
Chapter 6. Higher Order Derivatives

6.1 Theorem: (Iterated Limits) Let I and J be open intervals in R with a ∈ I and b ∈ J ,
let U = (I×J)\{(a, b)}, and let f : U → R. Suppose that lim

y→b
f(x, y) exists for every x ∈ I

and that lim
(x,y)→(a,b)

f(x, y) = u ∈ R. Then lim
x→a

lim
t→b

f(x, y) = u.

Proof: Define g : I → R by g(x) = lim
y→b

f(x, y). Let ε > 0. Since lim
(x,y)→(a,b)

f(x, y) = u

we can choose δ > 0 such that for all (x, y) ∈ U with 0 <
∣∣(x, y) − (a, b)

∣∣ ≤ 2δ we have∣∣f(x, y)− u
∣∣ ≤ ε. Let x ∈ I with 0 < |x− a| ≤ δ. For all y ∈ J with 0 < |y− b| ≤ δ we have

0 <
∣∣(x, y)− (a, b)

∣∣ ≤ |x− a|+ |y − b| ≤ 2δ and so
∣∣f(x, y)− u

∣∣ ≤ ε and hence

|g(x)− u| ≤
∣∣g(x)− f(x, y)

∣∣+
∣∣f(x, y)− u

∣∣ ≤ ∣∣g(x)− f(x, y)
∣∣+ ε.

Take the limit as y → b on both sides to get |g(x)− u| ≤ ε. Thus lim
x→a

g(x) = u, as required.

6.2 Theorem: (Mixed Partials Commute) Let f : U ⊆ Rn → R where U is open in Rn

with a ∈ U , and let k, ` ∈ {1, · · · , n}. Suppose ∂2f
∂xk∂x`

(x) exists in U and is continuous at a,
∂f
∂xk

(x) exists and is continuous in U , and ∂2f
∂x`∂xk

(a) exists. Then ∂2f
∂x`∂xk

(a) = ∂2f
∂xk∂x`

(a).

Proof: When k = ` there is nothing to prove, so suppose that k 6= `. Choose r > 0 so
that B(a, 2r) ⊆ U . For |x| < r and |y| < r note that the points a, a + xek, a + ye` and
a+ xek + ye` all lie in B(a, 2r). For |X| < r and |y| < r, define

g(x, y) = f(a+ xek + ye`)− f(a+ xek)− f(a+ ye`) + f(a).

By the Mean Value Theorem, applied to the function f(a + xek + ye`) − f(a + ye`) as a
function of y, we can choose t between 0 and y such that

y
(

∂f
∂x`

(a+ xek + te`)− ∂f
∂x`

(a+ te`)
)

= g(x, y).

By the Mean Value Theorem, applied to the function ∂f
∂x`

(a+ xek + te`) as a function of x,
we can choose s between 0 and x such that

x ∂2f
∂xk∂x`

(a+ sek + te`) = ∂f
∂x`

(a+ xek + te`)− ∂f
∂x`

(a+ te`).

Also by the Mean Value Theorem, applied to the function f(a+ xek + ye`)− f(a+ xek) as
a function of x, we can choose r between 0 and x such that

x
(

∂f
∂xk

(a+ rek + ye`)− ∂f
∂xk

(a+ re`)
)

= g(x, y).

Then for |x| < r and 0 < |y| < r we have

∂f
∂xk

(a+ rek + ye`)− ∂f
∂xk

(a+ rek)

y
=

∂2f

∂xk∂x`
(a+ sek + te`).

Since ∂2f
∂xk∂x`

is continuous, the limit on the right as (x, y) → (0, 0) is equal to ∂2f
∂xk∂x`

(a),

and since ∂f
∂xk

is continuous, the limit as y → 0 of the limit as x→ 0 on the left is equal to
∂2f

∂x`∂xk
(a), so the desired result follows from the above lemma.

6.3 Corollary: If U ⊆ Rn is open and f : U ⊆ Rn → R is C2 in U then we have
∂2f

∂x`∂xk
(x) = ∂2f

∂xk∂x`
(x) for all x ∈ U and for all k, `.

6.4 Exercise: Verify that for f(x, y) = x2

x2+y2 we have lim
x→0

lim
y→0

f(x, y) 6= lim
y→0

lim
x→0

f(x, y).
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6.5 Exercise: Let f(x, y) =


xy(x2 − y2)

x2 + y2
, if (x, y) 6= (0, 0)

0 , if (x, y) = (0, 0)

 . Verify that the mixed

partial derivatives ∂2f
∂x∂y (0, 0) and ∂2f

∂y∂x (0, 0) both exist, but they are not equal.

