
Chapter 8. Jordan Content and Integration

8.1 Definition: A (closed, n-dimensional) rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn] =
{
x ∈ Rn

∣∣ aj ≤ xj ≤ bj for each index j
}

where each aj , bj ∈ R with aj < bj . The size of the above rectangle R is

|R| =
n∏
j=1

(bj − aj).

A partition X of the above rectangle R consists of a partition Xj = {xj,0, xj,1, · · · , xj,`j}
with

aj = xj,0 < xj,1 < · · · < xj,`k = bj

for each index j. The above partition X divides the rectangle R into sub-rectangles Rk,
where k = (k1, k2, · · · , kn) ∈ Rn with 1 ≤ kj ≤ `j for each index j, and where

Rk = [x1,k1−1, x1,k1 ]× [x2,k2−1, x2,k2 ]× · · · × [xn,kn−1, xn,kn ].

If Y is another partition, given by Yj = {yj,0, · · · , yj,mj}, then we say that Y is finer than
X (or that X is coarser than Y ) when Xj ⊆ Yj for each index j.

8.2 Example: Note that a 1-dimensional rectangle in R1 is a line segment and its size
is its length, a 2-dimensional rectangle in R2 is a rectangle and its size is its area, and a
3-dimensional rectangle in R3 is a rectangular box and its size is its volume.

8.3 Note: When R is a rectangle in Rn and X and Y are any two partitions of R, the
partition Z given by Zj = Xj ∪ Yj is finer that both X and Y .

8.4 Note: When R is a rectangle in Rn andX is a partition given byXj = {xj,0, · · · , xj,`j},
then letting K = K(X) =

{
k ∈ Zn

∣∣ 1 ≤ kj ≤ `j for all j
}

, we have∑
k∈K
|Rk| =

∑
1≤k1≤`1

∑
1≤k2≤`2

· · ·
∑

1≤kn≤`n

n∏
j=1

(xj,kj − xj,kj−1)

=
n∏
j=1

∑
1≤kj≤`j

(xj,kj − xj,kj−1) =
n∏
j=1

(xj,`j − xj,0)

=
n∏
j=1

(bj − aj) = |R|.

1



8.5 Definition: Let A ⊆ Rn be bounded. For a partition X of a rectangle R with A ⊆ R,
we define the upper (or outer) volume estimate of A with respect to X, and the
lower (or inner) volume estimate of A with respect to X, to be

U(A,X) =
∑

Rk∩A6=∅
|Rk| =

∑
k∈I
|Rk| and L(A,X) =

∑
Rk⊆Ao

|Rk| =
∑
k∈J
|Rk|

where I = I(A,X) =
{
k ∈ K |Rk ∩ A 6= ∅

}
and J = J(A,X) =

{
k ∈ K

∣∣Rk ⊆ Ao
}

with

K = K(X) =
{
k ∈ Zn

∣∣ 1 ≤ kj ≤ `j for each j
}

.

8.6 Theorem: (Basic Properties of Upper and Lower Volume Estimates) Let A ⊆ Rn be
bounded, let R be a rectangle in Rn with A ⊆ R, and let X and Y be partitions of R.

(1) If Y is finer than X then 0 ≤ L(A,X) ≤ L(A, Y ) ≤ U(A, Y ) ≤ U(A,X) ≤ |R|.
(2) 0 ≤ L(A,X) ≤ U(A, Y ) ≤ |R|.
(3) U(A,X)− L(A,X) = U(∂A,X).

Proof: To prove Part 1, suppose that Y is finer than X. Note that each of the sub-
rectangles Rk for the partition X is itself further partitioned into smaller sub-rectangles
which are sub-rectangles for the partition Y , and denote these smaller sub-rectangles by
Sk,1, · · · , Sk,mk

. Then we have

U(A,X) =
∑
k∈I
|Rk| and U(A, Y ) =

∑
k∈I

∑
j∈Jk
|Sk,j |

where I is the set of k ∈ K(X) such that Rk ∩A 6= ∅ and Jk is the set of j ∈ {1, 2, · · · ,mj}
such that Sk,j ∩A 6= ∅. By Note 8.4, we have

∑mk

j=1 |Sk,j | = |Rk|, and so

U(A, Y ) =
∑
k∈I

∑
j∈Jk
|Sk,j | ≤

∑
k∈I

mj∑
j=1

|Sk,j | =
∑
k∈I
|Rk| = U(A,X).

and also U(A,X) =
∑
k∈I
|Rk| ≤

∑
k∈K(X)

|Rk| = |R|. Thus we have U(A, Y ) ≤ U(A,X) ≤ |R|.

