MATH 247 Calculus 3, Solutions to the Exercises for Chapter 2

: Let 0 # u,v,w € R™.

(a) (Trigonometric Ratios) Show that if (v — u) - w = 0 then cos(u,v) = % and sin f(u,v) =

Solution: Suppose that (v —u) - u =0 and let § = 0(u,v). We have 0 = (v —u) - u=v-u—u-u=1v-u— |ul?
so that u - v = |u|? and hence

l[v—ul

vl

. 2
cosg = LU Wl

ul ol fulfol ol
Also, we have [v —ul? = (v —u) - (v—u) = |[v]*> = 2(u-v) + |u|? = |v|* = 2[u|® + [u]? = |v|? — |u|? and so

[ul> ol = |ul* v —ul?
sin? 6§ = 1 — cos? Gflfwf BE = BE

Since 6 € [0, 7] we have sin@ > 0, and so taking the square root on both sides gives

sinf = v =l

|v]

(b) (Angle Addition) Show that if 0 # w = su + tv for some s,¢ > 0 then we have 0(u, v) = 0(u, w) + 0(w, v).
Solution: First we note that when ¢ > 0 we have

1 (tu) - v ~ cos! t(u-v) ol WY
[tul [v] tul |v] |ul [v]

O(tu,v) = cos™

and similarly 0(u,tv) = 6(u,v). It follows that for 4 = ray and @ = 7 we have O(u,v) = 0(a,0). Also note that
if 0 # w = su+ tv with s,¢ > 0 then for & = i we have & = S"“" 4t ‘l 9. It follows that it suffices to consider

the case that u, v and w are unit vectors (since, if necessary, we can replace them by 4, ¥ and ).

Suppose that u, v and w are unit vectors. Then
1= |w|® = (su+tv) - (su+tv) = s* + 2st(u - v) + 2.

We have
cosO(u,w) =u-w=u-(su+tv) =s+t(u-v)

sin O(u, w) = \/1 — cos? O(u, w) = /1 — (s + t(u - v))2
= /(82 + 2st(u - v) + 12) — (52 + 2st(u - v) + t2(u - v)2
:\/tz—t2u-v)2=t\/l—(u-v)2

and similarly
cosO(v,w) =t + s(u-v)

sinf(v,w) = sy/1 — (u-v)?

and so

cos (0(u, w) + 0(v,w)) = (s + t(u-v))(t+ s(u-v)) —ty/1 — (u-v)2 - sy/1 — (u-v)?
= (st+s*(u-v) +t*(u-v) + st(u-v)?) — st(l — (u-v)?
= s%(u-v) + t2(u - v) + 2st(u - v)?
= (s> +t* +2st(u-v))(u-v)
=wu-v=cosf(u,v) , and

sin (6(u, w) 4 0(v, w)) = sin O(u, w) cos f(v, w) + cos §(u, w) sin O(v, w)

1—(u-v)2(t+su-v))+ (s+t(u-v)) - sy/1—(u-v)?

= +stlu-v)+s°+st(u-v))y/1— (u-v)?

= /1= (u-v)? =sinb(u,v).



2: (a) Let A= {(1:, y)ER? | 0<z, 0<y and xy< 1}. Show, from the definition of an open set, that A is open in R2

Solution: Before beginning our proof, let us discuss our strategy. Suppose that (a,b) € A, so we have a > 0,
b> 0 and ab < 1. We want to choose r > 0 so that the disc B, = B((a,b),r) is contained in A. Note that
the open square @, given by |z — a| < r and |y — b| < r contains the disc B,, so it suffices to ensure that
Q. is contained in A. Note that if r < athen |z —a| < r = |z —a| <a = 0< z < 2a = z > 0.
Similarly, if »r < b then |y — b < r = y > 0. Note that if r < a and » < b then r < a + b and so
(a+7r)b+r)=ab+r(a+b)+r*<ab+r(a+b)+r(a+b)=ab+2r(a+b) and we can obtain (a+r)(b+7) < 1

by choosing r < 2(;-&;)'
1—ab

Now we begin the proof. Let (a,b) € A, so we have a > 0, b > 0 and ab < 1. Choose r = min {a, b, 2att) )

Let (z,y) € B, = B((a,b),r). Then |z —a| = /lz —a> < /lz —al> + |y —b]> = |(z,y) — (a,b)| < r and
similarly |y — b] < r. Since |t —a| < r < a we have 0 < a—r < x < a+r and since |y — b < r < b we

have 0 < b—r <y < b+r. Since 0 < z < a+r and 0 < y < a+7r and r < a+b and r < 21(;;2) we have

zy<(a+7r)(b+7r)=ab+r(a+b)+7r?<ab+2r(a+b) <ab+ (1 —ab)=1. Since z>0and y >0 and zy < 1
we have (z,y) € A. Thus B, C A, as required, and so A is open.

