
Chapter 9. Fubini’s Theorem and Change of Variables

9.1 Definition: For `∈{1, 2, · · · , n}, the `th projection map p` :Rn→Rn−1 is given by

p`(x1, x2, · · · , x`−1, y, x`, x`+1, · · · , xn−1) = (x1, x2, · · · , xn−1).

9.2 Theorem: (Fubini’s Theorem for a Rectangle in Rn). Fix ` ∈ {1, 2, · · · , n}. Let
R = [a1, b1] × [a2, b2] × · · · × [an, bn] ⊆ Rn and let S = p`(R) ⊆ Rn−1. Let f : R → R be
integrable on R. For each x ∈ S, define gx : [a`, b`]→ R by

gx(y) = f(x1, · · · , x`−1, y, x`, · · · , xn−1)

so that p`(gx(y)) = x. Suppose that gx is integrable on [a`, b`] for every x ∈ S. Define
G : S → R by

G(x) =

∫ b`

y=a`

gx(y) dy.

Then G is integrable on [a`, b`] and we have∫
R

f =

∫
S

G =

∫
S

(∫ b`

y=a`

gx(y) dy

)
dV =

∫
S

(∫ b`

y=a`

gx(y) dy

)
dx1dx2 · · · dxn−1.

Proof: For convenience of notation, we give the proof in the case that ` = n, so we

have S = [a1, b1] × · · · × [an−1, bn−1], gx(y) = f(x, y) and G(x) =
∫ bn
y=an

f(x, y) dy, with

x ∈Rn−1, y ∈R. Let ε > 0. Choose a partition Z of R with U(f) ≤ U(f, Z)<U(f)+ε.
The first n − 1 components Z1, Z2, · · · , Zn−1 of Z determine a partition X of S into
sub-rectangles Sk with k ∈ K = K(X), and the last component of Z gives a partition
Y = Zn = {y0, y1, · · · , ym} of [an, bn], and then Z partitions R into the sub-rectangles
Rk,j = Sk×[yj−1, yj ] with |Rk,j | = |Sk|(yj−yj−1). Let Mk,j = sup

{
f(x, y)

∣∣ (x, y) ∈ Rk,j
}

so that U(f, Z) =
∑
k∈K

m∑
j=1

Mk,j |Sk|(yj − yj−1).

Note that

G(x) =

∫ bn

y=an

f(x, y) dy =
m∑
j=1

Gj(x) where Gj(x) =

∫ yj

y=yj−1

f(x, y) dy

and note that when (x, y)∈Rk,j we have f(x, y)≤Mk,j so Gj(x)≤Mk,j(yj−1−yj). Also
note that for any bounded maps p, q : S → R we have U

(
(p+q), X

)
≤ U(p,X) + U(q,X)

because sup
{
p(x)+q(x)

∣∣x∈Sk} ≤ sup
{
p(x)

∣∣x∈Sk}+ sup
{
q(x)

∣∣x∈Sk}. Thus we have

U(G,X) = U
( m∑
j=1

Gj , X) ≤
m∑
j=1

U(Gj , X) =
m∑
j=1

∑
k∈K

sup
{
Gj(x)

∣∣x∈Sk} |Sk|
≤

m∑
j=1

∑
k∈K

Mk,j(yj − yj−1) |Sk| = U(f, Z) < U(f) + ε.

Since U(G) ≤ U(G,X) < U(f) + ε for all ε > 0, it follows that U(G) ≤ U(f). A similar
argument shows that L(G) ≥ L(f), so we have

L(f) ≤ L(G) ≤ U(G) ≤ U(f).

Since f is integrable so that L(f) = U(f), it follows that L(f) = L(G) = U(G) = U(f) so
that G is integrable on S and

∫
S
G =

∫
R
f , that is∫

R

f =

∫
S

G =

∫
S

(∫ bn

y=an

f(x, y) dy

)
dx1dx2 · · · dxn−1.
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9.3 Theorem: (Iterated Integration) Fix ` ∈ {1, 2, · · · , n}. Let B ⊆ Rn−1 be a closed
Jordan region. Let g, h : B → R be continuous with g(x) ≤ h(x) for all x ∈ B. Let

A =
{

(x1, x2, · · · , x`−1, y, x`, · · · , xn−1)∈Rn
∣∣x∈B , g(x)≤y≤h(x)

}
.