6.6 Definition: for f : U ⊆ Rn → R, where U is open in Rn with a ∈ U , we define
D0f(a) = f(a) and for ` ∈ Z+ we define the `th total differential of f at a to be the map
D`f(a) : Rn → R given by

D`f(a)(u) =
n∑

k1=1

n∑
k2=1

· · ·
n∑

k`=1

∂`f
∂xk1

∂xk2
···∂xk`

(a)uk1uk2 · · ·uk`

provided that all of the `th order partial derivatives exist at a.

6.7 Example: When f : U ⊆ R2 → R is C2 (so the mixed partial derivatives commute) we
have

D0f(u, v) = f(a, b)

D1f(a, b)(u, v) = ∂f
∂x (a, b)u+ ∂f

∂y (a, b) v

D2f(a, b)(u, v) = ∂f
∂x2 (a, b)u2 + 2 ∂f

∂x∂y (a, b)uv + ∂f
∂y2 (a, b) v2.

6.8 Theorem: (Taylor’s Theorem) Let f : U ⊆ Rn → R where U is open in Rn. Suppose
that the mth oder partial derivatives of f all exist in U . Then for all a, x ∈ U such that
[a, x] ⊆ U there exists c ∈ [a, x] such that

f(x) =
m−1∑̀
=0

1
`! D

`f(a)(x− a) + 1
m! D

mf(c)(x− a).

Proof: Let a, x ∈ U with [a, x] ⊆ U . Let α(t) = a + t(x − a) for all t ∈ R and note that
α(t) ∈ U for 0 ≤ t ≤ 1. Since U is open and α is continuous, we can choose δ > 0 so that
α(t) ∈ U for all t ∈ I = (−δ, 1 + δ). Define g : I → R by g(t) = f(α(t)). By the Chain Rule,
we have

g′(t) = Df
(
α(t)

)
α′(t) = Df

(
α(t)

)
(x− a) =

n∑
i=1

∂f
∂xi

(
α(t)

)
(xi − ai) = D1f

(
α(t)

)
(x− a).

By the Chain Rule again, we have

g′′(t) =
n∑

i=1

( n∑
j=1

∂2f
∂xj∂xi

(
α(t)

)
(xj − aj)

)
(xi − ai) = D2f

(
α(t)

)
(x− a).

An induction argument shows that

g(`)(t) = D`f
(
α(t)

)
(x− a).

By Taylor’s Theorem, applied to the function g(t) on the interval [0, 1], we can choose

s ∈ [0, 1] such that g(1) =
m−1∑̀
=0

1
`!g

(`)(0) + 1
m!g

(m)(s), that is

f(x) =
m−1∑̀
=0

1
`!D

`f(a)(x− a) + 1
m!D

mf
(
α(s)

)
(x− a).

Thus we can choose c = α(s) ∈ [a, x].
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6.9 Definition: For f : U ⊆ Rn → R, where U is open in Rn with a ∈ U , we define the
mth Taylor polynomial of f at a to be the polynomial

Tmf(a)(x) =
m∑̀
=0

1
`! D

`f(a)(x− a)

provided that all the mth order partial derivatives exist at a. When f is C2 in U (so that
the mixed partial derivatives commute) we have

T 2f(a)(x) = f(a) +Df(a)(x− a) + 1
2 (x− a)THf(a) (x− a)

where Hf(a) ∈ Mn×n(R) is the symmetric matrix with entries Hf(a)k,` = ∂2f
∂xk∂x`

(a). The

matrix Hf(a) is called the Hessian matrix of f at a.

6.10 Definition: Let A ∈Mn(R) be a symmetric matrix. We say that

(1) A is positive-definite when uTAu > 0 for all 0 6= u ∈ Rn,
(2) A is negative-definite when uTAu < 0 for all 0 6= u ∈ Rn, and
(3) A is indefinite when there exist 0 6= u, v ∈ Rn with uTAu > 0 and vTAv < 0.

6.11 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let A∈Mn(R)
be symmetric. Then

(1) A is positive-definite if and only if all of the eigenvalues of A are positive,
(2) A is negative-definite if and only if all of the eigenvalues of A are negative, and
(3) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that A is positive definite. Let λ be an eigenvalue of A and let u be
a unit eigenvector for λ. Then λ = λ|u|2 = λ(u .u) = λu .u = Au .u = uTAu > 0.
Conversely, suppose that all of the eigenvalues of A are positive. Since A is symmetric,
we can orthogonally diagonalize A. Choose a matrix P ∈ Mn(R) with PT = P so that
PTAP = D = diag(λ1, · · · , λn). Given 0 6= u ∈ Rn, let v = PTu. Note that v 6= 0 since

PT is invertible. Thus uTAu = uTPDPTu = vTDv =
n∑

i=1

λivi
2 > 0 since every λi > 0 and

some vi 6= 0. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.

6.12 Theorem: (Characterization of Positive-Definiteness by Determinant) Let A∈Mn(R)
be symmetric. For each k with 1 ≤ k ≤ n, let A(k) denote the upper-left k × k sub matrix
of A. Then

(1) A is positive-definite if and only if det(A(k)) > 0 for all k with 1 ≤ k ≤ n, and
(2) A is negative-definite if and only if (−1)k det(A(k) > 0 for all k with 1 ≤ k ≤ n.

