Chapter 9. Fubini’s Theorem and Change of Variables

9.1 Definition: For /€ {1,2,---,n}, the ¢!" projection map p,:R" —R"~! is given by

p€($17x27 oy Xp—15,Y, Tl L4150 7xn—1> - (l’l,l’g, e 73:17,—1)-
9.2 Theorem: (Fubini’s Theorem for a Rectangle in R™). Fix ¢ € {1,2,---,n}. Let
R = [a1,b1] X [az,b2] X -+ X [an,b,] € R™ and let S = pe(R) C R L. Let f: R — R be
integrable on R. For each x € S, define g, : [ag,bs] — R by

gw(y) = f(xla oy Tp—1,Y, T, 7xn71)

so that pe(g.(y)) = x. Suppose that g, is integrable on [ag,bs] for every x € S. Define
G:S—R by

be
G(z) = / 9:(y) dy.

Then G is integrable on [as, bs] and we have

/f / /(/ dy)dV /S(/yb_igx(y)dy)dxldwg---dxn_l.

Proof: For convenience of notation, we give the proof in the case that € =n, SO we
have S = [a1,b1] X -+ X [ap—1,bn-1], 92(y) = f(x,y) and G(z f_a (z,y) dy, with
x€R" ! yecR. Let e >0. Choose a partition Z of R with U(f) <U(f,Z)<U(f)+e.
The first n — 1 components Zy,Zs,---,Z,_1 of Z determine a partition X of S into
sub-rectangles S with £k € K = K(X), and the last component of Z gives a partition
Y =Z, = {yo,v1,"**,Ym} of [an,by], and then Z partitions R into the sub-rectangles
Ry,j = S x[yj-1,y;] with Ry j| = [Sk[(y; —y;j—1). Let My ; = sup { f(z,9) | (z,y) € Ri;}

so that U(f,Z) = >, Z My 1Skl (yj — yj—1)-
Note that heR =1
vj

bn m
:/: fz,y)dy = §1Gj(x) where Gj($):/ f(z,y)dy

Y=Yj—1
and note that when (z,y) € Ry ; we have f(x,y) <My ; so G;(x) < My ;(yj—1—y;). Also
note that for any bounded maps p,q : S — R we have U((p+q), X) <U(p,X)+U(q,X)
because sup {p(a:)+q(a:) ’ xESk} < sup {p(a:) ‘ xGSk} + sup {q(x) ! xE Sk}. Thus we have

UG, X)=U( éaj, X) < glU(Gj7X) _ glkEZKsup{Gj(x)‘mGSk} S|

m

<3N My i(yy —yi—1) ISkl = U(f, Z2) < U(f) + .

j=lkeK
Since U(G) < U(G,X) < U(f) + € for all € > 0, it follows that U(G) < U(f). A similar
argument shows that L(G) > L(f), so we have
L(f) < L(G) < U(G) < U(f).

Since f is integrable so that L(f) = U(f), it follows that L(f) = L(G) = U(G) =U(f) so
that G is integrable on S and [¢ G = [, f, that is

sz/ng[q(/yinanf(x,y)dy> dxidxre - dT,_1.



9.3 Theorem: (Iterated Integration) Fix { € {1,2,---,n}. Let B C R""! be a closed
Jordan region. Let g,h : B — R be continuous with g(x) < h(x) for all x € B. Let

A= {(xlax% oy Te—1,Y, T, 7In—1) cR"” ‘ [L‘GB, g(.’L‘) Syﬁh(x)}
Then

(1) A is a Jordan region in R™, and
(2) when f: A — R is continuous, we have

/f / < f(xlu"'7m£—17y7$€7"'7xn—1)dy) dridxy - - - dr,—1
Yy=ae

Proof: For notational convenience, we give a proof in the case that ¢ = n, so we have
A={(z,y)|zeB, glx)<y<h(z)}.
Verify, as an exercise that 0A = C'U G U H where

C’—{xy‘xeﬁB g(z)<y< h()}
G = {:cy‘.rEB y=g(x }and
H = {a:y‘xEB y=h(x }

Choose a rectangle S in R"~! which contains B. Note that B is compact and g and h are
continuous, hence bounded, so we can choose an interval [a, b] which contains the range of
both g and h, so that the rectangle R = S X [a, b] contains A.

We claim that U(C') = 0. Let € > 0. Since B is Jordan measurable we can choose a
partition X for S, into sub rectangles Sy with k& € K, such that U(0B, X) < ;5. Let Z
be the partition of R into sub-rectangles Ry = Sy X [a,b]. Note that for each k € K, we
have Ry NC # () <= S, N OB # ), and hence

U(C) <UC2) = %AR” - %;B#éb“kl(b ) =U(0B,X)(b—a)<e

Since U(C) < € for all € > 0, it follows that U(C') = 0, as claimed.