(b) Let B:{ (%, zz—:) ERQ) te R}. Show that B is not closed in R2.

Solution: To solve this problem, you might find it helpful to draw a picture of the set B by choosing various

values of ¢ and plotting points. You should find that B looks like the unit circle centred at (0,0) with the point

(0,1) removed. If you wish, you can show, algebraically, that this is indeed the case.

Let a = (0,1). Let a(¢t) = % and y(t) = % and f(t) = (x(t),y(t)) so that B = {f(t)|t € R}. We claim
that a € B’ (that is a is a limit point of B) but a ¢ B. It is clear that a ¢ B because to get f(t) = a we need
z(t) = 0 and y(t) = 1, but to get x(t) = 1522% = 0 we must choose ¢t = 0, and then y(t) = g;i =-1#1. To
show that a € B’, we shall show that for all » > 0 we have B(a,7) N B # (). Let r > 0. Since tlgglo z(t) = 0 and

tlim y(t) = 1 we can choose t € R so that |2(t) — 0| < § and |y(t) — 1| < 5. Then we have
— 00

|[£(t) = a] = [(x(t),y(®)) = (0,1)] = [(z(t), y(t) = )| < Ja@®] + ly(t) =1 <5+ 5 =7

and so f(t) € B(a,r) N B. This shows that for all » > 0 we have B(a,7) N B # 0, and so a € B’. Since a € B’
and a ¢ B we do not have B’ C B and so B is not closed (by Part (2) of Theorem 2.19).

3: Let A CR"™.

(a) Show that A’ is closed in R™.

Solution: By Part (2) of Theorem 2.19, we know that A’ is closed if and only if (A") C A’. Let a € (A’)’, that
is let a be a limit point of A’. Let r > 0. Since a is a limit point of A’, we know that B*(a,r) N A’ # (). Choose
b € B*(a,r) N A’. Note that 0 < |a —b| <. Let s = min (Ja — b|,r — [a — b]) > 0. Since b € A’ we know that
B*(b,s) N A # (). Choose ¢ € B*(b,s) N A. We claim that ¢ € B*(a,r) N A. By the Triangle Inequality we have
la—c| <la—bl+b—c| <|a—bl+s<|a—bl+r—]|a—>bl =r, and by the Triangle Inequality again, we have
la—bl <|a—c|+|c—blandso|a—c|>]a—bl—|b—c|>|a—bl—s>]a—bl—|a—b=0. Thus0<|a—¢| <7
and so ¢ € B*(a,r) N A, as claimed. Since ¢ € B*(a,r) N A, we see that B*(a,7) N A # (. We have shown that
for every r > 0 we have B*(a,7) N A # (), and so a € A’. This proves that (A’)’ C A’, and so A’ is closed.

(b) Show that 04 = A\ A°.

Solution: Let a € dA. We claim first that a € A. Since A = A U A’ it suffices to show that either a € A or
a € A'. Suppose that a ¢ A. Let r > 0 be arbitrary. Since a € A we have B(a,r) N A # 0. Since a ¢ A we have
B*(a,r)N A= B(a,r) N A and so B*(a,r) N A) # (. Since r > 0 was arbitrary, we have a € A’ as required.

Next we claim that a ¢ A°. Suppose, for a contradiction, that a € A°. By Part (b), a is an interior point of
A so we can choose r > 0 so that B(a,r) C A. Since B(a,r) C A we have B(a,r) N A¢ = ). But since a € A we
have B(a,r) N A¢ # (), so we have obtained the desired contradiction. Thus a ¢ A°, as claimed. This completes
the proof that A C A\ A°.

