Chapter 8. Jordan Content and Integration

8.1 Definition: A (closed, n-dimensional) rectangle in R" is a set of the form
R =[ay,b1] X [ag,b2] X - X [an, b,] = {ac € R"|a; < z; < b; for each indexj}

where each aj,b; € R with a; < b;. The size of the above rectangle R is

Rl = ] (bj — aj).

=1
A partition X of the above rectangle R consists of a partition X; = {x; 0,21, -, Zje,}
with
aj = rj0 < xj1 <o < Tje, = b

for each index j. The above partition X divides the rectangle R into sub-rectangles Ry,
where k = (ki1, ko, -+, ky) € R™ with 1 < k; </{; for each index j, and where

R = [Z10, -1, T1 k) X [T2,00—15 T2,k0) X -0 X [Ty —15 T )
If Y is another partition, given by Y; = {y;.0, -, ¥jm, }, then we say that Y is finer than
X (or that X is coarser than Y') when X; C Y; for each index j.

8.2 Example: Note that a 1-dimensional rectangle in R! is a line segment and its size
is its length, a 2-dimensional rectangle in R? is a rectangle and its size is its area, and a
3-dimensional rectangle in R? is a rectangular box and its size is its volume.

8.3 Note: When R is a rectangle in R™ and X and Y are any two partitions of R, the
partition Z given by Z; = X; UY] is finer that both X and Y.

8.4 Note: When R is a rectangle in R™ and X is a partition given by X; = {x; 0, - s Tj0 }
then letting K = K(X) = {k cz" ‘ 1 <k; < for all j}, we have

SiRl= Y 0Y 0 Y @ —wi1)

KEK 1<ki <0y 1<ky<by  1<kn<b, j=1
n n

=11 X @k —2jk-1)= 1 (2 —7)0)
J=11<k; <t; i1

= [1(6; ~a) = ]|



8.5 Definition: Let A C R” be bounded. For a partition X of a rectangle R with A C R,
we define the upper (or outer) volume estimate of A with respect to X, and the
lower (or inner) volume estimate of A with respect to X, to be
UAX)= X [Bel= X R and L(AX)= > [Rrl= ) |Ril
RiNA£(D kel RpCA° keJ
where I = I(A,X)={k € K|RyNA#0} and J = J(A,X) = {k € K| Ry C A°} with
K=K(X)={keZ"|1<k; < for each j}.

8.6 Theorem: (Basic Properties of Upper and Lower Volume Estimates) Let A C R™ be
bounded, let R be a rectangle in R" with A C R, and let X and Y be partitions of R.

(1) If Y is finer than X then 0 < L(A,X) < L(AY)<U(AY) <U(A,X) < |R|.
(2)0< L(A,X) <U(AY) <|R|.

(3) U(A, X) — L(A, X) = U(DA, X).

Proof: To prove Part 1, suppose that Y is finer than X. Note that each of the sub-
rectangles Ry for the partition X is itself further partitioned into smaller sub-rectangles
which are sub-rectangles for the partition Y, and denote these smaller sub-rectangles by
Sk, Skm,- Then we have
U(A, X) = > |Rx| and U(AY) =3 > [Sk,l
kel k€ jETy,

where I is the set of k € K(X) such that Ry NA # 0 and Jy is the set of j € {1,2,---,m;}
such that Sy ; N A # (). By Note 8.4, we have » 7™ |Sy ;| = |Rk|, and so

UAY) =Y 3 Sk, < 5 5 ISkl = 3[Rl = U(A, X).

kel jeJy kel j=1 kel
and also U(A, X) = > |Rx| < > |Rk| =|R|. Thus we have U(A,Y) <U(A,X) <|R|.
kel keK (X)

The proof that L(A, X) < L(A,Y) is similar, and it is clear that 0 < L(A, X) and easy to
see that L(A,Y) <U(A,Y).