We claim that U(G) = U(H) = 0. Let € > 0. Choose m € Z* so that b;—“ < sTEED
and let Y = {yo0,91, -+, ym} be the partition of [a,b] into m equal-sized subintervals, each

br_n“. Since B is compact and g is continuous, hence uniformly continuous, we can

choose § > 0 so that when =1,z € B with |x1 — 23| < §, we have |g(z1) — g(z2)
Choose a partition X of S into sub-rectangles Sy with & € K, so that firstly, we have
U(B,X) < U(B) + 1, and secondly, for each k we have |x1 — xz2| < 0 for all 21,29 € Sk.
Let Z be the partition of R determined by X and Y, that is the partition into the sub-
rectangles Ry ; = Sk X [y;—1,y;]. Note that when Ry ; N G # () we have Si N B # (), and
note that for each k there are at most 2 values of j for which Ry ; NG # 0 because, if
we had (z;,9(x;)) € GN Ry, with ji < jo < j3 then we would have z;,23 € B with
g(z3) — g(z1) > =2, Thus

UG <U(G,2Z2)= 3 |Si]E2e<2-Y [SelE2=2U(B,X)22 <
Ry ;NG#D SxNB#D
Since U(G) < € for all € > 0, we have U(B) = 0. The same argument shows that U(H) = 0.

Finally, we note that since 0A = C UG U H, we have U(0A) < 9CUIGUOIH =0
(by Theorem 8.9), and hence A is Jordan measurable. This completes the proof of Part 1.



To prove Part 2, note that by Definition 8.17 (the definition of the integral), when we
extend the domain of a function from a Jordan region to a containing rectangle, by defining
the function to be zero outside the Jordan region, the original function is integrable if and
only if the extended function is integrable, and they have the same integral. Extend the
map f: A — R by zero to obtain the map f : R — R with f(z,y) = 0 when (z,y) ¢ A.
By the definition of the integral, this extended map f is integrable on R with [ rf = Juf A

By Fubini’s Theorem, we have [, f = [, f = [4 G where G(x fy o f(x,y) dy, which
is integrable on S. When z € B we have f(z,y) = 0 unless g(x) <y < h(z), and so

= fyb:a flx,y)dy = fyh:(:;)(w) f(x,y)dy. When = ¢ B we have f(z,y) = 0 for all y so
that G(z) = 0. By the definition of the integral again, since G(x) = 0 whenever = ¢ B we

have [, G = [5G, and so
/f /f / / /(/yh:z) xy)dy)dmldxg---dxnl.

9.4 Theorem: (Local Change of Variables). Let U C R™ be open and let g : U — R"
be C' with det Dg # 0 on U. Then for every a € U there exists an open set W with
a € W C U such that g(W) is open and g : W — g(W) is bijective and its inverse is C1,
and such that for every Jordan region A with A C W and for every continuous function

f:9(A) = R, we have
= og)|det Dg|.
/g(A) d /A<f g)| “ g‘

Proof: We begin by noting that given a € U, using the Inverse Function Theorem we can
choose an open set W with a € W C U such that g(WW) is open and g : W — ¢g(W) is
bijective and its inverse is C'. Later in the proof we shrink W to make the theorem hold.

We claim that if |R| = fg,l(R) |det Dg} for every rectangle R in g(W), then we
have fg (A) f=7 4(fo g)| det Dg‘ for every Jordan measurable set A with A C U and every
continuous function f : g(4) — R. Suppose that |R| = fg,l(A) |det Dg‘ for every rectangle

R in g(W), let A be a Jordan region with A C U and let f : g(A) — R be continuous.
Note that the functions f* = mT+f and f~ = L/ ‘2_ I are both continuous and non-negative
with f = fT — f~, so it suffices to consider the case that f is non-negative.

Let € > 0. Choose a rectangle R in R™ with g(A) C R and choose a partition X of
R into sub-rectangles Ry, k € K such that U(f, X) < U(f) + € and such that for all &,
if R, Ng(A) # 0 then R, C g(W) (we can do this since g(A) is compact and g(W) is
open). Recall that to obtain U(f, X), we first extend f by zero to all of R, and then we
let M}, = sup {f(y)}y € Rk}. Note that when Ry N g(A) = () we have My, = 0, and so we

have U(f,X) = ZR;JWM#@ Mk|Rk| = ZR,JTg(A);HZ) Mk|Rk| with
M;. = sup{f(y)ly € Ry} = sup{f(g(x))lx€ g~ (Ri)}.




