
Chapter 7. Introduction to Integrals

In this chapter we give an informal introduction to integration of functions of several
variables. For functions of a single variable, the definite Riemann integral is defined for
functions whose domain is a closed bounded interval. For functions of several variables,
we are interested in functions with more varied domains. We do not allow our functions
to have completely arbitrary domains, but we single out a restricted class of allowable
domains, called Jordan regions, which have well-defined volumes. It is not immediately
obvious that we need to place a restriction on the allowable domains, but it has been proven
that there exist sets in Rn with rather unexpected properties which do not agree with our
intuition about how a well-defined notion of volume ought to behave. Indeed, it was proven
by Banach and Tarski that, in Euclidean space R3, there exist five sets A1, · · · , A5 and five
isometries F1, · · · , F5, such that the sets Ak are disjoint and their union is a closed unit
ball, but the congruent sets Fk(Ak) are also disjoint, and their union is a union of two
disjoint closed unit balls (so the volume of a disjoint union of sets need not be equal to
the sum of the volumes of those sets).

7.1 Remark: We shall define Jordan regions and their volumes in the next chapter.
For now, we state a theorem which provides some examples of Jordan regions.

7.2 Theorem: In R, every closed bounded interval

[a, b] =
{
x∈R

∣∣ a≤x≤b}
is a Jordan region. In R2, when g, h : [a, b] → R are continuous with g ≤ h (that is with
g(x) ≤ h(x) for all x ∈ [a, b]), the set

A =
{

(x, y)∈R2
∣∣ a≤x≤b , g(x)≤y≤h(x)

}
is a Jordan region, and the set B obtained from A by interchanging x and y, that is

B =
{

(x, y)∈R2
∣∣ a≤ y≤ b , g(y)≤x≤ h(y)

}
is a Jordan region. In R3, when A is as above, and k, ` : A→ R are continuous with k ≤ `,
the set

C =
{

(x, y, z)∈R3
∣∣ (x, y)∈A , k(x, y)≤z≤ `(x, y)

}
=
{

(x, y, z)∈R3
∣∣ a≤x≤b , g(x)≤ y≤ h(x) , k(x, y)≤ z≤ `(x, y)

}
is a Jordan region, and the various sets obtained from C by permuting the variables x, y
and z are Jordan regions. When C is a closed Jordan region in Rn−1 and r, s : C → R are
continuous with r ≤ s, the set

D =
{

(x, y)∈Rn
∣∣x ∈ C , r(x) ≤ y ≤ s(x)

}
is a Jordan region, and the sets obtained by permuting the variables x1, · · · , xn−1, y are
Jordan regions.

Also, the union of finitely many Jordan regions in Rn is a Jordan region on Rn.

7.3 Remark: In the next chapter, we shall define what it means for a function f : A→ R
to be (Riemann) integrable, where A ⊆ Rn is a Jordan region, and when f is integrable,
we shall define its integral

∫
A
f . For now, we state some theorems which allow us to

calculate the integrals of continuous functions on various Jordan regions, and to calculate
the volumes of various Jordan regions.
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7.4 Theorem: (Integrability of Continuous Functions) When A ⊆ Rn is a closed Jordan
region, every continuous function f : A→ R is integrable.

7.5 Theorem: (Iterated Integration) When [a, b] =
{
x∈R

∣∣ a≤x≤ b} and f : [a, b] → R
is continuous, the integral of f on [a, b] is the usual definite integral of f on [a, b]. that is∫

[a,b]

f =

∫ b

x=a

f(x) dx.

When A =
{

(x, y)∈R2
∣∣ a≤x≤ b , g(x)≤y≤h(x)

}
, where g, h : [a, b] → R are continuous

with g ≤ h, and when f : A→ R is continuous, the integral of f on A is given by∫
A

f =

∫ b

x=a

(∫ h(x)

y=g(x)

f(x, y) dy

)
dx.

Similarly, when B =
{

(x, y)∈ R2
∣∣ a≤ y≤ b , g(y)≤ x≤h(y)

}
, where g, h : [a, b] → R are

continuous, and when f : B → R is continuous, we have∫
B

f =

∫ b

y=a

(∫ h(y)

x=g(y)

f(x, y) dx

)
dy.

When C =
{

(x, y, z) ∈ R3
∣∣ a ≤ x ≤ b , g(x) ≤ y ≤ h(x) , k(x, y) ≤ z ≤ `(x, y)

}
where

g, h : [a, b] → R and k, ` : A → R are continuous with g ≤ h and k ≤ `, and when
f : C → R is continuous, the integral of f on C is given by∫

C

f =

∫ b

x=a

(∫ h(x)

y=g(x)

(∫ `(x,y)

z=k(x,y)

f(x, y, z) dz

)
dy

)
dx,

and similar formulas hold in the case that the variables x, y and z are permuted.

When D =
{

(x, y) ∈ Rn
∣∣x ∈ C , r(x) ≤ y ≤ s(x)

}
where C ⊆ Rn−1 is a closed Jordan

region in Rn−1 and r, s : C → R are continuous with r ≤ s, and when f : D → R is
continuous, we have ∫

D

f =

∫
C

(∫ s(x)

y=r(x)

f(x, y) dy

)
dx,

and similar formulas hold in the case that the variables x1, x2, · · · , xn−1, y are permuted.