Note that Part 2 follows from Part 1 because, given any partitions X and Y for R,
we can choose a partition Z which is finer than both X and Y, and then we have

0< L(A,X) < L(A,Z) < U(A.2) U(A,Y) < |R|.
Finally, to prove Part 3, note that

U(A,X)—L(A,X)= > |Rk| and U(0A,X)= > |Rkl

keL keM
where L is the set of indices k € K(X) such that R, N A # () and Ry € A°, and M is the
set of indices k € K (X) such that Ry NOA # () (since A is closed so that 9A = 9A).
We shall show that K = M. When A = () we have K = M = (), so suppose A # (). If
k € L, that is if R, N A # 0 and Ry, € A° then we must have R, N 0A # ) because Rj,
is connected (indeed, if we had Ry N 9A = () then Ry would be separated by the disjoint
nonempty open sets A° and A°: note that we have A° # () because R, N A # 0, and we
have A° # () because Ry, ¢ A°) and hence L C M. If k € M, that is if R N QA # 0 then,
since A C A we have R, N A # (), and since A° and 0A are disjoint we have R, ¢ A°,
and hence kK € M. Thus K = M, as required.



8.7 Definition: Let A C R™ be bounded. We define the upper (or outer) volume (or
Jordan content), and the lower (or inner) volume (or Jordan content), of A to be

U(A) = inf {U(A, X)| X is a partition of some rectangle R with A C R}
L(A) =sup {L(A, X) | X is a partition of some rectangle R with A C R}.

8.8 Theorem: (Basic Properties of Upper and Lower Volumes) Let A C R"™ be bounded.
(1) If R is any rectangle with A C R then U(A) = inf {U(A, X) | X is a partition of R}.
(2) U(A) — L(A) = U(0A).

Proof: Given a rectangle R with A C R, let Ur(A) = inf {U(4, X) | X is a partition of R}.
To prove Part 1, it suffices to show that for any two rectangles R, S in R™ which contain
A, we have Ur(A) = Ugs(A). Let R and S be rectangles in R™ which contain A, say
R =a1,b1] X -+ X [an,by] and S = [c1,d1] X -+ X [cn, dy].

Suppose first that R C S with ¢; < a; and b; < d;. Given any partition Y of S, we
can extend Y to a finer partition Z of S by adding the endpoints of R, that is by letting
Z; =Y; U{a;,b;}, and then we can restrict Z to a partition X of R as follows: if, for a
fixed index j, we have Z; = {zo, -, 2k, -, 2¢," -+, Zm} With 20 = ¢;, 2 = a;, 2z¢ = b; and
Zm = dj, then we take X; = {2k, -+, 2¢}. Then we have U(A,X) <U(A,Z) <U(AY).
Since for every partition Y of S there exists a corresponding partition X of R for which
U(A,X)<U(AY), it follows that

inf {U(A, X) | X is a partition of R} < inf {U(A,Y)|Y is a partition of S},

that is Ur(A) < Ug(A). Now let € > 0 and suppose that we are given a partition X
of R. Choose s; and t; with ¢; < s; < a; and b; < t; < b; so that for the rectangle
T = [s1,t1] X+ - X [Sp, tn] we have |T|—|R| < e. Extend the partition X of R to the partition
Y of S by adding the endpoints of S and T, that is by letting ¥; = X, U {c¢;, s;,t;,d;}.
Note that the sub-rectangles of S which intersect with A include all of the sub-rectangles
of R which intersect with A together with some of the sub-rectangles which lie in 7" but not
R, and so we have U(A,Y) < U(A, X)+|T|— |R| < U(A, X) + e. Since for each partition
X of R there is a corresponding partition Y of S for which U(A,Y) < U(A,X) + ¢, it
follows that

inf {U(A,Y) ‘ Y is a partition of S} < inf {U(4, X) | X is a partition of R} +¢,

that is Us(A) < Ur(A) + €, and since € > 0 was arbitrary, it follows that Ug(A) < Ugr(A).
Thus we have proven that Ur(A) = Ug(A) in the case that R C S with ¢; < a; < b; < d;.

In the general case that R = [a1,b1] X -+ X [ap, by] and S = [e1,d1] X - -+ X [¢p, dy] ave
any rectangles which both contain A, we can choose a rectangle T = [s1,t1] X -+ X [Sp, ty]
with s; < min{a;, c;} and t; > max{b;,d;}, and then we can apply the result of the above
paragraph to obtain Ur(A) = Ur(A) = Us(A), as required, proving Part 1.