Now let a € A\ A°, that is let a € A with a ¢ A°. Let r > 0 be arbitrary. Case 1: suppose that a € A. Let
r > 0 be arbitrary. Since a € A and a € B(a,r) we have B(a,r)NA # . Since a ¢ A° we have B(a,r) € A and so
B(a,r) N A¢ # (. Thus a € A. Case 2: suppose that a ¢ A. Let r > 0 be arbitrary. Since a ¢ A and a € B(a,r)
we have B(a,r) N A¢ # (). Sincea € A = AUA" and a ¢ A we have a € A’ and so B*(a,r) N A # () hence
B(a,7)N A # (. Thus a € A. In either case we find that a € A. This completes the proof that A\ A° C JA.



4: (a) Let A, B C R"™ show that if A is connected and A C B C A then B is connected.

Solution: Suppose that A is connected and that A C B C A. Suppose, for a contradiction, that B is disconnected.
Choose open sets U,V C R™ which separate B, so we have UNB # 0, VNB# 0, UNB=@0and BCUUYV.
We claim that U and V also separate A (contradicting the fact that A is connected). Since A C B C U UV, it
suffices to prove that UN A # () and U N B # (. We claim that U N A # (). Since U N B # () we can choose
bcUNB. Then we have be BC A= AU A’, and so either b€ Aorbc A’. If b € A then we have b€ UN A
so that U N A # (). Suppose that b € A’. Since b € U and U is open, we can choose r > 0 such that B(b,r) C U.
Since b € A’ we have B(b,r) N A # () so we can choose ¢ € B(b,r) N A. Then we have ¢ € B(b,r) CU and ¢ € A,
hence c € UN A, and so UN A # (. This proves that U N A # (), as claimed. The proof that V N A # () is similar,
and so U and V separate A giving the desired contradiction.

(b) Let S be a nonempty set and let A; C R™ for each j € S. Suppose that A; is connected for all j € S and
that Ay N Ay # 0 for all k,¢ € S. Show that |J A, is connected.
jes
Solution: Let B = |J A;. Suppose, for a contradiction, that B is disconnected. Choose open sets U,V C R"
jes
which separate B, that is BNU # 0, BNV #0,UNV =@ and BCUUV. Chooseac BNU andbe BNV.
Since a € B = |J A;, we can choose k € S such that a € A;. Similarly we can choose ¢ € S such that b € A,.
jes
Then we have a € A, NU and b € A, NV. Since Ay is connected, and a € Ay NU so that A, NU # (), and
A, € U 4; =B CUUYV, it follows that we must have A, C U because otherwise we would have Ay NV # ()
jes

and so U and V would separate Aj. Similarly, we must have A, C V. Since Ay C U and Ay C V we have
AN A, CUNV = (. This contradicts our assumption that Ay N A, # (), and so B is connected, as required.

5: Let A C P C R"™. Define the interior of A in P to be the union of all sets £ C P such that E is open in P and
E C A. Define the closure of A in P to be the intersection of all sets ' C P such that F is closed in P and
A C F. Denote the interior of A in R™ and the closure of A in R” by A° and A (as usual). Denote the interior
of A in P and the closure of A in P by Intp(A) and Clp(A).

(a) Show that Clp(A) = AN P.

Solution: Since A is closed in R™ it follows that AN P is closed in P. Since A C A and A C P we have A C ANP.
Since AN P is closed in P and A C AN P, it follows from the definition of Clp(A) that Clp(A) C AN P.

Let F be any closed set in P with A C F. Choose a closed set K in R™ such that ' = K N P. Since K is
closed in R” and A C K we have A C K. Thus ANP C KNP =F. Since AN P C F for every closed set F in
P which contains A, it follows, from the definition of Clp(A), that AN P C Clp(A).

(b) Show that Intp(A) = (AU P°)° N P, where P° = R™\ P.

Solution: Let F = (AU P¢)°N P. Since (AU P¢)° is open in R™ it follows that F' = (AU P°)° N P is open in P.
Also note that we have FF = (AUP)°NP C(AUP)NP=(ANP)U(P°NP)=(ANP)UD=ANP=A,
since A C P. Since F is open in P and F' C A it follows, from the definition of Intp(A), that F' C Intp(A).

Let E be any open set in P with £ C A. Choose an open set U in R"™ such that U N P = E. Then we have
U=UNR"=UNPUP)=UNP)UUNP)=FEU{UNP)CAUP since EC Aand UnNP®C P°.
Since U is open in R™ and U C A U P¢ it follows that U C (AU P¢)°. Since E=UNP CU C (AU P°)° and
ECACPwehave EC (AUP)°NP =F. Since E C F for every open set F in P with E C A it follows, from
the definition of Intp(A), that Intp(A) C F.