The proof that L(A,X) ≤ L(A, Y ) is similar, and it is clear that 0 ≤ L(A,X) and easy to
see that L(A, Y ) ≤ U(A, Y ).

Note that Part 2 follows from Part 1 because, given any partitions X and Y for R,
we can choose a partition Z which is finer than both X and Y , and then we have

0 ≤ L(A,X) ≤ L(A,Z) ≤ U(A,Z) ≤ U(A, Y ) ≤ |R|.
Finally, to prove Part 3, note that

U(A,X)− L(A,X) =
∑
k∈L
|Rk| and U(∂A,X) =

∑
k∈M
|Rk|

where L is the set of indices k ∈ K(X) such that Rk ∩A 6= ∅ and Rk 6⊆ Ao, and M is the
set of indices k ∈ K(X) such that Rk ∩ ∂A 6= ∅ (since ∂A is closed so that ∂A = ∂A).
We shall show that K = M . When A = ∅ we have K = M = ∅, so suppose A 6= ∅. If
k ∈ L, that is if Rk ∩ A 6= ∅ and Rk 6⊆ Ao then we must have Rk ∩ ∂A 6= ∅ because Rk
is connected (indeed, if we had Rk ∩ ∂A = ∅ then Rk would be separated by the disjoint
nonempty open sets Ao and A

c
: note that we have Ao 6= ∅ because Rk ∩ A 6= ∅, and we

have A
c 6= ∅ because Rk 6⊆ Ao) and hence L ⊆M . If k ∈M , that is if Rk ∩ ∂A 6= ∅ then,

since ∂A ⊆ A we have Rk ∩ A 6= ∅, and since Ao and ∂A are disjoint we have Rk 6⊆ Ao,
and hence k ∈M . Thus K = M , as required.

2



8.7 Definition: Let A ⊆ Rn be bounded. We define the upper (or outer) volume (or
Jordan content), and the lower (or inner) volume (or Jordan content), of A to be

U(A) = inf
{
U(A,X)

∣∣X is a partition of some rectangle R with A ⊆ R
}

L(A) = sup
{
L(A,X)

∣∣X is a partition of some rectangle R with A ⊆ R
}
.

8.8 Theorem: (Basic Properties of Upper and Lower Volumes) Let A ⊆ Rn be bounded.

(1) If R is any rectangle with A ⊆ R then U(A) = inf
{
U(A,X)

∣∣X is a partition of R
}
.

(2) U(A)− L(A) = U(∂A).

Proof: Given a rectangleR withA ⊆ R, let UR(A) = inf
{
U(A,X)

∣∣X is a partition of R
}

.
To prove Part 1, it suffices to show that for any two rectangles R,S in Rn which contain
A, we have UR(A) = US(A). Let R and S be rectangles in Rn which contain A, say
R = [a1, b1]× · · · × [an, bn] and S = [c1, d1]× · · · × [cn, dn].

Suppose first that R ⊆ S with cj < aj and bj < dj . Given any partition Y of S, we
can extend Y to a finer partition Z of S by adding the endpoints of R, that is by letting
Zj = Yj ∪ {aj , bj}, and then we can restrict Z to a partition X of R as follows: if, for a
fixed index j, we have Zj = {z0, · · · , zk, · · · , z`, · · · , zm} with z0 = cj , zk = aj , z` = bj and
zm = dj , then we take Xj = {zk, · · · , z`}. Then we have U(A,X) ≤ U(A,Z) ≤ U(A, Y ).
Since for every partition Y of S there exists a corresponding partition X of R for which
U(A,X) ≤ U(A, Y ), it follows that

inf
{
U(A,X)

∣∣X is a partition of R
}
≤ inf

{
U(A, Y )

∣∣Y is a partition of S
}
,

that is UR(A) ≤ US(A). Now let ε > 0 and suppose that we are given a partition X
of R. Choose sj and tj with cj < sj < aj and bj < tj < bj so that for the rectangle
T = [s1, t1]×· · ·×[sn, tn] we have |T |−|R| ≤ ε. Extend the partition X of R to the partition
Y of S by adding the endpoints of S and T , that is by letting Yj = Xj ∪ {cj , sj , tj , dj}.
Note that the sub-rectangles of S which intersect with A include all of the sub-rectangles
of R which intersect with A together with some of the sub-rectangles which lie in T but not
R, and so we have U(A, Y ) ≤ U(A,X) + |T | − |R| ≤ U(A,X) + ε. Since for each partition
X of R there is a corresponding partition Y of S for which U(A, Y ) ≤ U(A,X) + ε, it
follows that

inf
{
U(A, Y )

∣∣Y is a partition of S
}
≤ inf

{
U(A,X)

∣∣X is a partition of R
}

+ ε,

that is US(A) ≤ UR(A) + ε, and since ε > 0 was arbitrary, it follows that US(A) ≤ UR(A).
Thus we have proven that UR(A) = US(A) in the case that R ⊆ S with cj < aj < bj < dj .