Let us prove Part 2. Given any partition X of any rectangle R containing A, we
have U(A) — L(A) <U(A,X) — L(A, X) =U(0A, X), and hence (by taking the infemum
on both sides) U(A) — L(A) < U(0A). It remains to show that U(A) — L(A) > U(0A).
Let € > 0. Choose a rectangle R containing A, and choose a partition X of R such that
L(A)—e< L(A,X) < L(A). By Part 1, we can choose a partition Y of the same rectangle
R such that U(A) < U(A,Y) < U(A)+e. Let Z be a partition of R which is finer than both
X and Y. Then we have L(A)—e < L(A, X) < L(A,Z) and U(A,Z) <U(A,Y) < U(A)+e
and hence U(0A) <U(0A,Z) =U(A,Z)—L(A,Z) < U(A) — L(A) + 2¢. Since € > 0 was
arbitrary, we have U(0A) < U(A) — L(A), as required.



8.9 Theorem: For bounded sets A, B C R"™, we have U(AU B) < U(A) + U(B).

Proof: First we note that for any sets A, B C R™ we have AU B = AU B: Indeed, since
ACAUBand BC AUB we have AC AUB and BC AUB so that AUB C AUB.
On the other hand, since A C A and B C B, we have AU B C AU B and so, since AU B
is closed, and contains A U B, it follows that AU B C AU B.

Let A, B C R" be bounded. Let R be a rectangle which contains AU B. Let € > 0.
Choose a partition X of R so that U(4) < U(A,X) + 5 and U(B) < U(B,X) < §
(we can do this by Part 1 of Theorems 8.8 and 8.6: let Y be a partition of R such that
U(A) < U(AY) + § let Z be a partition of R such that U(B) < U(B, Z) + g, then let
X be a partition finer than both Y and Z). Let K = K(X), let [(AUB) =1(AU B, X),
I(A) = I(A,X) and I(B) = I(B, X), as in Definition 8.5. Since AU B = A U B, for each
index k € K we have

kel(AUB) <= RyNAUB # 0 < (RyNA)U(RyNB) # 0 < (keI(A) or keI(B)),

UAUB,X)= 5 [Rel < 3 IR+ X |Ril = U(A, X)+U(B, X) < U(A)+U(B) +e.
kEI(AUB) kel(A) kel(B)

Since U(AU B, X) < U(A) + U(B) + ¢ for all partitions X of R, it follows (from Part 1 of
Theorem 8.8) that U(AUB) < U(A) +U(B) + ¢, and since € > 0 was arbitrary, it follows
that U(AU B) < U(A) + U(B), as required.

8.10 Definition: Let A C R" be bounded. We say that A has well-defined volume
(or Jordan content), or that A is Jordan measurable, or that A is a Jordan region,
when U(A) = L(A), or equivalently (by Part 2 of Theorem 8.8) when U(0A) = 0. In this
case, we define the (n-dimensional) volume of A (or the Jordan content) of A to be

Vol(A) =U(A) = L(A).
8.11 Theorem: Every rectangle R in R™ is Jordan measurable with Vol(R) = |R]|.

Proof: Let R = [a1,b1] X -+ X [ay,b,] be a ractangle in R™. By Note 8.4, we have
U(R,X) = |R| for every partition X of R, so by Part 1 of Theorem 8.8, it follows that
U(R) = |R|. By Part 2 of Theorem 8.8, we have U(R) — L(R) = U(0R) > 0 so that
L(R) < U(R). Let ¢ > 0. Choose a rectangle S of the form S = [c1,d1] X -+ - X [¢y,, dy] With
a; < ¢; and dy < by (so that S C R°) such that |R| —|S| < e. Let X be the partition of R
given by X; = {a;,c;,d;,b;}. Since S is a sub-rectangle for this partition with S C R° we
have L(R,X) > |S|, and so L(R) > L(R,X) > |S| > |R| — €. Since € > 0 was arbitrary, it
follows that L(R) > |R|. Thus we have L(R) = |R| = U(R).

8.12 Theorem: (Properties of Jordan Content) Let A, B C R™ be Jordan measurable.

(1) If A C B then Vol(A) < Vol(B).

(2) A° and A are Jordan measurable with Vol(A°) = Vol(A) = Vol(A).