7.6 Theorem: (Decomposition) Let A =
⋃m
k=1Ak, where A1, A2, · · · , Am ⊆ Rn are closed

Jordan regions in Rn with disjoint interiors, and let f : A→ R be continuous. Then∫
A

f =
m∑
k=1

∫
Ak

f .

7.7 Theorem: (Integration and Volume) Let A ⊆ Rn be a Jordan region. Then the
(n-dimensional) volume of A is given by

Vol(A) =

∫
A

1 .

7.8 Definition: When A is a Jordan region in R, the (1-dimensional) volume of A is also
called the length of A, and when A is a Jordan region in R2, the (2-dimensional) volume
of A is also called the area of A.
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7.9 Note: When D = [a, b] ⊆ R and f : D → R is continuous, the integral
∫
D
f measures

the signed area of the region in R2 between the graph of f and the x-axis. In the case
that D = [a, b] represents the position of a long thin solid object (like a string or a wire)
and the function f represents its linear density (mass per unit length), or its linear
charge density (charge per unit length), the integral

∫
D
f measures the total mass, or

the total charge of the object.

When D ⊆ R2 is a Jordan region and f : D → R, the integral
∫
D
f measures the signed

volume of the region between the graph of f and the xy-plane. In the case that D ⊆ R2

represents the shape of a flat object and the function f : D → R represents its planar
density (mass per unit area), or its planar charge density (charge per unit area), the
integral

∫
D
f measures the total mass, or the total charge, of the object.

When D ⊆ R3 is a Jordan region representing the shape of a solid object, and f : D → R
represents its density (mass per unit volume), or its charge density (charge per unit
volume), the integral

∫
D
f measures the total mass, or the total charge, of the object.

7.10 Notation: Integrals can be denoted in a number of different ways. For example,
when D = [a, b] ⊆ R we can write∫

D

f =

∫
D

f dL =

∫
D

f(x) dL =

∫
D

f(x) dx =

∫ b

x=a

f(x) dx,

(where the letter L stands for length), when D ⊆ R2 we can write∫
D

f =

∫
D

f dA =

∫
D

f(x, y) dA =

∫
D

f(x, y) dx dy

(where A stands for area), or we can use two integral signs and write∫
D

f =

∫∫
D

f =

∫∫
D

f dA =

∫∫
D

f(x, y) dA =

∫∫
D

f(x, y) dx dy,

when D ⊆ R3 we can write∫
D

f =

∫
D

f dV =

∫
D

f(x, y, z) dV =

∫
D

f(x, y, z) dx dy dz

(where V stands for volume), or we can use three integral signs and write∫
D

f =

∫∫∫
D

f =

∫∫∫
D

f dV =

∫∫∫
D

f(x, y, z) dV =

∫∫∫
D

f(x, y, z) dx dy dz,

and when D ⊆ Rn we can write∫
D

f =

∫
D

f dV =

∫
D

f(x) dV =

∫
D

f(x1, x2, · · · , xn) dx1 dx2 · · · dxn

or we can use multiple integral signs.

7.11 Exercise: Let T be the triangle in R2 with vertices at (0,−1), (2, 1) and (2, 3). Find∫
T

2xy dA.

7.12 Exercise: Find the volume of the region in R3 which lies above the paraboloid
z = x2 + y2 and below the plane z = 2x.

7.13 Exercise: Find the mass of the tetrahedron with vertices at (0, 0, 0), (2, 0, 0), (2, 2, 0)
and (2, 2, 2) given that the density is given by ρ(x, y, z) = 2xy(3− z).
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7.14 Definition: Let C,D ⊆ Rn be closed Jordan regions. An orientation preserving
change of coordinates map from C to D is a continuous map g : C → D such that
the map g : Co → Do is invertible and C1 with det

(
Dg(x)

)
> 0 for all x ∈ Co, and an

orientation reversing change of coordinates map from C to D is a continuous map
g : C → D such that g : Co → Do is invertible and C1 with det

(
Dg(x)

)
< 0 for all x ∈ Co.

7.15 Example: Three important orientation preserving change of coordinates maps are
the polar coordinates map in R2, which is given by

(x, y) = g(r, θ) =
(
r cos θ , r sin θ

)
with detDg(r, θ) = r ,

the cylindrical coordinates map in R3, which is given by

(x, y, z) = g(r, θ, z) =
(
r cos θ , r sin θ , z

)
with detDg(r, θ, z) = r,

and the spherical coordinates map in R3, which is given by

(x, y, z) = g(r, φ, θ) =
(
r sinφ cos θ , r sinφ sin θ , r cosφ

)
with detDg(r, φ, θ) = r2 sinφ.

7.16 Theorem: (Change of Variables) Let C,D ⊆ Rn be closed Jordan regions and let
g : C → D be a change of coordinates map from C to D. Then∫

D

f =

∫
C

(f ◦ g)
∣∣detDg

∣∣.
Proof: We may state and prove a slightly different version of this theorem in Chapter 9.