In the general case that R = [a1, b1]× · · · × [an, bn] and S = [c1, d1]× · · · × [cn, dn] are
any rectangles which both contain A, we can choose a rectangle T = [s1, t1]× · · · × [sn, tn]
with sj < min{aj , cj} and tj > max{bj , dj}, and then we can apply the result of the above
paragraph to obtain UR(A) = UT (A) = US(A), as required, proving Part 1.

Let us prove Part 2. Given any partition X of any rectangle R containing A, we
have U(A)− L(A) ≤ U(A,X)− L(A,X) = U(∂A,X), and hence (by taking the infemum
on both sides) U(A) − L(A) ≤ U(∂A). It remains to show that U(A) − L(A) ≥ U(∂A).
Let ε > 0. Choose a rectangle R containing A, and choose a partition X of R such that
L(A)− ε < L(A,X) ≤ L(A). By Part 1, we can choose a partition Y of the same rectangle
R such that U(A) ≤ U(A, Y ) < U(A)+ε. Let Z be a partition of R which is finer than both
X and Y . Then we have L(A)−ε < L(A,X) ≤ L(A,Z) and U(A,Z) ≤ U(A, Y ) < U(A)+ε
and hence U(∂A) ≤ U(∂A,Z) = U(A,Z)− L(A,Z) < U(A)− L(A) + 2ε. Since ε > 0 was
arbitrary, we have U(∂A) ≤ U(A)− L(A), as required.
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8.9 Theorem: For bounded sets A,B ⊆ Rn, we have U(A ∪B) ≤ U(A) + U(B).

Proof: First we note that for any sets A,B ⊆ Rn we have A ∪B = A ∪ B: Indeed, since
A ⊆ A ∪ B and B ⊆ A ∪ B we have A ⊆ A ∪B and B ⊆ A ∪B so that A ∪ B ⊆ A ∪B.
On the other hand, since A ⊆ A and B ⊆ B, we have A ∪B ⊆ A ∪B and so, since A ∪B
is closed, and contains A ∪B, it follows that A ∪B ⊆ A ∪B.

Let A,B ⊆ Rn be bounded. Let R be a rectangle which contains A ∪ B. Let ε > 0.
Choose a partition X of R so that U(A) ≤ U(A,X) + ε

2 and U(B) ≤ U(B,X) ≤ ε
2

(we can do this by Part 1 of Theorems 8.8 and 8.6: let Y be a partition of R such that
U(A) ≤ U(A, Y ) + ε

2 let Z be a partition of R such that U(B) ≤ U(B,Z) + ε
2 , then let

X be a partition finer than both Y and Z). Let K = K(X), let I(A ∪B) = I(A ∪B,X),
I(A) = I(A,X) and I(B) = I(B,X), as in Definition 8.5. Since A ∪B = A ∪ B, for each
index k ∈ K we have

k∈I(A∪B) ⇐⇒ Rk∩A ∪B 6= ∅ ⇐⇒ (Rk∩A)∪(Rk∩B) 6= ∅ ⇐⇒
(
k∈I(A) or k∈I(B)

)
,

U(A∪B,X) =
∑

k∈I(A∪B)

|Rk| ≤
∑

k∈I(A)

|Rk|+
∑

k∈I(B)

|Rk| = U(A,X)+U(B,X) ≤ U(A)+U(B)+ε.

Since U(A∪B,X) ≤ U(A) +U(B) + ε for all partitions X of R, it follows (from Part 1 of
Theorem 8.8) that U(A∪B) ≤ U(A) +U(B) + ε, and since ε > 0 was arbitrary, it follows
that U(A ∪B) ≤ U(A) + U(B), as required.