(3) AUB, ANB and A\ B are Jordan measurable with Vol(A\ B) = Vol(A)—Vol(ANB) and
Vol(AUB) = Vol(A)+Vol(B)—Vol(ANB). If ANB = () then Vol(AUB) = Vol(A)+Vol(B).

Proof: To prove Part 1, suppose that A C B. Let R be a rectangle containing B and let

X be a partition of R into the sub-rectangles Ry with k£ € K(X). Since A C B, we have

A C B,sofork € K(X),if RyNA # () then R,NB # ). This shows that I(A4, X) C I(B, X)

and hence U(A, X)= > |Rg|< >, |Ri|=U(B,X). Since U(A,X) <U(B,X)
keI(A,X) keI(B,X)

for every partition X of R, we have U(A) < U(B) (by Part 1 of Theorem 8.8). Since A

and B are measurable, this means that Vol(A) < Vol(B), as required.
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Let us prove Part 2. Since A° is open we have (A°)° = A°, and since A° C A we have
Ao C A, and hence 9(A°) = A2\ (A°)° = A2\ A° C A\ A° = JA. Since JA° C 0A we
have U(0A°) < U(0A) (by Part 1), and since A is measurable we have U(0A) = 0. Thus
U(DA°) = 0 so that A° is Jordan measurable. Similarly, we have A = A and A° C A’
so that A4 = A\ A° = Z\ZO C A\ A° = 0A and hence U(0A) < U(0A) = 0 so that
A is Jordan measurable. Now let R be a rectangle containing A and let X be a partition
of R. From the definition of U(A, X) it is immediate that U(A, X) = U(A, X), and from
the definition of L(A, X) it is immediate that L(A, X) = L(A°, X). Since this holds for
all partitions X of R, we have U(A) = U(A) and L(A) = L(A®°). Since A is measurable,
this gives L(A°) = L(A) = U(A) = U(A), and since A° and A are measurable, this gives
Vol(A°) = Vol(A) = Vol(A), as required.

We move on to the proof of Part 3. To prove that A U B is Jordan measurable, we
note that (AU B) C 0AUOB: indeed, recall (as shown in the proof of Theorem 8.9) that
AUB = AU B. Also note that since A C AUB and B C AU B we have A° C (AU B)°
and B° C (AU B)° so that A°U B° C (AU B)°. Thus

r€0(AUB)=2x€ AUBand z ¢ (AUB)°
= r€AUBand z ¢ A°UB°
— (r€Aandz ¢ A°) and (z € B and z ¢ B°)
— € 0AUIB.

Since (AUB) C 0A+0B, Theorem 8.9 gives U(0(AUB)) < U(0A)+U(9B). Since A and
B are Jordan measurable so that U(0A) = 0 and U(0B) = 0, we also have U(0(AUB)) =0
so that AU B is Jordan measurable. We can prove that AN B and A\ B are measuable
in the same way, by showing that (AN B) C 0AUJB and 0(A\ B) C 0AUJB, and we
leave this as an exercise.

It remains to prove the various volume formulas. First, suppose that AN B = 0.
We know, from Theorem 8.9 that U(AN B) < U(A) + U(B). Let R be a rectangle
which contains AU B, and let X be a partition of R such that L(A,X) > L(A) — 5 and
L(B,X) > L(B)—3%. Since A C A C AUB C AU B, it follows that if k € J(A°, X), that is
if Ry, € A9 then we have R, C AU B so that RyNAU B # 0, that is k € I(ANB, X), so we
have J(A, X) C I(AUB, X). Similarly, since B C AU B, we have J(B, X) C I(AUB, X).
Also note that since AN B = (), we also have A° N B° = (), so it is not possible to have
both Ry C A° and Ry C B°, and it follows that J(A, X) N J(B,X) = 0. Thus
U(AUB, X) = > Rkl = > [Ri[+ > [Ri| = L(A, X)+L(B,X) = L(A)+L(B)—e.

keI(ANB,X)  keJ(A,X) keJ(B,X)

Since U(AU B, X) > L(A) + L(B) — ¢ for all partitions X of R, and since ¢ > 0 was
arbitrary, we have U(AU B) > L(A) 4+ L(B). Together with Theorem 8.9, this gives

L(A) + L(B) < U(AU B) < U(A) + U(B).

