u) = Au-u = Au-u = ul Au > 0.
Conversely, suppose that all of the eigenvalues of A are positive. Since A is symmetric,
we can orthogonally diagonalize A. Choose a matrix P € M, (R) with PT = P so that
PTAP = D = diag(\1,---,\,). Given 0 # u € R”, let v = PTu. Note that v # 0 since
PT is invertible. Thus uTAu = T PDPTu = vTDv = Y \v;? > 0 since every \; > 0 and
i=1
some v; # 0. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.
6.12 Theorem: (Characterization of Positive-Definiteness by Determinant) Let A€ M, (R)

be symmetric. For each k with 1 < k < n, let A®) denote the upper-left k x k sub matrix
of A. Then

(1) A is positive-definite if and only if det(A®)) > 0 for all k with 1 < k < n, and
(2) A is negative-definite if and only if (—1)* det(A*) > 0 for all k with 1 < k < n.

Proof: Part (2) follows easily from Part (1) by noting that A is negative-definite if and only if
— A is positive-definite. We shall prove one direction of Part (1). Suppose that A is positive-

definite. Let 1 < k < n. Since uTAu > 0 for all 0 # u € R", we have (uT 0) A (g) =0,

or equivalently u” A%y > 0, for all 0 # u € R*. This shows that A®*) is positive definite.
By the previous theorem, all of the eigenvalues of A®*) are positive. Since det(A®)) is equal
to the product of its eigenvalues, we see that det(A®*)) > 0.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof.
It is often proven in a linear algebra course.
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6.13 Exercise: Let A= |—1 2 1 |. Determine whether A is positive-definite.
2 1 5

6.14 Definition: Let f: A CR” — R and let a € A. We say that f has a local maximum
value at a when there exists r > 0 such that f(a) > f(x) for all x € B(a,r). We say that
f has a local minimum value at a when there exists r > 0 such that f(a) < z for all
x € By(a,r).

6.15 Exercise: Show that when f: U C R®™ — R where U is open in R" with a € U, if f
has a local maximum or minimum value at a then either Df(a) = 0 or Df(a) does not exist

(that is one of the partial derivatives ;—;;(a) does not exist).

6.16 Definition: Let f : U C R™ — R where U is open in R™. For a € U, we say that
a is a critical point of f when either Df(a) = 0 or Df(a) does not exist. When a € U is
a critical point of f but f does not have a local maximum or minimum value at a, we say
that a is a saddle point of f.

6.17 Theorem: (The Second Derivative Test) Let f : U C R™ — R with U open in R"
and let a € U. Suppose that f is C? in U with Df(a) = 0. Then

(1) if H f(a) is positive definite then f has a local minimum value at a,
(2) if H f(a) is negative definite then f has a local maximum value at a, and
(3) if H f(a) is indefinite then f has a saddle point at a.

Proof: Suppose that Hf(a) is positive-definite. Then det (Hf(a)(k) >0forl <k <n.
Since each determinant function det(A®*)) is continuous as a function in the entries of the
matrix A, the set V = {z € U | Hf(z)®) >0 for k =1,2,-- -,n} is open. Choose r > 0 so
that B(a,r) C V. Then we have uT Hf (¢)u > 0 for all 0 # v € R™ and all ¢ € B(a,r). Let
x € B(a,r) with x # a. By Taylor’s Theorem, we have

f(@) = f(a) = Df(a)(z — a) = (z — a) " Hf(c) (x — a)
for some ¢ € [a, z]. Since Df(a) = 0 and Hf(c) is positive-definite, we have f(x)— f(a) > 0.
Thus f has a local minimum value at a. This proves Part (1) and Part (2) is similar.
Let us prove Part (3). Suppose there exists 0 # u € R” such that u”Hf(a)u > 0. Let
r > 0 with B(a,r) C U and scale the vector u if necessary so that [a,u] C B(a,r). Let
a(t) = a+tu and let g(t) = f(a(t)) for 0 < ¢ < 1. As in the proof of Taylor’s Theorem, we
have

g'(t) = Zj: gfi (a(t)) u; = Df ((t)) u , and
g"(t) = ,i_l afafmj (a(t)) wiu; = u" Hf (a(t)) u.

Since g(0) = f(a), ¢’(0) = Df(a)u = 0 and ¢"(0) = u Hf (a)u > 0, it follows from single-
variable calculus that we can choose ¢y with 0 < 5 < 1 so that g(tg) > g(0). When z = a(to)
we have z € B(a,r) and f(z) = f(a(to)) = g(to) > g(0) = f(a), and so f does not have a
local maximum value at a. Similarly, if there exists 0 # v € R™ such that vT Hf (a)v < 0
then f does not have a local minimum value at a. Thus when Hf(a) is indefinite, f has a
saddle point at a.

6.18 Exercise: Find and classify the critical points of the following functions f : R? — R.
(a) fz,y) =23 +2zy+y> (D) fz,y) = 2®+32%y—6y>  (c) f(,y) = aye ™ 2