8.10 Definition: Let A ⊆ Rn be bounded. We say that A has well-defined volume
(or Jordan content), or that A is Jordan measurable, or that A is a Jordan region,
when U(A) = L(A), or equivalently (by Part 2 of Theorem 8.8) when U(∂A) = 0. In this
case, we define the (n-dimensional) volume of A (or the Jordan content) of A to be

Vol(A) = U(A) = L(A).

8.11 Theorem: Every rectangle R in Rn is Jordan measurable with Vol(R) = |R|.

Proof: Let R = [a1, b1] × · · · × [an, bn] be a ractangle in Rn. By Note 8.4, we have
U(R,X) = |R| for every partition X of R, so by Part 1 of Theorem 8.8, it follows that
U(R) = |R|. By Part 2 of Theorem 8.8, we have U(R) − L(R) = U(∂R) ≥ 0 so that
L(R) ≤ U(R). Let ε > 0. Choose a rectangle S of the form S = [c1, d1]×· · ·× [cn, dn] with
a1 < c1 and d1 < b1 (so that S ⊆ Ro) such that |R| − |S| < ε. Let X be the partition of R
given by Xj = {aj , cj , dj , bj}. Since S is a sub-rectangle for this partition with S ⊆ Ro we
have L(R,X) ≥ |S|, and so L(R) ≥ L(R,X) ≥ |S| > |R| − ε. Since ε > 0 was arbitrary, it
follows that L(R) ≥ |R|. Thus we have L(R) = |R| = U(R).

8.12 Theorem: (Properties of Jordan Content) Let A,B ⊆ Rn be Jordan measurable.

(1) If A ⊆ B then Vol(A) ≤ Vol(B).
(2) Ao and A are Jordan measurable with Vol(Ao) = Vol(A) = Vol(A).
(3) A∪B, A∩B and A\B are Jordan measurable with Vol(A\B) = Vol(A)−Vol(A∩B) and
Vol(A∪B) = Vol(A)+Vol(B)−Vol(A∩B). If A∩B = ∅ then Vol(A∪B) = Vol(A)+Vol(B).

Proof: To prove Part 1, suppose that A ⊆ B. Let R be a rectangle containing B and let
X be a partition of R into the sub-rectangles Rk with k ∈ K(X). Since A ⊆ B, we have
A ⊆ B, so for k ∈ K(X), if Rk∩A 6= ∅ then Rk∩B 6= ∅. This shows that I(A,X) ⊆ I(B,X)
and hence U(A,X) =

∑
k∈I(A,X)

|Rk| ≤
∑

k∈I(B,X)

|Rk| = U(B,X). Since U(A,X) ≤ U(B,X)

for every partition X of R, we have U(A) ≤ U(B) (by Part 1 of Theorem 8.8). Since A
and B are measurable, this means that Vol(A) ≤ Vol(B), as required.
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Let us prove Part 2. Since Ao is open we have (Ao)o = Ao, and since Ao ⊆ A we have
Ao ⊆ A, and hence ∂(Ao) = Ao \ (Ao)o = Ao \ Ao ⊆ A \ Ao = ∂A. Since ∂Ao ⊆ ∂A we
have U(∂Ao) ≤ U(∂A) (by Part 1), and since A is measurable we have U(∂A) = 0. Thus

U(∂Ao) = 0 so that Ao is Jordan measurable. Similarly, we have A = A and Ao ⊆ A
o

so that ∂A = A \ Ao = A \ A0 ⊆ A \ Ao = ∂A and hence U(∂A) ≤ U(∂A) = 0 so that
A is Jordan measurable. Now let R be a rectangle containing A and let X be a partition
of R. From the definition of U(A,X) it is immediate that U(A,X) = U(A,X), and from
the definition of L(A,X) it is immediate that L(A,X) = L(Ao, X). Since this holds for
all partitions X of R, we have U(A) = U(A) and L(A) = L(Ao). Since A is measurable,
this gives L(Ao) = L(A) = U(A) = U(A), and since Ao and A are measurable, this gives
Vol(Ao) = Vol(A) = Vol(A), as required.

We move on to the proof of Part 3. To prove that A ∪ B is Jordan measurable, we
note that ∂(A∪B) ⊆ ∂A∪ ∂B: indeed, recall (as shown in the proof of Theorem 8.9) that
A ∪B = A ∪ B. Also note that since A ⊆ A ∪ B and B ⊆ A ∪ B we have Ao ⊆ (A ∪ B)o

and Bo ⊆ (A ∪B)o so that Ao ∪Bo ⊆ (A ∪B)o. Thus

x ∈ ∂(A ∪B) =⇒ x ∈ A ∪B and x /∈ (A ∪B)o

=⇒ x ∈ A ∪B and x /∈ Ao ∪Bo

=⇒
(
x ∈ A and x /∈ Ao

)
and

(
x ∈ B and x /∈ Bo

)
=⇒ x ∈ ∂A ∪ ∂B.