Since L(A) = U(A) = Vol(A) and L(B) = U(B) = Vol(B) and U(AU B) = Vol(AU B),
we have proven that, if AN B = () then Vol(A U B) = Vol(4) + Vol(B).

Finally, we note that the other two formulas (which apply whether or not A and
B are disjoint), follow from the special case of disjoint sets: Indeed, the set A is the
disjoint union A = (A \ B) U (AN B), so we have Vol(A4) = Vol(A \ B) + Vol(AN B), and
AU B is the disjoint union AUB = (A\ B)U(B\ A)U (AN H) so that Vol(AU B) =
Vol(A\ B) + Vol(B \ A) + Vol(AN B) = Vol(A) + Vol(B) — Vol(AN B).



8.13 Definition: A cube in R” is a rectangle Q = [ay,b1] X - -+ X [an, by] in R™ with equal
side lengths, that is with by — ap = by — a, for all k # £.

8.14 Theorem: (Alternate Characterizations of Outer Jordan Content) Let A C R™ be
bounded. Then

UM%ﬂM{
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R = { > | Rkl ’ X is a partition of some rectangle R with A C R} ,
kaz;é(l)

S= { > IR ‘ Ry, Ry, -+, Ry, are rectangles with A C Rj} , and
j=1 =1

1=

T = { > Q5] ‘ Q1,Q2, -, Qn are squares of equal size with A C Qj}.
j=1 j=1
and note that U(A) = inf R. We leave the proof that U(A) = inf S as an exercise, and we
prove that U(A) = inf 7. When Q1, -+, @, are cubes of equal size with A C ;- Qx,
we know that U(A) < 37", |Qx| by Theorem 8.9, and hence U(A) < inf S. It remains to
show that inf S < U(A).

Let ¢ > 0. Choose a rectangle R with A C R, and choose a partition X of R into
sub-rectangles Ry, such that U(A,X) < U(A) + 5. Let ky,---, &y, be the values of k for
which R, N'A # (), so we have A C (J;*, Ry, and Y./~ |Ry,| = U(A, X) < U(A4) + £.
For each index 7, choose a rectangle S; with R;, C S; such that the endpoints of all the
component intervals of all the rectangles S; are rational and " |S;| < > |Rp, | + 5.
Let d be a common denominator of all the endpoints of all the rectangles .S;, and partition
each rectangle S; into cubes Q; 1, Qi 2, -+, Qi all with sides of length é. Then we have

m m I
AcC Ui, Si=UiZy Uj:l Qi,; and

m £; m m
> Qi = 22 18l < 222 Rk,
i=1j=1 i=1

+£<UA) +e

Thus inf S < U(A) + €. Since € > 0 was arbitrary, we have inf S < U(a), as required.

8.15 Definition: For a map g : A C R® — B C R™, we say that g is Lipschitz
continuous on A when there is a constant ¢ > 0 such that |g(z) — g(y)| < c|z — y| for all
x,y € A, and we say that g is open when ¢(U) is open in B for every open set U in A.
8.16 Theorem: Let A C R™ be bounded and let g : A — R"™ be Lipschitz continuous.
(1) If U(A) = 0 and g is Lipschitz continuous then U(g(A)) = 0.

(2) If A is Jordan measurable and g is open then g(A) is Jordan measurable.

Proof: The proof is left as an exercise.



8.17 Definition: Let A C R™ be a Jordan region and let f : A — R be a bounded
function. Let X be a partition of a rectangle R in R™ which contains A, and let R, k € K
be the sub-rectangles. Extend f to a function g : R — R by defining g(z) = f(x) when
x € Aand g(x) = 0 when x € R\ A. The upper Riemann sum of f on A for the
partition X and the lower Riemann sum of f on A for X are given by

U(f,X)= > My|Rg| and L(f,X)= > my|Rxl
ey KEK

where Mj, = sup {g(z) |z € Ry} and mj, = inf{g(z) |z € R;}. The upper integral of f
on A and the lower integral of f on A are given by

U(f) = inf {U(f, X)| X is a partition of some rectangle R with A C R}
L(f) =sup {L(f, X) }X is a partition of some rectangle R with A C R}.