Then

(1) A is a Jordan region in Rn, and
(2) when f : A→ R is continuous, we have∫

A

f =

∫
B

(∫ b`

y=a`

f(x1, · · · , x`−1, y, x`, · · · , xn−1) dy

)
dx1dx2 · · · dxn−1

Proof: For notational convenience, we give a proof in the case that ` = n, so we have

A =
{

(x, y)
∣∣x∈B , g(x)≤y≤h(x)

}
.

Verify, as an exercise that ∂A = C ∪G ∪H where

C =
{

(x, y)
∣∣x∈∂B , g(x)≤y≤h(x)

}
,

G =
{

(x, y)
∣∣x∈B , y=g(x)

}
, and

H =
{

(x, y)
∣∣x∈B , y=h(x)

}
.

Choose a rectangle S in Rn−1 which contains B. Note that B is compact and g and h are
continuous, hence bounded, so we can choose an interval [a, b] which contains the range of
both g and h, so that the rectangle R = S × [a, b] contains A.

We claim that U(C) = 0. Let ε > 0. Since B is Jordan measurable we can choose a
partition X for S, into sub rectangles Sk with k ∈ K, such that U(∂B,X) ≤ ε

b−a . Let Z
be the partition of R into sub-rectangles Rk = Sk × [a, b]. Note that for each k ∈ K, we
have Rk ∩ C 6= ∅ ⇐⇒ Sk ∩ ∂B 6= ∅, and hence

U(C) ≤ U(C,Z) =
∑

Rk∩C 6=∅
|Rk| =

∑
Sk∩∂B 6=∅

|Sk|(b− a) = U(∂B,X) (b− a) ≤ ε.

Since U(C) ≤ ε for all ε > 0, it follows that U(C) = 0, as claimed.

We claim that U(G) = U(H) = 0. Let ε > 0. Choose m ∈ Z+ so that b−a
m ≤ ε

2(U(B)+1)

and let Y = {y0, y1, · · · , ym} be the partition of [a, b] into m equal-sized subintervals, each
of size b−a

m . Since B is compact and g is continuous, hence uniformly continuous, we can

choose δ > 0 so that when x1, x2 ∈ B with |x1 − x2| < δ, we have |g(x1) − g(x2)| < b−a
2m .

Choose a partition X of S into sub-rectangles Sk with k ∈ K, so that firstly, we have
U(B,X) ≤ U(B) + 1, and secondly, for each k we have |x1 − x2| < δ for all x1, x2 ∈ Sk.
Let Z be the partition of R determined by X and Y , that is the partition into the sub-
rectangles Rk,j = Sk × [yj−1, yj ]. Note that when Rk,j ∩G 6= ∅ we have Sk ∩ B 6= ∅, and
note that for each k there are at most 2 values of j for which Rk,j ∩ G 6= ∅ because, if
we had (xi, g(xi)) ∈ G ∩ Rk,ji with j1 < j2 < j3 then we would have x1, x3 ∈ B with
g(x3)− g(x1) ≥ b−a

m . Thus

U(G) ≤ U(G,Z) =
∑

Rk,j∩G 6=∅
|Sk| b−am ≤ 2 ·

∑
Sk∩B 6=∅

|Sk| b−am = 2U(B,X) b−am ≤ ε.

Since U(G) ≤ ε for all ε > 0, we have U(B) = 0. The same argument shows that U(H) = 0.

Finally, we note that since ∂A = C ∪ G ∪H, we have U(∂A) ≤ ∂C ∪ ∂G ∪ ∂H = 0
(by Theorem 8.9), and hence A is Jordan measurable. This completes the proof of Part 1.

2



To prove Part 2, note that by Definition 8.17 (the definition of the integral), when we
extend the domain of a function from a Jordan region to a containing rectangle, by defining
the function to be zero outside the Jordan region, the original function is integrable if and
only if the extended function is integrable, and they have the same integral. Extend the
map f : A → R by zero to obtain the map f : R → R with f(x, y) = 0 when (x, y) /∈ A.
By the definition of the integral, this extended map f is integrable on R with

∫
R
f =

∫
A
f .