Since ∂(A∪B) ⊆ ∂A+∂B, Theorem 8.9 gives U(∂(A∪B)) ≤ U(∂A)+U(∂B). Since A and
B are Jordan measurable so that U(∂A) = 0 and U(∂B) = 0, we also have U(∂(A∪B)) = 0
so that A ∪ B is Jordan measurable. We can prove that A ∩ B and A \ B are measuable
in the same way, by showing that ∂(A ∩B) ⊆ ∂A ∪ ∂B and ∂(A \B) ⊆ ∂A ∪ ∂B, and we
leave this as an exercise.

It remains to prove the various volume formulas. First, suppose that A ∩ B = ∅.
We know, from Theorem 8.9 that U(A ∩ B) ≤ U(A) + U(B). Let R be a rectangle
which contains A ∪ B, and let X be a partition of R such that L(A,X) ≥ L(A) − ε

2 and

L(B,X) ≥ L(B)− ε
2 . Since Ao ⊆ A ⊆ A∪B ⊆ A ∪B, it follows that if k ∈ J(Ao, X), that is

if Rk ⊆ A0, then we have Rk ⊆ A ∪B so that Rk∩A ∪B 6= ∅, that is k ∈ I(A∩B,X), so we
have J(A,X) ⊆ I(A∪B,X). Similarly, since Bo ⊆ A ∪B, we have J(B,X) ⊆ I(A∪B,X).
Also note that since A ∩ B = ∅, we also have Ao ∩ Bo = ∅, so it is not possible to have
both Rk ⊆ Ao and Rk ⊆ Bo, and it follows that J(A,X) ∩ J(B,X) = ∅. Thus

U(A∪B,X) =
∑

k∈I(A∩B,X)

|Rk| ≥
∑

k∈J(A,X)

|Rk|+
∑

k∈J(B,X)

|Rk| = L(A,X)+L(B,X) ≥ L(A)+L(B)−ε.

Since U(A ∪ B,X) ≥ L(A) + L(B) − ε for all partitions X of R, and since ε > 0 was
arbitrary, we have U(A ∪B) ≥ L(A) + L(B). Together with Theorem 8.9, this gives

L(A) + L(B) ≤ U(A ∪B) ≤ U(A) + U(B).

Since L(A) = U(A) = Vol(A) and L(B) = U(B) = Vol(B) and U(A ∪ B) = Vol(A ∪ B),
we have proven that, if A ∩B = ∅ then Vol(A ∪B) = Vol(A) + Vol(B).

Finally, we note that the other two formulas (which apply whether or not A and
B are disjoint), follow from the special case of disjoint sets: Indeed, the set A is the
disjoint union A = (A \B) ∪ (A ∩B), so we have Vol(A) = Vol(A \B) + Vol(A ∩B), and
A ∪ B is the disjoint union A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ H) so that Vol(A ∪ B) =
Vol(A \B) + Vol(B \A) + Vol(A ∩B) = Vol(A) + Vol(B)−Vol(A ∩B).
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8.13 Definition: A cube in Rn is a rectangle Q = [a1, b1]×· · ·× [an, bn] in Rn with equal
side lengths, that is with bk − ak = b` − a` for all k 6= `.

8.14 Theorem: (Alternate Characterizations of Outer Jordan Content) Let A ⊆ Rn be
bounded. Then

U(A) = inf
{ m∑
j=1

|Rj |
∣∣∣R1, R2, · · · , Rm are rectangles A ⊆

m⋃
j=1

Rj

}
= inf

{ m∑
j=1

|Qj |
∣∣∣Q1, Q2, · · · , Qm are cubes of equal size with A ⊆

m⋃
j=1

Qj

}
.