Since the set {Rg|Rr N g(A) # 0} is a set of Jordan regions with disjoint interiors which
covers g(A), it follows that the set {g='(Ry)|Rr N g(A) # 0} is a set of Jordan regions
with disjoint interiors which covers A. Let B = g, ny(4)20 g 1 (Ry). We have

fre>UfLX)= ¥ My|Rl= X Mk/ | det Dg|
g(A) RiNg(A)#0 RiNg(A)#0 g~ (Rg)

> > / (fog)‘deth‘:/B(fog)‘deth|

 ReNg(A)#0 g1 (Ry)
Z/A(fog)\deth{-

Since € > 0 was arbitrary, it follows that fg( otz [4(fog)|det Dg|. A similar argument
using L(f, X) shows that fg(A) f < [,(f og)|det Dg|. This proves the claim.

We shall now use the claim to prove the theorem by induction on n. When n = 1,
the theorem holds by the single variable Change of Variables Theorem. Let n > 2 and
suppose, inductively, that the theorem holds in R”~!. Let a € U. Since det Dg(a) # 0, by
expanding the determinant along the last row, we see that one of the matrices obtained
from Dg(a) by removing the n*® row and j*" column must have non-zero determinant. For
notational convenience, suppose that the upper left (n — 1) x (n — 1) submatrix of Dg(a)
is invertible. Write elements in W as (z,y) with z € R*~! and y € R, re-write the given
point a € W as (a,b) € W, and write g : W — g(W) as g(z,y) = (h(z,y), gn(z,y)) with

hz,y) = (91(2,9), g2(2,9), -+ gn-1(2,9)).
Define p : W — R™ by
p(x,y) = (h<x7y>7y)

and note that Dp is the matrix obtained from Dg by replacing the last row by (0,---,0,1).
In particular det Dp(a,b) is the determinant of the upper left (n — 1) x (n — 1) submatrix
of det Dg(a, b), which we are assuming is non-zero. By the Inverse Function Theorem, we
can shrink the open set W, if necessary, so that W and p(W) are open with (a,b) € W,
and p : W — p(W) is invertible with p and p~! both C!. Define q : p(W) — R" by

q(u,v) = (u, gu(p™ " (u, v)))

and note that ¢(p(z,v)) = g(z,y) for all (x,y) € W so that g is the composite g = gop, and
Dp(z,y) = Dq(p(z,y))Dp(z, y) for all (z,y) € W. The sets W, p(W) and q(p(W)) = g(W)
are all open, the maps g : W — g(W), p: W — p(W) and q : p(W) — q(p(W)) = g(W)
are all bijective, and these maps and their inverses are all C!.

Let R = [a1, b1] X" - -X[an, by] be arectangle in p(W). let S = [a1,b1] X - X[an—1,bn—1]
so that R = S X [ap,b,]. For each y € [ay,by,], define h : S — R"! by h,(x) = h(z,y).
By the induction hypothesis, we have |S| = fhy—l(S) ‘ det Dhy|, and so

by bn
Rl =I8I(bw~a) = [ |Slay= [ [ |detDn,]
Y= y=an Jhy "1 (S)

bn
:/ / | det Dp| :/ | det Dp|.
y=an Jhy~1(S) P~ (R)



By the claim proven above, it follows that for every Jordan measurable set A with A C W
and for every continuous map f : p(A) — R we have

/p(A) / o p)|det Dp| . (1)

We can give a similar argument for the function ¢q. Let R = S x I with I = [a,,b,] be
a rectangle in ¢(p(W)) = g(W). For each u € S let k,, : I — R be given by k,(v) =
k(u,v) = gn(p~1(u,v)). By the single variable Change of Variables Theorem, we have
|I| = fku,l(l) | det Dk, | and so

|R| = |9| |I|:/|I|:// |detDku|:/ |detDku|:/ | det Dq.
S S Jky () k.~ (R) ku—1(R)

By the claim, it follows that for every Jordan measurable set B with B C p(W) and every
continuous map f : ¢(B) — R we have

/q(B)f:/B(foq)\deth\- 2)

Combining (1) and (2), we see that for every Jordan measurable set A with A C W and
for every continuous map f: A — R, letting b = p(A) so that B C p(W), we have

= O d D = o d D o d D
/9<A)—q<B)f /B—p<A>(f 0| det Da /A<(f 9)| det Dq| p)‘ et Dp|

:/((foq)opﬂ(deth)op"detDp‘ :/(fog)|detDp|.
A A

9.5 Theorem: (Change of Variables) Let U C R™ be open, let g : U — R" be C! with
det Dg # 0 on U, let A be a Jordan region with A C U, and let f : g(A) — R be continuous.

Then
/ f:/(fog)|deth‘.
g(A) A

Proof: I may include a proof later.