Proof: Part (2) follows easily from Part (1) by noting that A is negative-definite if and only if
−A is positive-definite. We shall prove one direction of Part (1). Suppose that A is positive-

definite. Let 1 ≤ k ≤ n. Since uTAu > 0 for all 0 6= u ∈ Rn, we have
(
uT 0

)
A

(
u
0

)
= 0,

or equivalently uTA(k)u > 0, for all 0 6= u ∈ Rk. This shows that A(k) is positive definite.
By the previous theorem, all of the eigenvalues of A(k) are positive. Since det(A(k)) is equal
to the product of its eigenvalues, we see that det(A(k)) > 0.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof.
It is often proven in a linear algebra course.
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6.13 Exercise: Let A =

 3 −1 2
−1 2 1

2 1 5

. Determine whether A is positive-definite.

6.14 Definition: Let f : A ⊆ Rn → R and let a ∈ A. We say that f has a local maximum
value at a when there exists r > 0 such that f(a) ≥ f(x) for all x ∈ BA(a, r). We say that
f has a local minimum value at a when there exists r > 0 such that f(a) ≤ x for all
x ∈ BA(a, r).

6.15 Exercise: Show that when f : U ⊆ Rn → R where U is open in Rn with a ∈ U , if f
has a local maximum or minimum value at a then either Df(a) = 0 or Df(a) does not exist
(that is one of the partial derivatives ∂f

∂xk
(a) does not exist).

6.16 Definition: Let f : U ⊆ Rn → R where U is open in Rn. For a ∈ U , we say that
a is a critical point of f when either Df(a) = 0 or Df(a) does not exist. When a ∈ U is
a critical point of f but f does not have a local maximum or minimum value at a, we say
that a is a saddle point of f .

6.17 Theorem: (The Second Derivative Test) Let f : U ⊆ Rn → R with U open in Rn

and let a ∈ U . Suppose that f is C2 in U with Df(a) = 0. Then

(1) if Hf(a) is positive definite then f has a local minimum value at a,
(2) if Hf(a) is negative definite then f has a local maximum value at a, and
(3) if Hf(a) is indefinite then f has a saddle point at a.

Proof: Suppose that Hf(a) is positive-definite. Then det
(
Hf(a)(k

)
> 0 for 1 ≤ k ≤ n.

Since each determinant function det(A(k)) is continuous as a function in the entries of the
matrix A, the set V =

{
x ∈ U

∣∣Hf(x)(k) > 0 for k = 1, 2, · · · , n
}

is open. Choose r > 0 so
that B(a, r) ⊆ V . Then we have uTHf(c)u > 0 for all 0 6= u ∈ Rn and all c ∈ B(a, r). Let
x ∈ B(a, r) with x 6= a. By Taylor’s Theorem, we have

f(x)− f(a)−Df(a)(x− a) = (x− a)THf(c) (x− a)

for some c ∈ [a, x]. Since Df(a) = 0 and Hf(c) is positive-definite, we have f(x)− f(a) > 0.
Thus f has a local minimum value at a. This proves Part (1) and Part (2) is similar.

Let us prove Part (3). Suppose there exists 0 6= u ∈ Rn such that uTHf(a)u > 0. Let
r > 0 with B(a, r) ⊆ U and scale the vector u if necessary so that [a, u] ⊆ B(a, r). Let
α(t) = a+ tu and let g(t) = f

(
α(t)

)
for 0 ≤ t ≤ 1. As in the proof of Taylor’s Theorem, we

have

g′(t) =
n∑

i=1

∂f
∂xi

(
α(t)

)
ui = Df

(
α(t)

)
u , and

g′′(t) =
n∑

i,j=1

∂2f
∂xi∂xj

(
α(t)

)
uiuj = uTHf

(
α(t)

)
u .

Since g(0) = f(a), g′(0) = Df(a)u = 0 and g′′(0) = uTHf(a)u > 0, it follows from single-
variable calculus that we can choose t0 with 0 < t0 < 1 so that g(t0) > g(0). When x = α(t0)
we have x ∈ B(a, r) and f(x) = f

(
α(t0)

)
= g(t0) > g(0) = f(a), and so f does not have a

local maximum value at a. Similarly, if there exists 0 6= v ∈ Rn such that vTHf(a) v < 0
then f does not have a local minimum value at a. Thus when Hf(a) is indefinite, f has a
saddle point at a.

6.18 Exercise: Find and classify the critical points of the following functions f : R2 → R.

(a) f(x, y) = x3 +2xy+y2 (b) f(x, y) = x3 +3x2y−6y2 (c) f(x, y) = x2y e−x
2−2y2
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