Proof: Let

R =
{ m∑
Rk∩A 6=∅

|Rk|
∣∣∣X is a partition of some rectangle R with A ⊆ R

}
,

S =
{ m∑
j=1

|Rj |
∣∣∣R1, R2, · · · , Rm are rectangles with A ⊆

m⋃
j=1

Rj

}
, and

T =
{ m∑
j=1

|Qj |
∣∣∣Q1, Q2, · · · , Qm are squares of equal size with A ⊆

m⋃
j=1

Qj

}
.

and note that U(A) = infR. We leave the proof that U(A) = inf S as an exercise, and we
prove that U(A) = inf T . When Q1, · · · , Qm are cubes of equal size with A ⊆

⋃m
k=1Qk,

we know that U(A) ≤
∑m
k=1 |Qk| by Theorem 8.9, and hence U(A) ≤ inf S. It remains to

show that inf S ≤ U(A).
Let ε > 0. Choose a rectangle R with A ⊆ R, and choose a partition X of R into

sub-rectangles Rk such that U(A,X) ≤ U(A) + ε
2 . Let k1, · · · , km be the values of k for

which Rk ∩ A 6= ∅, so we have A ⊆
⋃m
i=1Rki and

∑m
i=1 |Rki | = U(A,X) ≤ U(A) + ε

2 .
For each index i, choose a rectangle Si with Rki ⊆ Si such that the endpoints of all the
component intervals of all the rectangles Si are rational and

∑m
i=1 |Si| ≤

∑m
i=1 |Rki | +

ε
2 .

Let d be a common denominator of all the endpoints of all the rectangles Si, and partition
each rectangle Si into cubes Qi,1, Qi,2, · · · , Qi,`i all with sides of length 1

d . Then we have

A ⊆
⋃m
i=1 Si =

⋃m
i=1

⋃`i
j=1Qi,j and

m∑
i=1

`i∑
j=1

|Qi,j | =
m∑
i=1

|Si| ≤
∑m
i=1 |Rki |+

ε
2 ≤ U(A) + ε.

Thus inf S ≤ U(A) + ε. Since ε > 0 was arbitrary, we have inf S ≤ U(a), as required.

8.15 Definition: For a map g : A ⊆ Rn → B ⊆ Rm, we say that g is Lipschitz
continuous on A when there is a constant c ≥ 0 such that |g(x)− g(y)| ≤ c|x− y| for all
x, y ∈ A, and we say that g is open when g(U) is open in B for every open set U in A.

8.16 Theorem: Let A ⊆ Rn be bounded and let g : A→ Rn be Lipschitz continuous.

(1) If U(A) = 0 and g is Lipschitz continuous then U(g(A)) = 0.
(2) If A is Jordan measurable and g is open then g(A) is Jordan measurable.

Proof: The proof is left as an exercise.
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8.17 Definition: Let A ⊆ Rn be a Jordan region and let f : A → R be a bounded
function. Let X be a partition of a rectangle R in Rn which contains A, and let Rk, k ∈ K
be the sub-rectangles. Extend f to a function g : R → R by defining g(x) = f(x) when
x ∈ A and g(x) = 0 when x ∈ R \ A. The upper Riemann sum of f on A for the
partition X and the lower Riemann sum of f on A for X are given by

U(f,X) =
∑
k∈K

Mk |Rk| and L(f,X) =
∑
k∈K

mk |Rk|

where Mk = sup
{
g(x) |x ∈ Rk} and mk = inf{g(x) |x ∈ Rk}. The upper integral of f

on A and the lower integral of f on A are given by

U(f) = inf
{
U(f,X)

∣∣ X is a partition of some rectangle R with A ⊆ R
}

L(f) = sup
{
L(f,X)

∣∣X is a partition of some rectangle R with A ⊆ R
}
.

We say that f is (Riemann) integrable on A when U(f) = L(f) and, in this case, we
define the (Riemann) integral of f on A to be∫

A

f =

∫
A

f(x) dV =

∫
A

f(x1, · · · , xn) dx1dx2 · · · dxn = U(f) = L(f).

8.18 Theorem: (Properties of Upper and Lower Riemann Sums) Let A ⊆ Rn be a Jordan
region, let f : A → R be a bounded function, let R be a rectangle which contains A, and
let X and Y be two partitions of R.

(1) If Y is finer than X then L(f,X) ≤ L(f, Y ) ≤ U(f, Y ) ≤ U(f,X).
(2) We have L(f,X) ≤ U(f, Y ).

Proof: Let g : R → R be the extension of f by zero. When Mk = sup{g(x) |x∈Rk} and
mk = inf{g(x) |x∈Rk}, we have mk ≤Mk for all k ∈ K = K(X) so that

L(f,X) =
∑
k∈K

mk|Rk| ≤
∑
k∈K

Mk|Rk| = U(f,X).