By Fubini’s Theorem, we have
∫
A
f =

∫
R
f =

∫
S
G where G(x) =

∫ b
y=a

f(x, y) dy, which

is integrable on S. When x ∈ B we have f(x, y) = 0 unless g(x) ≤ y ≤ h(x), and so

G(x) =
∫ b
y=a

f(x, y) dy =
∫ h(x)
y=g(x)

f(x, y) dy. When x /∈ B we have f(x, y) = 0 for all y so

that G(x) = 0. By the definition of the integral again, since G(x) = 0 whenever x /∈ B we
have

∫
S
G =

∫
B
G, and so∫

A

f =

∫
R

f =

∫
S

G =

∫
B

G =

∫
B

(∫ h(x)

y=g(x)

f(x, y) dy

)
dx1dx2 · · · dxn−1.

9.4 Theorem: (Local Change of Variables). Let U ⊆ Rn be open and let g : U → Rn
be C1 with detDg 6= 0 on U . Then for every a ∈ U there exists an open set W with
a ∈ W ⊆ U such that g(W ) is open and g : W → g(W ) is bijective and its inverse is C1,
and such that for every Jordan region A with A ⊆ W and for every continuous function
f : g(A)→ R, we have ∫

g(A)

f =

∫
A

(f ◦ g)
∣∣detDg

∣∣.
Proof: We begin by noting that given a ∈ U , using the Inverse Function Theorem we can
choose an open set W with a ∈ W ⊆ U such that g(W ) is open and g : W → g(W ) is
bijective and its inverse is C1. Later in the proof we shrink W to make the theorem hold.

We claim that if |R| =
∫
g−1(R)

∣∣detDg
∣∣ for every rectangle R in g(W ), then we

have
∫
g(A)

f =
∫
A

(f ◦g)
∣∣ detDg

∣∣ for every Jordan measurable set A with A ⊆ U and every

continuous function f : g(A)→ R. Suppose that |R| =
∫
g−1(A)

∣∣ detDg
∣∣ for every rectangle

R in g(W ), let A be a Jordan region with A ⊆ U and let f : g(A) → R be continuous.

Note that the functions f+ = |f |+f
2 and f− = |f |−f

2 are both continuous and non-negative
with f = f+ − f−, so it suffices to consider the case that f is non-negative.

Let ε > 0. Choose a rectangle R in Rn with g(A) ⊆ R and choose a partition X of
R into sub-rectangles Rk, k ∈ K such that U(f,X) ≤ U(f) + ε and such that for all k,
if Rk ∩ g(A) 6= ∅ then Rk ⊆ g(W ) (we can do this since g(A) is compact and g(W ) is
open). Recall that to obtain U(f,X), we first extend f by zero to all of R, and then we
let Mk = sup

{
f(y)

∣∣y ∈ Rk}. Note that when Rk ∩ g(A) = ∅ we have Mk = 0, and so we
have U(f,X) =

∑
Rk∩g(A) 6=∅Mk|Rk| =

∑
Rk∩g(A) 6=∅Mk|Rk| with

Mk = sup{f(y)|y∈Rk} = sup{f(g(x))|x∈g−1(Rk)}.
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Since the set {Rk|Rk ∩ g(A) 6= ∅} is a set of Jordan regions with disjoint interiors which
covers g(A), it follows that the set {g−1(Rk)|Rk ∩ g(A) 6= ∅} is a set of Jordan regions
with disjoint interiors which covers A. Let B =

⋃
Rk∩g(A)6=∅ g

−1(Rk). We have∫
g(A)

f + ε ≥ U(f,X) =
∑

Rk∩g(A) 6=∅
Mk |Rk| =

∑
Rk∩g(A) 6=∅

Mk

∫
g−1(Rk)

∣∣detDg
∣∣

≥
∑

Rk∩g(A) 6=∅

∫
g−1(Rk)

(f ◦ g)
∣∣ detDg

∣∣ =

∫
B

(f ◦ g)
∣∣detDg

∣∣
≥
∫
A

(f ◦ g)
∣∣ detDg

∣∣.
Since ε > 0 was arbitrary, it follows that

∫
g(A)

f ≥
∫
A

(f ◦ g)
∣∣ detDg

∣∣. A similar argument

using L(f,X) shows that
∫
g(A)

f ≤
∫
A

(f ◦ g)
∣∣detDg

∣∣. This proves the claim.