We say that f is (Riemann) integrable on A when U(f) = L(f) and, in this case, we
define the (Riemann) integral of f on A to be

/f/fwtﬁm,,MMQMFWFW)

8.18 Theorem: (Properties of Upper and Lower Riemann Sums) Let A C R™ be a Jordan
region, let f : A — R be a bounded function, let R be a rectangle which contains A, and
let X and Y be two partitions of R.

(1) IfY is finer than X then L(f, X) < L(f,Y) <U(f,Y) <U(f,X).

(2) We have L(f,X) <U(f,Y).

Proof: Let g : R — R be the extension of f by zero. When M}, = sup{g(x) |z € Ry} and
my = inf{g(z) |z € Rx}, we have my, < My, for all k € K = K(X) so that
keK keK

Similarly, we have L(f,Y) < U(f,Y).

Suppose that Y is finer than X. Note that each of the sub-rectangles Rj for the
partition X is itself further partitioned into smaller sub-rectangles which are sub-rectangles
for the partition Y, and denote these smaller sub-rectangles by Sk 1, -, Sk.m,. Note that
| Ry| =372 |Sk,;| by Note 8.4. Let My=sup{g(r)|x € Ry} and Ny j=sup{g(z)| =€ Sk ;}.
Since Ry = (J]2 Sk,j, we have My = max{Nj, ;|1 <j<my} and hence

U, X)= 5 MRl = 52 3 MilSisl = 32 35 NuslSisl = U, Y).

kEK kEK j=1 keEK j=1

A similar argument shows that L(f, X) < L(f,Y). This completes the proof of Part 1.
Part 2 follows from Part 1. Indeed, given any partitions X and Y of R, we can choose
a partition Z which is finer than both X and Y, and then we have

L(f,X) < L(f,2) <U(f,2) SU(f,Y).
8.19 Theorem: (Properties of Upper and Lower Integrals) Let A C R™ be a Jordan
region, and let f : A — R be a bounded function.
(1) If R is any rectangle with A C R™ then U(f) = inf {U(f, X) }X is a partition of R}
and L(f) = sup {L(f,X) | X is a partition of R}.
(2) We have L(f) < U(f).

Proof: To prove Part 1, imitate the proof of Part 1 of Theorem 8.8. Part 2 follows from
Part 1 of this theorem together with Part 2 of the previous theorem.
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8.20 Theorem: (Characterization of Integrability) Let A C R™ be a Jordan region, and
let f : A — R be a bounded function. Then f is integrable on A if and only if for every e > 0
there exits a partition X of a rectangle R with A C R such that U(f,X) — L(f, X) < e.

Proof: Suppose that f is integrable on A, so we have U(f) = L(f). Let R be a rectangle
with A C R. By Part 1 of Theorem 8.19, we can choose a partition Y of R such that
U(f,Y) <U(f)+ 5, and we can choose a partition Z of R such that L(f,Z) > L(f) — 5.
Let X be a partition of R which is finer than both Y and Z. By Part 1 of Theorem 8.18,
we have U(f,X) <U(f,Y) and L(f, X) > L(f,Z), and hence

U(f,X) = L(,X) SU(f,Y) = L(f,2) < (U(/) +5) = (L)) = §) =U(f) —L(f) +e=e.

Suppose, conversely, that for every € > 0 there exists a partition X of a rectangle
R with A C R such that U(f,X) — L(f,X) < e. Let ¢ > 0. Choose R and X so that
U(f,X)— L(f,X) < e. By the definition of U(f) and L(f), we have U(f) < U(f,X) and
L(f) > L(f,X),and so U(f) — L(f) < U(f,X) — L(f, X) < e. Since U(f) — L(f) < € for
every € > 0, it follows that U(f) < L(f). On the other hand, we have U(f) > L(f) by
Part 2 of Theorem 8.19. Thus U(f) = L(f) so that f is integrable.

8.21 Theorem: (Continuity and Integrability) Let A C R™ be a Jordan region, and let
f : A — R be a bounded function. If f is uniformly continuous on A, then f is integrable.