Similarly, we have L(f, Y ) ≤ U(f, Y ).
Suppose that Y is finer than X. Note that each of the sub-rectangles Rk for the

partition X is itself further partitioned into smaller sub-rectangles which are sub-rectangles
for the partition Y , and denote these smaller sub-rectangles by Sk,1, · · · , Sk,mk

. Note that
|Rk|=

∑mk

j=1 |Sk,j | by Note 8.4. Let Mk=sup{g(x)|x∈Rk} and Nk,j =sup{g(x)|x∈Sk,j}.
Since Rk =

⋃mk

j=1 Sk,j , we have Mk = max{Nk,j |1≤j≤mk} and hence

U(f,X) =
∑
k∈K

Mk|Rk| =
∑
k∈K

mk∑
j=1

Mk|Sk,j | ≥
∑
k∈K

mk∑
j=1

Nk,j |Sk,j | = U(f, Y ).

A similar argument shows that L(f,X) ≤ L(f, Y ). This completes the proof of Part 1.
Part 2 follows from Part 1. Indeed, given any partitions X and Y of R, we can choose

a partition Z which is finer than both X and Y , and then we have

L(f,X) ≤ L(f, Z) ≤ U(f, Z) ≤ U(f, Y ).

8.19 Theorem: (Properties of Upper and Lower Integrals) Let A ⊆ Rn be a Jordan
region, and let f : A→ R be a bounded function.

(1) If R is any rectangle with A ⊆ Rn then U(f) = inf
{
U(f,X)

∣∣X is a partition of R
}

and L(f) = sup
{
L(f,X)

∣∣X is a partition of R
}

.
(2) We have L(f) ≤ U(f).

Proof: To prove Part 1, imitate the proof of Part 1 of Theorem 8.8. Part 2 follows from
Part 1 of this theorem together with Part 2 of the previous theorem.
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8.20 Theorem: (Characterization of Integrability) Let A ⊆ Rn be a Jordan region, and
let f : A→ R be a bounded function. Then f is integrable on A if and only if for every ε > 0
there exits a partition X of a rectangle R with A ⊆ R such that U(f,X)− L(f,X) < ε.

Proof: Suppose that f is integrable on A, so we have U(f) = L(f). Let R be a rectangle
with A ⊆ R. By Part 1 of Theorem 8.19, we can choose a partition Y of R such that
U(f, Y ) < U(f) + ε

2 , and we can choose a partition Z of R such that L(f, Z) > L(f)− ε
2 .

Let X be a partition of R which is finer than both Y and Z. By Part 1 of Theorem 8.18,
we have U(f,X) ≤ U(f, Y ) and L(f,X) ≥ L(f, Z), and hence

U(f,X)−L(f,X) ≤ U(f, Y )−L(f, Z) <
(
U(f) + ε

2

)
−
(
L(f)− ε

2

)
= U(f)−L(f) + ε = ε.

Suppose, conversely, that for every ε > 0 there exists a partition X of a rectangle
R with A ⊆ R such that U(f,X) − L(f,X) < ε. Let ε > 0. Choose R and X so that
U(f,X)− L(f,X) < ε. By the definition of U(f) and L(f), we have U(f) ≤ U(f,X) and
L(f) ≥ L(f,X), and so U(f)− L(f) ≤ U(f,X)− L(f,X) < ε. Since U(f)− L(f) < ε for
every ε > 0, it follows that U(f) ≤ L(f). On the other hand, we have U(f) ≥ L(f) by
Part 2 of Theorem 8.19. Thus U(f) = L(f) so that f is integrable.

8.21 Theorem: (Continuity and Integrability) Let A ⊆ Rn be a Jordan region, and let
f : A→ R be a bounded function. If f is uniformly continuous on A, then f is integrable.

Proof: Suppose that f is bounded and uniformly continuous on A. Choose a rectangle
R with A ⊆ R and |R| > 0. Let ε > 0. Since f is bounded, we can choose M > 0 so
that |f(x)| ≤ M for all x ∈ A. Since f is uniformly continuous on A, we can choose
δ > 0 such that for all x, y ∈ A, if |x − y| < δ then |f(x) − f(y)| < ε

2|R| . Choose a

partition X of R, into sub-rectangles Rk, which is fine enough so that firstly, we have
x, y ∈ Rk =⇒ |x − y| < δ and, secondly, we have U(∂A,X) =

∑
Rk∩∂A 6=∅ |Rk| <

ε
2M (we

can do this since U(∂A) = 0). Since A is the disjoint union A = Ao ∪ ∂A, the rectangles
Rk come in three varieties: Rk ∩A = ∅, Rk ∩ ∂A 6= ∅ or Rk ⊆ Ao. Let g be the extension
of f by zero to R, and write Mk = sup{g(x)|x∈Rk} and mk = inf{g(x)|x∈Rk}. When
Rk ∩A = ∅, we have g(x) = 0 for all x ∈ Rk, and so∑

Rk∩A=∅
(Mk −mk)|Rk| = 0.