7.17 Example: When D = [a, b] ⊆ R, and g : C ⊆ R → D ⊆ R is a change of variables
map from C to D given by x = g(u) with inverse u = h(x), and f : D ⊆ R → R is
continuous, we have∫ b

x=a

f(x) dx =

∫
D

f(x)dx =

∫
C

f
(
g(u)

)∣∣detDg(u)
∣∣ du =

∫ h(b)

u=h(a)

f
(
g(u)

)
g′(u) du.

When f : D ⊆ R2 → R is continuous and g : C ⊆ R2 → D ⊆ R2 is a change of variables
map from C to D given by (x, y) = g(u, v), we have∫∫

D

f(x, y) dx dx =

∫∫
C

f
(
g(u, v)

)∣∣detDg(u, v)
∣∣ du dv.

When f : D ⊆ R3 → R is continuous and g : C ⊆ R3 → D ⊆ R3 is a change of variables
map from C to D given by (x, y, z) = g(u, v, w), we have∫∫∫

D

f(x, y, z) dx dy dz =

∫∫∫
C

f
(
g(u, v, w)

)∣∣detDg(u, v, w)
∣∣ du dv dw.

7.18 Exercise: Find the area inside the cardioid r = 2 + 2 cos θ.

7.19 Exercise: Find the volume of the region which lies inside the sphere x2 +y2 +z2 = 4
and inside the cylinder x2 − 2x+ y2 = 0.

7.20 Exercise: Find the mass of the ball x2 + y2 + z2 ≤ 4 given that the density is given
by ρ(x, y, z) = 1− 1

2

√
x2 + y2 + z2.

7.21 Exercise: Find the volume of the region under the graph of z = e−(x
2+y2).
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7.22 Definition: Let n = 2 or 3, let α : [a, b] ⊆ R → Rn be continuous on [a, b] and C1
in (a, b), let C be the curve in Rn which is given parametrically by (x, y) = α(t) or by
(x, y, z) = α(t) for a ≤ t ≤ b, and let f : C ⊆ Rn → R be continuous on C = Range(α).
Then we write dL =

∣∣α′(t)∣∣ dt and we define the (curve) integral of f on C to be∫
α

f dL =

∫
C

f dL =

∫ b

t=a

f
(
α(t)

)∣∣α′(t)∣∣ dt.
When C is a union C =

m⋃
k=1

Ck of curves Ck as above, we define

∫
C

fdL =
m∑
k=1

∫
Ck

f dL.

Let D be a closed Jordan region in R2, let σ : D ⊆ R2 → R3 be continuous in D and C1
in Do, let S be the surface in R3 which is given parametrically by (x, y, z) = σ(s, t), and
let f : S ⊆ R3 → R be continuous on S. Then we write dA =

∣∣σs × σt∣∣ ds dt and we define
the (surface) integral of f on S to be∫∫

σ

f dA =

∫∫
S

f dA =

∫∫
D

f
(
σ(s, t)

)∣∣σs(s, t)× σt(s, t)∣∣ ds dt.
where σs(s, t) =

(
∂x
∂s (s, t), ∂y∂s (s, t), ∂z∂s (s, t)

)T
and σt(s, t) =

(
∂x
∂s (s, t), ∂y∂s (s, t), ∂z∂s (s, t)

)T
.

When S is a union S =
m⋃
k=1

Sk of surfaces Sk as above, we define

∫
S

fdA =
m∑
k=1

∫
Sk

f dA.

7.23 Note: When C is a curve in Rn with n = 2 or 3, which is given by (x, y) = α(t) or
by (x, y, z) = α(t) for a ≤ t ≤ b, the integral of the constant function 1 on C measures the
length (or arclength) of the curve C, and in the case that C represents the shape of a
physical object and the function f : C ⊆ R2 → R represents its linear density (or linear
charge density), the integral of f on C measures the total mass (or charge) of the object.

When S is a surface in R3 which is given by (x, y, z) = σ(s, t) for (s, t) ∈ D ⊆ R2,
the integral of the constant function 1 on S measures the area (or surface-area) of the
surface S, and in the case that S represents the shape of a physical object and the function
f : S → R represents its surface density (or surface charge density), the integral of f
on S measures the total mass (or charge) of the surface.

7.24 Exercise: Find the arclength of the helix α(t) =
(
t, cos t, sin t) for 0 ≤ t ≤ 2π.

7.25 Exercise: Find the surface area of the torus given by

(x, y, z) = σ(θ, φ) =
(

(2 + cosφ) cos θ , (2 + cosφ) sin θ , sinφ
)

for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ 2π.

7.26 Exercise: Find the mass of the hollow sphere x2 + y2 + z2 = 1 when the surface
density (mass per unit area) is given by ρ(x, y, z) = 3− z.

7.27 Exercise: Find the mass of the curve of intersection of the parabolic sheet z = x2

with the paraboloid z = 2 − x2 − 2y2, when the linear density (mass per unit length) is
given by ρ(x, y, z) = |xy|.
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