We shall now use the claim to prove the theorem by induction on n. When n = 1,
the theorem holds by the single variable Change of Variables Theorem. Let n ≥ 2 and
suppose, inductively, that the theorem holds in Rn−1. Let a ∈ U . Since detDg(a) 6= 0, by
expanding the determinant along the last row, we see that one of the matrices obtained
from Dg(a) by removing the nth row and jth column must have non-zero determinant. For
notational convenience, suppose that the upper left (n− 1)× (n− 1) submatrix of Dg(a)
is invertible. Write elements in W as (x, y) with x ∈ Rn−1 and y ∈ R, re-write the given
point a ∈W as (a, b) ∈W , and write g : W → g(W ) as g(x, y) =

(
h(x, y), gn(x, y)

)
with

h(x, y) =
(
g1(x, y), g2(x, y), · · · , gn−1(x, y)

)
.

Define p : W → Rn by
p(x, y) =

(
h(x, y), y

)
and note that Dp is the matrix obtained from Dg by replacing the last row by (0, · · · , 0, 1).
In particular detDp(a, b) is the determinant of the upper left (n− 1)× (n− 1) submatrix
of detDg(a, b), which we are assuming is non-zero. By the Inverse Function Theorem, we
can shrink the open set W , if necessary, so that W and p(W ) are open with (a, b) ∈ W ,
and p : W → p(W ) is invertible with p and p−1 both C1. Define q : p(W )→ Rn by

q(u, v) =
(
u, gn(p−1(u, v))

)
and note that q(p(x, y)) = g(x, y) for all (x, y) ∈W so that g is the composite g = q◦p, and
Dp(x, y) = Dq(p(x, y))Dp(x, y) for all (x, y) ∈W . The sets W , p(W ) and q(p(W )) = g(W )
are all open, the maps g : W → g(W ), p : W → p(W ) and q : p(W ) → q(p(W )) = g(W )
are all bijective, and these maps and their inverses are all C1.

Let R = [a1, b1]×· · ·×[an, bn] be a rectangle in p(W ). let S = [a1, b1]×· · ·×[an−1, bn−1]
so that R = S × [an, bn]. For each y ∈ [an, bn], define h : S → Rn−1 by hy(x) = h(x, y).
By the induction hypothesis, we have |S| =

∫
hy

−1(S)

∣∣detDhy
∣∣, and so

|R| = |S|(bn − an) =

∫ bn

y=an

|S| dy =

∫ bn

y=an

∫
hy

−1(S)

∣∣detDhy
∣∣

=

∫ bn

y=an

∫
hy

−1(S)

∣∣ detDp
∣∣ =

∫
p−1(R)

∣∣detDp
∣∣.
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By the claim proven above, it follows that for every Jordan measurable set A with A ⊆W
and for every continuous map f : p(A)→ R we have∫

p(A)

f =

∫
A

(f ◦ p)
∣∣detDp

∣∣ . (1)

We can give a similar argument for the function q. Let R = S × I with I = [an, bn] be
a rectangle in q(p(W )) = g(W ). For each u ∈ S let ku : I → R be given by ku(v) =
k(u, v) = gn(p−1(u, v)). By the single variable Change of Variables Theorem, we have
|I| =

∫
ku−1(I)

∣∣detDku
∣∣ and so

|R| = |S| |I| =
∫
S

|I| =
∫
S

∫
ku−1(I)

∣∣detDku
∣∣ =

∫
ku−1(R)

∣∣ detDku
∣∣ =

∫
ku−1(R)

∣∣detDq
∣∣.

By the claim, it follows that for every Jordan measurable set B with B ⊆ p(W ) and every
continuous map f : q(B)→ R we have∫

q(B)

f =

∫
B

(f ◦ q)
∣∣detDq

∣∣. (2)

Combining (1) and (2), we see that for every Jordan measurable set A with A ⊆ W and
for every continuous map f : A→ R, letting b = p(A) so that B ⊆ p(W ), we have∫

g(A)=q(B)

f =

∫
B=p(A)

(f ◦ q)
∣∣detDq

∣∣ =

∫
A

(
(f ◦ q)

∣∣ detDq
∣∣ ◦ p)∣∣ detDp

∣∣
=

∫
A

((f ◦ q) ◦ p)
∣∣(detDq) ◦ p

∣∣ ∣∣ detDp
∣∣ =

∫
A

(f ◦ g)
∣∣ detDp

∣∣.
9.5 Theorem: (Change of Variables) Let U ⊆ Rn be open, let g : U → Rn be C1 with
detDg 6= 0 on U , let A be a Jordan region with A ⊆ U , and let f : g(A)→ R be continuous.
Then ∫

g(A)

f =

∫
A

(f ◦ g)
∣∣detDg

∣∣.
Proof: I may include a proof later.
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