When Rk ∩ ∂A 6= ∅ we have |g(x)| ≤M for all x ∈ Rk so that∑
Rk∩∂A6=∅

(Mk −mk)|Rk| ≤ 2M
∑

Rk∩∂A6=∅
|Rk| < ε

2 .

When Rk ⊆ Ao, for all x, y ∈ Rk we have x, y ∈ A with |x− y| < δ so that |g(x)− g(y)| =
|f(x)− f(y)| < ε

2|R| , and hence Mk −mk ≤ ε
2|R| so that∑

Rk⊆Ao

(Mk −mk)|Rk| ≤ ε
2|R|

∑
Rk⊆Ao

|Rk| ≤ ε
2 .

Thus

U(f,X)−L(f,X) =
∑

Rk∩A=∅
(Mk −mk)|Rk|+

∑
Rk∩∂A 6=∅

(Mk −mk)|Rk|+
∑

Rk⊆Ao

(Mk −mk)|Rk| < ε.

Thus f is integrable, by Theorem 8.20.
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8.22 Theorem: (Integration and Volume) If A ⊆ Rn is a Jordan region then

Vol(A) =

∫
A

1 dV.

Proof: Suppose that A is Jordan measurable, so we have U(A) = L(A) = Vol(A). Let R
be a rectangle with A ⊆ R. Let f : A → R be the constant function f(x) = 1, and let
g : R → R be the extension of f by zero. Choose a partition X of R, with sub-rectangles
Rk, such that U(A,X) ≤ U(A)−ε = Vol(A)−ε and L(A,X) ≥ L(A)−ε = Vol(A)−ε. Let
Mk = sup{g(x)|x∈Rk} and mk = inf{g(x)|x∈Rk}. When Rk ∩ A = ∅ we have g(x) = 0
for all x ∈ Rk so that Mk = 0, and for all k we have Mk ≤ 1, and so

U(f) ≤ U(f,X) =
∑

Rk∩A6=∅
Mk|Rk| ≤

∑
Rk∩A6=∅

|Rk| = U(A,X) ≤ Vol(A) + ε.

When Rk ⊆ Ao we have g(x) = 1 for all x ∈ Rk so that mk = 1, and for all k we have
mk ≥ 0, and so

L(f) ≥ L(f,X) ≥
∑

Rk⊆Ao

mk|Rk| =
∑

Rk⊆Ao

|Rk| = L(A,X) ≥ Vol(A)− ε.

Since Vol(A) − ε ≤ L(f) ≤ U(f) ≤ Vol(A) + ε for every ε > 0, we have U(f) = L(f) =
Vol(A), which means that f is integrable on A with

∫
A

1 =
∫
A
f = Vol(A), as required.

8.23 Theorem: (Linearity) Let A ⊆ Rn be a Jordan region and let f, g : A → R be
integrable. Then f + g is integrable, and cf is integrable for every c ∈ R, and we have∫

A

(f + g) =

∫
A

f +

∫
A

g and

∫
A

cf = c

∫
A

f.

Proof: The proof is left as an exercise.

8.24 Theorem: (Decomposition) Let A and B be Jordan regions in Rn with Vol(A∩B) =
0, and let f : A ∪B → R be bounded. Let g : A→ R be the restrictions of f to A and let
h : B → R be the restriction of f to B. Then f is integrable on A ∪ B if and only if g is
integrable on A and h is integrable on B and, in this case, we have∫

A∪B
f =

∫
A

g +

∫
B

h.

Proof: The proof is left as an exercise.

8.25 Theorem: (Comparison) Let A be a Jordan region in Rn and let f, g : A → R be
integrable. If f(x) ≤ g(x) for all x ∈ A then

∫
A
f ≤

∫
A
d.

Proof: The proof is left as an exercise.

8.26 Theorem: (Absolute Value) Let A be a Jordan region in Rn and let f : A→ R be
integrable. Then the function |f | is integrable and

∣∣ ∫
A
f
∣∣ ≤ ∫

A
|f |.

Proof: The proof is left as an exercise.
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