Proof: Suppose that f is bounded and uniformly continuous on A. Choose a rectangle
R with A C R and |R| > 0. Let ¢ > 0. Since f is bounded, we can choose M > 0 so
that |f(z)] < M for all x € A. Since f is uniformly continuous on A, we can choose
d > 0 such that for all z,y € A, if |z —y| < § then |f(x) — f(y)| < ﬁ. Choose a
partition X of R, into sub-rectangles R, which is fine enough so that firstly, we have
z,y € Ry = |z —y| < J and, secondly, we have U(0A, X) = > g ~pazp [ Bkl < 357 (we
can do this since U(9A) = 0). Since A is the disjoint union A = A° U A, the rectangles
R), come in three varieties: R, N A =0, R, NOA # 0 or R, C A°. Let g be the extension
of f by zero to R, and write M) = sup{g(z)|r € R} and my = inf{g(z)|x € Ry}. When
Rr N A=), we have g(x) = 0 for all € Ry, and so

Z (Mk - mk)le’ =0.
R;J]Z:@
When Ry NJA # () we have |g(x)| < M for all x € Ry, so that

> (My —mp)|Rp| <2M 35 |Ry| < 3.
RkﬂaA;ﬁ@ R;JW@A#@

When Ry, C A°, for all x,y € Ry, we have x,y € A with |z — y| < J so that |g(x) — g(y)| =
|f(z) = f(y)| < g7, and hence My —my < 5/ so that

2|R|
> My —my)|Ry| < 2|§z| > Rk < 5.
RiCA® Rj.CAo
Thus
Uf,X)-L(f,X)= > (Mp—mp)|Re|+ > (Mg —mg)|Re|+ > (M —my)|Ry| <e.
RpNA=0 R,NOAZD R, CAe

Thus f is integrable, by Theorem 8.20.



8.22 Theorem: (Integration and Volume) If A C R" is a Jordan region then

Vol(4) = /A LV,

Proof: Suppose that A is Jordan measurable, so we have U(A) = L(A) = Vol(A). Let R
be a rectangle with A C R. Let f : A — R be the constant function f(z) = 1, and let
g : R — R be the extension of f by zero. Choose a partition X of R, with sub-rectangles
Ry, such that U(A, X) < U(A)—e= Vol(4) —eand L(A, X) > L(A) —e = Vol(A) —e. Let
My, = sup{g(x)|z € Ry} and my = inf{g(z)|z € R}. When Ry N A = () we have g(z) =0
for all x € Ry so that M = 0, and for all £ we have M; < 1, and so
Uf) SUX)= X MR < X [Re] =U(A X) < Vol(4) + e
RkﬂZ;éO) kaz;é(/)
When Ry, C A° we have g(x) = 1 for all x € Ry so that my = 1, and for all k£ we have
my > 0, and so
L(f) = L(f,X) = >0 mx|Re|= 20 |Rk|=L(A,X) = Vol(A) —e.
Ry CA° Ry CA°

Since Vol(A) —e < L(f) < U(f) < Vol(A) + € for every € > 0, we have U(f) = L(f) =
Vol(A), which means that f is integrable on A with [, 1= [, f = Vol(A), as required.

8.23 Theorem: (Linearity) Let A C R™ be a Jordan region and let f,g : A — R be
integrable. Then f + g is integrable, and cf is integrable for every ¢ € R, and we have

Jra=[ s+ [gma [er=c[r

Proof: The proof is left as an exercise.

8.24 Theorem: (Decomposition) Let A and B be Jordan regions in R™ with Vol(ANB) =
0, and let f: AU B — R be bounded. Let g : A — R be the restrictions of f to A and let
h : B — R be the restriction of f to B. Then f is integrable on AU B if and only if g is
integrable on A and h is integrable on B and, in this case, we have

Jua? = Lo

Proof: The proof is left as an exercise.

8.25 Theorem: (Comparison) Let A be a Jordan region in R™ and let f,g: A — R be
integrable. If f(x) < g(x) for all z € A then [, f < [, d.

Proof: The proof is left as an exercise.

8.26 Theorem: (Absolute Value) Let A be a Jordan region in R™ and let f : A — R be
integrable. Then the function |f| is integrable and | [, f| < [, |f].

Proof: The proof is left as an exercise.



